[12月3日] 计量金融与大数据分析workshop

发布日期:2021-11-29 09:32    来源:

Profile GMM Estimation of Panel Data Models with Interactive Fixed Effects

(交互固定效应面板数据模型的广义矩估计)

 间:2021年123日(周五)10:00 AM -- 11:30 AM

主讲人:洪圣杰(中央财经大学)

地点:经院107

主持人:(国发院)沈艳、黄卓、孙振庭、张俊妮

     (北大新结构经济学研究院)胡博

    (经济学院)王一鸣、王熙、刘蕴霆、王法

报告摘

This paper studies panel data models with interactive fixed effects where the regressors are allowed to be correlated with the idiosyncratic error terms. We propose a two-step profile GMM estimation procedure to estimate the parameters of interest. In the first step we obtain a preliminary consistent estimate of the slope coefficient via a nuclear-norm-regularization (NNR) based profile GMM procedure. In the second step, via an iterative procedure, we conduct post-NNR profile GMM estimation of the slope coefficient, factors, and factor loadings, with an improved convergence rate for the estimate of the slope coefficient. We establish the asymptotic properties of the preliminary estimates and the iterative estimates, and propose an efficient profile GMM estimator. We also study the determination of the number of factors and propose Hausman tests for the exogeneity of the regressor. Monte Carlo simulations suggest that the proposed estimation and testing methods work well in the determination of the number of factors, the estimation of the model parameters and the test for exogeneity. As an empirical application, we apply our model and method to study the price elasticity of U.S. imports.

 主讲人简介:

洪圣杰,2012年于威斯康辛大学麦迪逊分校取得经济学博士学位,现任职于中央财经大学经济学院。主要研究领域为:计量经济学理论、应用微观和中国经济。研究成果发表在Journal of Econometrics, Journal of Comparative Economics,《管理世界》和《金融研究》等国际和国内知名期刊。