计量、金融与大数据分析workshop:Nickell Meets Stambaugh: A Tale of Two Biases

发布日期:2024-03-29 12:00    来源:

主讲人:史震涛(香港中文大学)

主持老师:(北大经济学院)王熙

参与老师:  (北大经院)王一鸣、王法、刘蕴霆

(北大国发院)黄卓、张俊妮、孙振庭

(北大新结构)胡博

时间:2024年3月29日(周五) 10:00-11:30

地点(线下): 北京大学经济学院606会议室

报告摘要:

In panel predictive regression, the Nickell bias is mixed with the Stambaugh bias when regressors are persistent, imposing challenges against valid inference. This paper proposes a new estimator, which we call IV-X-differencing (IVXD) to restore the standard inferential procedure based on t-statistic. This estimator is constructed based on a panel data extension of the IVX technique in time series. The baseline panel IVX is asymptotically biased when the cross-sectional dimension n and the time dimension T are both large. To make bias correction feasible, we plug in the X-differencing estimator into an analytic formula. The bias-corrected estimator delivers a unified inferential procedure for the predictive regression that covers the stationary, mildly integrated, and the local-to-unity cases. In contrast, unified inference collapses if either of the two components is estimated by the familiar within-group estimator. 

 

主讲人简介:

史震涛,香港中文大学经济系副教授。他的研究聚焦于机器学习算法在计量经济学场景中的渐进理论,涵盖截面数据、时间序列和面板等多种数据类型。他的研究成果已经发表在包括Econometrica, Review of Economics and Statistics, International Economic Review, Journal of Econometrics 等国际一流期刊上。

 


分享到: