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Abstract

Political scientists routinely use power analysis when designing their empirical research.
However, it is often neglected that power analysis relies on untested assumptions about the
true values of key parameters, such as the effect size. Researchers commonly use auxiliary
empirical information to make guesses about those parameters, such as results from a pilot
study or a similar experiment reported in the literature. In this paper, we show that such
practice is problematic due to neglected uncertainties in the empirically obtained parameter
values. We propose a conceptual distinction between empirical and non-empirical power
analyses and analyze the former as an estimation problem, investigating their statistical
properties both analytically and via simulations. Our results indicate that estimators for
power and minimum required sample size tend to perform poorly under scenarios
resembling typical political science applications. We offer practical guidelines for empirical
researchers on when to (and not to) trust power analysis results.
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Abstract

Political scientists routinely use power analysis when designing their empirical re-
search. However, it is often neglected that power analysis relies on untested assumptions
about the true values of key parameters, such as the effect size. Researchers commonly
use auxiliary empirical information to make guesses about those parameters, such as
results from a pilot study or a similar experiment reported in the literature. In this
paper, we show that such practice is problematic due to neglected uncertainties in the
empirically obtained parameter values. We propose a conceptual distinction between
empirical and non-empirical power analyses and analyze the former as an estimation
problem, investigating their statistical properties both analytically and via simulations.
Our results indicate that estimators for power and minimum required sample size tend
to perform poorly under scenarios resembling typical political science applications. We
offer practical guidelines for empirical researchers on when to (and not to) trust power

analysis results.
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1 Introduction

With the surge of randomized experiments and the introduction of pre-analysis plans and
research pre-registration, today’s political scientists routinely use statistical power analysis.
Many researchers, especially those employing experimental methods, consider power analysis
an essential part of empirical research. For example, Evidence in Governance and Politics
(EGAP), a prominent network of researchers and practitioners engaged in field experiments,
recommends power analysis as an “important component of a pre-analysis plan” (Chen and
Grady, 2019)). Indeed, EGAP’s research registration form asks every registered study whether
a power analysis was conducted prior to data collection. It is also common for research grant
agencies to either recommend or require power calculations to be included in study proposals
(e.g., National Science Foundation, [2013)). In the domain of academic publications, Journal
of Experimental Political Science lists statistical power as one of the key criteria reviewers
are asked to evaluate “registered reports” submissions on (Journal of Experimental Political
Sciencel, nd).

Power analysis refers to various statistical techniques that involve power either as an input
or an output. Power, or the probability of rejecting the null hypothesis when it is false, is
often an important consideration when a researcher designs an empirical study under real-
world constraints. For example, a researcher may be constrained by the maximum sample
size they can use due to their financial or logistical capacity. In such a scenario, an important
pre-study question of interest is whether the conceived study can be expected to achieve a
level of statistical power that is sufficiently high to render the study worthwhile. Another
common situation is when a researcher seeks to infer how large a sample they will need to
achieve the desired power (e.g., 80%), perhaps for the purpose of calculating the budget for
a research grant proposal.

In statistics textbooks, power is described as a quantity that is calculated given the
true values of parameters for a hypothesis test. In practice, however, power analysis often

rests on empirical information. Power analysis in its simplest form requires two of the three



population values as inputs: the standardized effect size (i.e. the raw effect size divided
by the standard deviation of the outcome), the sample size, and the power itself. While
the latter two parameters typically come from external constraints, such as research budget
or convention, the standardized effect size is a feature of the data-generating process itself
and, therefore, is almost never known by the researcher. Thus, researchers employing power
analysis often use some empirical information to cope with the fundamental uncertainty
about the standardized effect size.

More specifically, two approaches are particularly common in empirical research. First,
researchers often employ a pilot study to obtain an estimate of the treatment effect and use
that estimate as an input to their power calculation. Second, researchers may look for a
previous empirical study testing a similar hypothesis and use an estimate of the effect size
in the study as if it were equivalent to their effect of interest. Both of these approaches use
existing empirical information about a population parameter (i.e., the standardized effect
size) to make inferences about the likely value of a function of the parameter (i.e., power or
minimum required sample size). That is, power analysis is an estimation method used to
solve empirical problems in these contexts. Despite this, current practice in applied research
does not require researchers to formalize the degree of uncertainty in the “estimates” from
their power analysis.

To illustrate the current practice, we survey the political science pre-registrations created
in the Open Science Foundation (OSF) registry in 2024 with some discussion of sample size
rationale.ﬂ Table [I| summarizes the result. Of the 580 pre-registered studies, 84 (or 14.5%)
fall under our “empirical power analysis” category, explicitly stating that they refer to either
a pilot or a previous study to determine their hypothesized treatment effect. This is the
second largest category among the pre-registrations that cite any reason, only next to the

“cost /resource constraints” category which cite some resource constraints (166 studies, or

"'We collected all pre-registration entries from that year that had a unique identifier in the metadata
under the “sample size rationale” label. From the total of 1,393 entries, we exclude 742 entries that are either
empty or for qualitative studies and 71 entries that refers to attached supplemental files. All classifications
are hand-coded.



Type Count Proportion

No reference of inputs 246 42.4%
Cost /resource constraints 166 28.6%
Empirical power analysis 84 14.5%
Sample size of pervious studies 35 6.0%
Part of larger studies 31 5.3%
Universe 18 3.1%
Total 080 100.0%

Table 1: Review of Sample Size Rationale Entry in Metadata of OSF in 2024

28.6%). It is also worth noting that some entries in the latter category specifically mention
the lack of prior studies as part of their rationale. Of the remaining pre-registrations, the vast
majority (246) include no reference to how they chose their hypothesized treatment effects.
We suspect that many of these come from informal beliefs formed on related studies that have
previously been conducted. In sum, the practice of referring to a pilot or a previous study
to get an “estimate” for the hypothesized treatment effect appears to be quite prevalent.

In this paper, we propose to call these types of power analyses empirical power analyses
and distinguish them from the variants that do not use empirical informationﬂ Specifically,
we analyze two types of empirical power analysis techniques: power estimation and mini-
mum required sample size (MRSS) estimation. Viewed as statistical estimation techniques,
empirical power analyses can be examined in terms of their statistical properties as estima-
tors, such as bias and sampling uncertainty. We thus investigate the properties of standard
power and MRSS estimators, both analytically and via Monte Carlo simulations, focusing
on the range of parameter values that we find to correspond well with real-world scenarios
in empirical political science, based on our survey of the literature. That is, we ask: Can we
trust the results of empirical power analyses in typical political science applications? Is the
bias in a power or MRSS estimate small enough to be useful given an unbiased estimate of
the standardized effect size from a pilot study? How precise are those estimates likely to be
when the pilot study contains a typical number of observations?

These questions are crucial to answer for several reasons. First, researchers often need

2The latter is therefore not subject to much of our critique in this paper. See our discussion in Section
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to use data from a small pilot study or a loosely related previous study. Given the large
amount of uncertainty in the estimates from such studies, a natural concern is whether the
downstream estimate of the power or the MRSS may also be poor. Second, despite the
potentially large degree of uncertainty in empirical power analysis results, research practice
in empirical political science is increasingly reliant on them. Indeed, researchers employing
survey or field experiments routinely use empirical power analysis to make important deci-
sions in the planning stage of their study, including whether to proceed with the study at
all. This implies that misinterpreting power estimation results could lead to serious ineffi-
ciencies, such as missed opportunities and wasted resources. For example, an overestimation
of the MRSS could discourage a researcher from conducting an experiment that is actually
promising. Conversely, an overestimated power could lead a grant-making agency to funding
a project that is in truth bound to fail. Third, even though the stakes are high, the existing
literature has not critiqued power analysis for this estimation uncertaintyﬂ

Overall, our investigation reveals a rather bleak picture of the usefulness of empirical
power analysis in political science research. First, we show analytically that both power and
MRSS estimates are biased even when an unbiased estimate of the true effect size is available
(as it may be when, for example, the researcher conducts a pilot study on a random sample
from the population of interest). Second, both our survey of the existing methods for bias
correction and evidence from our simulation studies indicate that the biases in these estimates
are in unknown directions and are difficult to correct. Third, our simulation results suggest
that estimation uncertainty in power and MRSS estimates is likely to be so large under typical
empirical scenarios that the estimates are unlikely to be useful for practical purposes. These
results imply that empirical researchers should exercise caution when applying empirical
power analysis. Our advice, instead, is that researchers should primarily use power analysis

for non-empirical purposes, such as to derive the required minimum sample size to detect the

3There exists a growing literature criticizing the use of power analysis on conceptual grounds, notably from
Bayesian perspectives (Gelman and Carlinl,|2014; |[Kruschke and Liddell, 2018). Our argument is distinct from
this strand of previous research in that we primarily examine power estimates in terms of their frequentist
properties, so that the concept of power itself is well-defined and meaningful under our framework.



desired effect size based on substantive or normative grounds. Should they choose to employ
empirical power analyses despite the likely performance problems, researchers should always
quantify and report the degree of uncertainty in their power analysis estimates.

The rest of the paper is organized as follows. In Section[2] we set up our notational frame-
work and define key concepts and quantities for our subsequent analysis. Sections 3| and
present the results of our analyses of the power and MRSS estimators, respectively, both
analytically and via simulations. Section [5| contains our practical recommendations based

on these results. Section [6] concludes.

2 Framework: Power Analysis as an Estimation Problem

Consider a setting where the researcher studies the average treatment effect (ATE) of binary
treatment Z € {0, 1} on outcome Y. They plan a full randomized experiment with sample
size Ny on a simple random sample from the population: ns subjects randomly assigned to
the treatment (Z = 1), nyy = Ny —ny; in control (Z = 0). Beforehand, they have data from
a “pilot” studyﬁ — another randomized experiment with the same treatment and outcome
variable, but on a separate random sample of N, subjects from the same population with
ny1 subjects randomly assigned Z = 1 and the remaining nyy = N, — n,; assigned Z = 0.
Researchers often use pilot data for empirical power analysis before the full study. Despite
the availability of complex tools (e.g., Green and MacLeod, 2016; |Blair et al.,2019), we focus
on the widely used textbook two-sample t-test power analysis with the asymptotic normal
reference distribution. Suppose they test against the zero Average Treatment Effect (ATE)
via a two-sided t-test in the full experiment, letting o and  be the probabilities of type-I

and type-II errors, respectively, the (true) power of the full experiment v is:

4Despite the terminology, the setup encompasses a scenario where researchers use results from previously
published experiments resembling the proposed study to conduct power analysis, where IV, is interpreted as
the effective sample size from previous studies.
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where ®(-) the standard normal cumulative distribution function (CDF) , 7 the true
ATE, S?=V(Y | Z=1),S2=V(Y | Z=0), and V(.) denotes variance.

We make two simplifying assumptions: (1) the outcome variance is constant across the
treated and the control; (2) the treatment is randomly assigned to minimize the sampling
variance of the estimated ATE (Neyman, 1923), which indicates the equal treatment allo-
cation across the treatment group and the control group. The assumptions are not overly
restrictive: first, they are of practical relevance, as most researchers use constant variance in
their study designs. Second, Appendix shows that power estimation bias stems mainly
from the imprecise 7 (true effect) estimation, not that of o, so differing group standard

deviations still produce similar biases.
Assumption 1. (constant outcome variance) o® = S} = S?
Assumption 2. (equal treatment allocation) Ny/2 = ng = ng, d € {f,p}

We also clarify that the assumptions that we are NOT yet making are: (1) the parametric
assumption for the underlying distribution of the outcomes, and (2) whether the outcomes
are subject to an identical and independent distribution, as our results are based on the
sampling theory (O’Neill, 2014)). Thus, the analytical results derived in this paper, unless
otherwise stated, shall apply to all cases regardless of the underlying distribution of the
outcome.

Under these assumptions, the power of the full experiment ¢ depends only on three
parameters: the size of the test ¢, intended full sample size Ny, and the standardized effect
size Tgq, defined as the true ATE scaled to the standard deviation of the outcome, 74q = 7/0.

Equation simplifies to
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Of the three parameters in equation , two are design parameters the researchers in
theory have control of: «, conventionally set at the level of a = 0.05, and N, chosen under
the cost or logistical constraints. The third parameter, 74, is empirical, whose true value
exists independently of the research design.

A common way to calculate power via equation is to estimate 74 from a pilot ex-
periment, then plug this estimate, plus known a and Ny, into the equation. Thus, empirical
power analysis uses the following plug-in estimator:

b = 1—®<®—1<1_9)_@>+<I><—<I>‘1<1—g>—%5thm>, (3)

2 2

where 7yq = 7/6, such that

L XYz yva-2) \/2<Y—2Y/Np>2

)
Np1 Npo N, -1

where all summations and terms (n,1, n,0, N,) refer to the pilot sample.

Another use of equation is calculating the full experiment’s MRSS — the smallest
sample size for the desired power ). The full experiment meets ¢ iff:

4o 1 (1-2)—o 1 (1—y))
Z [ ( 2) ! ( w)} , (5>

Tstd

Ny

ignoring the negligibleﬂ last term in equation ([2)).

MRS'S is the smallest integer Ny satisfying this inequality . Since 1) is a researcher-set

5The term is strictly bounded from above by «/2.



design parameter, conventionally at ¢ = .8, the MRSS estimation adopts a plug-in estimator:

g < |4 g) e a-w] ©)

Tstd

with 74q = 7/6 from equation (4)).

Before we examine the statistical properties of the power and MRSS estimators (equa-
tions and @), some general discussion is helpful. Noting that both estimators are non-
linear functions of 744, the ratio of an unbiased estimator 7 to a nearly unbiased estimator

g, by standard sampling theory (see Appendix for more details),

40 T—T

Ny’ 20/y/Np

—Ly N(0,1) as N, — oo, (7)

and

Elg% = 0% V[?] = Nip (/@ — %#) , Z_z PRI XQi”) as N, — 0o,
where £ = E[(Y —E(Y))*] and v = 3% (O'Neill, 2014).

While these properties establish the consistency of both @Z and MRSS as N, — oo, they
do not ensure additional desirable characteristics. Notably, since 1/; and M RSS are nonlinear
functions of 7 or &, these estimates are generally biased — a direct consequence of Jensen’s
inequality. Such small-sample biases are particularly problematic, as pilot study sample sizes

(N,) tend to be relatively small in most empirical settings.

3 Power Estimation

We first examine the power estimator in equation ({3). Though less common than MRSS

estimation, power calculation is standard in empirical political science and foundational in



methodology courses, where students first encounter these concepts. Researchers adopt this
estimator when constrained by fixed full-experiment sample sizes, and need to assess the
viability of a study.

For example, Tausanovitch (2015]) uses data from a previous pilot study to show that his
hypothetical proposed study of 2,000 survey respondents will have 88% chance of detecting
the treatment effect that is half as large as the observed effect size in the prior pilot study.

We naturally ask, how reliable the reported power of 88% actually is, given that the
power is empirically estimated based on data from a previous pilot study. Below, we answer
this question in a more general manner via analytical investigations of the properties of the

estimator, as well as Monte Carlo simulations.

3.1 Analytical Results

As discussed in Section 2], empirical power calculation is to estimate the output of a nonlinear
function of other parameters. While the estimators of the latter parameters may behave well,
plug-in estimates for the target may not, due to the non-linear property of the function.

Focusing on o = 0.05 and approximating by ignoring the negligible final term{]

o~ 1-0 (1.96 - —%Stds/ﬁf) . (8)

Equation shows that zﬁ is a nonlinear function of the pilot-derived 744, following a
standard normal CDF. The standard normal CDF is neither globally convex nor concave,
which prevents us from determining the bias direction via Jensen’s inequalit 1[1 may over-
or under-estimate its true value, even with the unbiased 744. While 1& is indeed consistent
and asymptotically normal as IV, — oo, pilot sizes are typically small, leaving asymptotic

properties less relevant in this setting.

6 As discussed in Section , this term is only as large as /2 at most and usually much smaller.
"By Jensen’s inequality, E[g(X)] < g(E[X]) if g(X) is globally concave, and E[g(X)] > g(E[X]) if globally
convex for a random variable X and a real-valued function g(-).



Proposition 1. Under Assumptions and@ E[@/A)] #+, i.e. 7,/; 1s a biased estimator for 1.

Proof. See Appendix [A.] O

Further Approximation. Before Monte Carlo simulations, further approximations in
Appendix yield key predictions about bias of the power estimator. The parametric
assumption of the outcome Y subject to a normal distribution is introduced to proceed with
the derivation without invoking asymptotic results, since [V, is small in most applied settings.

First, bias nears zero as the true 74q grows, holding other parameters fixed: this is because
the negative term in equation approaches zero in expectation, so zﬂ and true power both
grow towards 1. Second, a larger Ny can increase or decrease bias, and the direction depends
on other parameters: this is because the argument of the negative term in equation shifts

~

left and grows more variable, which leaves the net change of E[¢)] ambigious.

Bias-Correction. We attempt to correct the bias of 1& in Appendix , but standard
bias-correction methods fail in our setting, for two reasons: First, ¢ has a nonlinear bias.
Traditional methods like bootstrap or jackknife work poorly here as they assume a constant
or linear bias (Cordeiro and Cribari-Neto, 2014). As expected, they fail in our setting.
Second, the non-linear method proposed by MacKinnon and Smith Jr| (1998) requires a
closed-form analytical bias function, which we lack because the normal CDF has no closed
form. A modified version with a simulated bias function, as presented in Appendix also
failed to improve the results. In short, existing methods cannot correct the bias of @E
While the above results offer insights into the power estimator’s theoretical behavior, their
practical value is limited. Fundamentally, the non-linearity of equation prevents ex ante
predictions of bias magnitude or direction. We thus turn to Monte Carlo simulations. To
conduct Monte Carlo simulations, unlike the analytical results above, we have to introduce

parametric data-generating processes (DGPs) for practical reasons, yet we save discussions

on the choice of various DGPs in Appendix [A.6]
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3.2 Simulations

To study the small-sample properties of the power estimator as in equation (3)), we simulate
repeated sampling from various data-generating processes (DGPs) that match empirical
political science scenarios. We vary three key parameters: standardized effect 74q € [0, 1],
pilot size N, € {50,250,450,650}, and full-experiment size Ny € {100,500,900,1300} —
all aligned with common political science applications. We assess the estimator’s bias and

standard error via 1,000 Monte Carlo draws.

Simulation Procedure For each 744, IV,, Ny combination, we run this Monte Carlo

experiment:

1. Simulate the pilot: Draw % treatment-group Y values from N(7,4%), and % control-

group values from A (0,4?), where 7yq = 7/4.
2. Compute the difference-in-means treatment effect estimator 7.
3. Estimate treatment/control sample variances of the outcome: S} and Sg.

4. Calculate power via a plug-in estimator based on equation (2), o = 0.05, nyy = nsp =
Nf/21
~ T
YPV=1-® 1196 - — | +P| —1.96 —

nf nfo nf nfo

5. Repeating Steps 1 to 4 for 1,000 times to estimate bias and standard error.

Results. Figures (1] and [2| present the simulated bias and standard error of the power
estimator, respectively, across the values of the pilot sizes, intended full experiment sizes
and true standardized treatment effects.

First, across many parameter values, the power estimator’s bias is substantial and can

be positive or negative. For fixed sample sizes, e.g. the subplot of the second row and third

11



Simulated Bias by True Standardized Treatment Effects
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(column) and the standardized effect size (horizontal axis in each plot).
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Figure 2: Standard Error by True Standardized Treatment Effect. See legend for Figure
for the interpretation of the graph components.



column in Figure (1], bias is positive and largest when 744 is close to zero. The bias decreases
to zero, flips negative at around 744 = 0.175, then fades as true power hits 1. Since power
ranges between 0 and 1, and most design aims for a power greater than 0.8, a bias of 0.1 is
significant — our results show a bias greater than 0.1 in a wide range of scenarios.

Second, the power estimator is also highly imprecise across various parameter values. For
example, with N, = 50 and Ny = 100, in Figure , the standard error exceeds 0.1 for all
Tsta € [0, 1]. In other sub-plots, the standard error stays below 0.1 only if 744 is greater than
approximately 0.4, except in unrealistic cases where pilot size far exceeds full experiment
size (first column, bottom three subplots).

Third, viewing Figure [I] horizontally, as Appendix shows analytically, bias generally
increases with the Ny/N, ratio, holding 744 constant. We confirm this with the simulation.
This is the contrapositive of a later observation: with fixed Ny, larger N, tends to reduce
the bias of power estimation.

Fourth, bias becomes negligible once true 74 exceeds 0.3 to 0.8, varying by sample sizes.
A helpful rule of thumb is that when the expected 74q > 0.5, there is no need to worry about
the bias. A typical political science Ny makes power for 744 = 0.5 close to 1.

Fifth, bias decreases monotonically as pilot size N, increases. Since 74q is consistent, @/A)
is also consistent for ¢ with a convergence rate of \/Vp and asymptotically normal. Larger
N, activates these asymptotic properties, reducing bias and variance until they vanish.

Finally, the first row of Figure [I] shows that the true power function is convex in some
areas and concave in others. Due to the estimation uncertainty of 7.4, researchers cannot
tell if the true 74q falls in the convex or concave area, unless the pilot size is unrealistically
large. As Appendix discusses, this ambiguity, plus other method limitations, hinders

existing bias correction approaches.
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3.3 Calibrating Simulation Results

A key insight from our simulations is that the power estimator’s bias and precision depend
crucially on the true standardized effect size. Naturally, we ask: where do we fall on the
horizontal axes of Figures [I| and Should political scientists worry about the bias of the
power estimation in a typical experiment?

To answer, we rely on reported standardized effect sizes in the literature. We collected
articles from 4 top political science journalsﬂ published between 2015 and 2024, focusing on
those with ATEs (or similar quantities) reported. This yielded 410 standardized effect size
observationg’]

Figure [3|shows the distribution of standardized effect sizes from our sample, classified by
study type. Before the interpretation, we note that our sample from top journal articles is
unrepresentative of all political science experimental effect sizes: publication bias and file-
drawer effects (Schafer and Schwarz), 2019) skew observations toward the right tail, i.e., larger
effects. Thus, our reported statistics overestimate true standardized effect sizes, possibly by
significant margins.

Strikingly, our estimated standardized effect sizes are mostly concentrated between 0.1
and 0.4, even with the likely overestimation. The median is about 0.18 for survey experi-
ments, slightly smaller for field experiments, and slightly (but not much) larger for experi-
ments using economic games as treatment or outcome.

Comparing these results to our bias and standard error simulations in Figures [1| and
paints a bleak picture of power estimation in political science. Empirical standardized
effect sizes between 0.1 and 0.4 fall exactly where bias is most sensitive to 74q and where
the standard error is the largest. For example, with a typical N, = 50 and Ny = 900 and

Tsta = 0.25, the bias reaches about —0.2, and the standard error is approximately 0.35. Even

8 American Journal of Political Science, American Political Science Review, Journal of Politics, Political
Analysis, chosen for high impact and frequent experimental studies.

9 Although few articles directly report standardized ATE, we calculated 7q (With assumptions if needed)
using reported uncertainty estimates (see Appendix for details).
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with an unrealistically large IV, = 850, bias remains 0.1 and the standard error hits 0.3 when

Teta = 0.15 and Ny = 1300.

4 Minimum Required Sample Size Estimation

Next, we turn to MRSS estimation — likely the most common form of empirical power analysis
in political science. For example, Dunham and Lieberman (2013)’s EGAP-registered pre-
analysis planET] reports using a 100-participant pilot to estimate expected effect size, deriving
an MRSS range of 342 to 1,043 for a 90% power, and choosing N=1,000 for the final study.

We investigate the reliability of this method using both analytical and simulation approaches.

4.1 Analytical Results

We start by deriving the expectation of the MRSS estimator (equation @) to find its bias.

However, this expectation does not exist, leaving the bias of MRSS undefined. Observe:

E [WS} :E{Zl[q)l (1_%) — ¢! (1_¢)]2}

—4 [cb—l (1—%) —Z—l (1—¢)]2E{%d}.

In Appendix |A.4] we show E {T§ } diverges under the regularity assumption Thus,

std

EMRSS diverges under this condition as well.

Assumption 3. (continuous and bounded density for Tga) fz.,,(x), the probability density

function for 744, is continuous and bounded from both below and above.

Proposition 2. Under Assumptz’ons and @ E [WS} does not exist.

Proof. See Appendix [A.4] O

10Notably, they used ANOVA-based power analysis for a factorial design, unlike our t-test, so our results
may not directly apply.

17



The non-existence of E [W S} means empirical samples of E [WS} may have wild
values, as simulations later show. It also makes V[WS] non-existent, since the first
moment is required for the second moment to be defined. Although Appendix [A.5] shows
the consistency of MRSS for large N, the pilot sizes are by definition small, so asymptotic
results offer little help.

Again, we clarify here that the analytical results should apply regardless of the parametric
distribution of the outcome Y, as our analytical results are based on the sampling theory.
Admittedly, the following Monte Carlo simulations require specified parametric DGPs, our

main simulation results are robust under different DGPs as in Appendix [A.6]

4.2 Simulations

Since MRSS has no defined expectation or variance, standard performance measures, such
as bias or root mean squared errors, do not apply. We instead investigate its small-sample
performance via simulations of 1,000 MRSS realizations per DGP to examine how the empir-
ical distribution changes with different pilot sizes IV, and 74q. Parameters are set to match

political science applications: 7y € {0.125,0.25,0.5,1}, N, € {10 < n < 5000,n € Z}.

Simulation Procedure For each 744, N, combination, we run this Monte Carlo experi-

ment:

1. Simulate the pilot: Draw % treatment-group Y values from N(7,4%), and % control-

group values from A(0,4?), where 7yq = 7/4.
2. Compute the difference-in-means treatment effect estimator 7.

3. Calculate MRSS via a plug-in estimator based on equation @, a =0.05, ¢ =0.8:

~2
Tstd

TRTS — {4 [1.96 — 1 (0.2)]2]
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4. Repeat Steps 1 to 4 for 1,000 times to obtain a simulated sampling distribution of
MRSS.

Results Figure [4 shows the simulated sampling distributions of the MRSS estimation
across four different values of the standardized effect size (from the top to the bottom panels)
and different pilot sample sizes (along the horizontal axis). The y-axis is log 10 scaled.

MRSS shows striking sampling variability across a wide range of parameters. Its simu-
lated distribution is highly right-skewed, where the empirical mean nearly always exceeds the
95th percentile. Take 7yq = 0.125, an empirically likely scenario in Figure |3 as an example,
with ¢ = 0.8, and a = 0.05, its true MRSS is 2,008. With a pilot N, = 100, 7yq ranges from
—2.42 to 2.52 out of the 1,000 simulations. The central 90% spans —1.16 (5 percentile)
to 1.42 (95" percentile). This makes MRSS range between 5 and 561 million (5 to 95t
percentile: 12 - 7,109). The mean of MRSS estimator (604 thousand) wildly overestimates
the true MRSS, while the median (112) underestimates if"]

Suppose a researcher uses a 5,000-participant pilot to reduce MRSS uncertainty — unreal-
istically large for typical political science field /survey pilots, but possible from a prior large
study. Even so, the situation remains bleak: estimated MRSS ranges between 154 and 332
million (5% to 95 percentiles: 311 — 170,683), with a mean of 727 thousand and a median
of 1,861.

Finally, take the most optimistic scenario: true 74q = 1, atypically large in political
science as shown in Figure[3], With a 1,000-participant pilot, MRSS estimates range between
9 and 555 (5™ to 95" percentiles: 16 — 97), with stabilized mean/median at 41/31. While
this seems promising, true MRSS here is just 32 — and the pilot’s estimated ATE is almost
always highly significant, making MRSS for a separate full experiment arguably pointless.

Our simulations show MRSS estimation, based on empirical standardized effect size es-

timates, has limited use in typical political science applications. Estimates are unhelpfully

"These numbers only illustrate the MRSS estimator’s sampling behavior — not estimating the true dis-
tribution’s order statistics or moments. They will likely differ by a large amount (except the median) in
another simulation run, but the overall variability pattern will remain the same.

19



Min Sample Size Est. Min Sample Size Est. Min Sample Size Est

Min Sample Size Est.

Simulated Sampling Distributions of the MRSS Estimator. Each of the four
plots presents characteristics of the simulated sampling distribution of the MRSS estimator
(maximum, 95th percentile, mean, median, 5th percentile and minimum) as functions of the
N,), with each plot corresponding to an assumed size of the true
standardized effect size (7q). The red horizontal line indicates the true MRSS corresponding
to Tsq in each plot. Note that the y-axis is on the log 10 scale for interpretability.

Teg = 0.125

1,000,000,000 -
10,000,000 -
100,000 -

1,000 -

10~

Min Sample Size=2008
1 L} 1 L} 1
0 1,000 2,000 3,000 4,000 5,000

Tstd = 0.25

1,000,000,000 -
10,000,000 -
100,000 -

1,000 -

10-

Min Sample Size=502
0 1,000 2,000 3,000 4,000 5,000

Tstd = 0.5

1,000,000,000 -
10,000,000 -
100,000 -

1,000 -

10-

Min Sample Size=126
0 1,000 2,000 3,000 4,000 5,000

Tstd = 1

1,000,000,000 -
10,000,000 -
100,000 -

1,000 -

10~

pilot study sample size (

Min Sample Size=32
0 1,000 2,000 3,000 4,000 5,000

Size of Pilot
— True . 5%-95% . Max.-Min. — Mean = - Median

20



variable in most relevant scenarios, and when estimation is reliable, the pilot’s treatment

effect estimate is already almost certainly highly significant.

4.3 MRSS Estimation in Practice

In practice, researchers tend to estimate MRSS only when pilots are “promising.” Pilots often
help explore design choices (e.g., treatment content) to finalize full experiment specifications.
Empirical power analysis typically occurs when researchers select treatment-outcome com-
binations with effects that seem to indicate the existence of an impact, yet do not meet
conventional statistical significance.

This research practice deviates from our Section simulations, which assume an MRSS
estimation regardless of the estimated pilot effect. Instead, under this practice, the distri-
bution of actually conducted MRSS estimates is likely conditional on the estimated pilot
effect falling within a specific range of statistical significance. Under this more realistic
regime, MRSS variability is much lower: extreme MRSS draws in Figure (4| correspond to
those close-to-zero estimated pilot effects, and are not part of the actually conducted MRSS
estimates.

However, this does not make our pessimistic simulation conclusion irrelevant. In fact,
conditioning empirical power analysis on a promising pilot result is flawed and should be
abandoned. We discuss two reasons for this below, using our framework that treats power
analysis as an estimation problem. Before we proceed, we clarify that the two reasons below
are generally applicable regardless of the underlying distribution of the outcome Y, as the
results are based on sampling theories.

First, researchers may prematurely abandon statistically and substantively significant
experiments by dropping the full study after a pilot with a large p-value (see also [Kraemer
et all 2006). Take 7yq = 0.25 as an example: a 100-participant pilot has 7yq with mean
0.25 and variance 0.04 per equation . Suppose the researcher only proceeds if the pilot

t-stat is “promising but not significant,” i.e., between 1 and 2. Using a standard normal
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approximiation for the t-statistic, there’s only a 34% chancﬂ that they will conduct a
power analysis, and potentially run the full experiment, even though the true 7 is 0.25. In
other words, the probability that the researcher would prematurely give up the research,
which would otherwise be promising, is 50%["%}

Second, more fundamentally, basing full experiment decisions on pilot treatment effect
p-values makes the pilot data irrelevant. We show analytically that there is a one-to-one
mapping between pilot p-values (or t-statistics) and MRSS. In other words, the decision
rule, using pilot p-value and sample size alone, fully determines MRSS, ignoring actual
experimental data obtained from the pilot. Thus, given the pilot size, one can estimate
MRSS from a hypothetical IV, pilot without conducting the real one.

Specifically, since E[7sq] = Tia and V[74q] = 4/N,, the pilot t-statistic against the zero

effect null is TT“* -/ Np. Suppose the researcher proceeds only if this t-statistic is between

1 and 2. Using the standard normal reference distribution, 7yq must fall between —— and

V Np
\/}v_p' Plugging this into equation @ gives:

[ ' (1—-2) - (1-9)] N, <N, < (27 (1-5) - 1 -¥)'N,

All parameters for this Ny range, «, v, N,, are known pre-pilot. Thus, the pilot provides
no additional information to determine the minimum required sample size range.

In sum, the practice of conditioning MRSS estimation on the statistical significance of
a pilot study is not advised. Ironically, this practice itself gave researchers the illusion that
MRSS is useful: by only estimating MRSS when pilots show promising effects, they can

pre-fetch estimates that are less extreme.

1

2l<ci<o2 sl o Pr(%ﬁ%ﬁ%):é(gf)fé(#> ~ 0.34.
5 5 5
13We deduct the probability of the researcher obtaining a statistically significant result from pilot:1 —
R 2.1
0.34 — Pr (7 significant) = 1 — 0.34 — Pr (g > 2) —1-034— (1 ) (5 = )) ~ 0.50.

5
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5 Practical Recommendations

Our analysis of two common empirical power analysis techniques — power estimation and
MRSS estimation — highlights their serious limitations for political science applications.
Below, we offer practical guidelines for empirical researchers using power analysis.

First, empirical power analysis is generally not recommended for most political science
scenarios — such as field or online survey experiments. Given the range of standardized ef-
fect sizes in recently published top-journal experimental studies (Figure , neither power nor
MRSS estimation will likely produce reliable results. The problem is exacerbated when using
ATE /outcome variance estimates from small pilots, as their large uncertainty is amplified
by the nonlinear transformations in power or MRSS estimators. If researchers still pro-
ceed with empirical power analysis, they must calculate the estimation uncertainty in their
power/MRSS estimate and report a standard error alongside the point estimate, treating it
like any other estimation problem and adopting the same reporting standards.

Our critique does not apply to non-empirical power analysis — techniques that avoid
empirical estimation of the standardized effect size. Power analysis is non-empirical when
all parameters are clearly set by external constraints or normative criteria, and thus no sta-
tistical uncertainty is involved. For example, the minimum detectable effect size (MDES)
calculationE] identifies the smallest standardized effect detectable with specified power (¢)),
significance level («), and full sample size (Ny). Researchers can then compare MDES to a
pre-set threshold for substantive importance. A related approach is the MRSS calculation
using a normatively defined effect size, e.g., a grant agency’s required target without statis-
tical uncertainty. That said, we caution that non-empirical power and MRSS use the same
formulas as empirical methods — meaning results remain sensitive to even small changes in

pre-specified effect sizes.

MThe minimum detectable effect size is shown to be 7g4q >

2o (1-3) a1y

VN

ag.

23



As noted in Section a particularly problematic empirical power analysis practice is
using pilot data to estimate the target treatment effect, then conducting a formal power
analysis only if the estimate is “promising” (moderately statistically significant). Given
the pilot’s statistical significance (p-value/t-statistic) and sample size, the actual pilot data
contains no additional information for power calculation. In short, if researchers pre-decide,
before collecting data, to propose a full study only if a pilot of size N, has a p-value in a
particular range, they do not need to collect any pilot data to determine the full experiment’s
MRSS range.

Given our findings, are pilots, or preexisting same-hypothesis studies, useful for power
analysis? One remaining way pilot data can empirically inform power analysis is to trans-
form the standard effect size into the substantively meaningful scale of an actual outcome
variable. MDES, our recommended non-empirical power tool, produces standardized effect
sizes, minimum detectable effects in outcome standard deviations. To judge if this meets
a normative threshold, researchers need to interpret MDES in the outcome’s original scale,
which usually requires an empirical estimate of the outcome’s standard deviation. Estimat-
ing raw effect sizes from the estimated standard deviation and a standardized effect is far
safer than power/MRSS estimation. Typical pilot sizes are large enough for precise outcome
standard deviation estimates, yielding reliable raw effect estimates. Thus, pilots still matter
in empirical political science, in addition to their other roles unrelated to power analysis
(Leon et al., 2011)).

Finally, our recommendations add to the growing body of power analysis critiques (e.g.,
Rothman and Greenland, 2018; |Gelman and Carlin, 2014)). Other scholars have criticized
practices like post-hoc power calculation using observed effect sizes (Gelman, |2019) and only
proceeding with full experiments if pilot-based MRSS seems feasible (Albers and Lakens|,

2018). We advise researchers to follow both these existing recommendations and ours.
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6 Conclusion

Power analysis is increasingly prominent in political science — researchers routinely use it in
study design and include the outputs in pre-analysis plans or grant proposals. But not all
power analyses are equal. We introduce a conceptual distinction between empirical power
analysis, which uses empirical data as inputs, and non-empirical power analysis, which does
not. We then propose an analytical framework that treats empirical power analysis as a sta-
tistical estimation problem to systematically investigate its reliability, without the necessity
to assume the underlying distribution of the outcome. We apply this framework to the two
most common empirical forms, the power estimation and the MRSS estimation, to analyze
their properties as estimators, with a focus on parameter ranges that political scientists may
likely encounter.

Our theoretical and simulation analyses reveal that empirical power analysis has poor
utility in political science. Power estimates are strongly biased with an unpredictable direc-
tion and sensitive to small input changes, when the key parameters of the true standardized
effect and the pilot size are within the range for typical political science applications. MRSS
also has an infinite expectation and variance, leading to extreme variability for reasonable
pilot sizes and true effects. We further identify a fallacy in current pilot-based empirical
power analysis: estimating MRSS conditional on pre-specified statistical significance. From
these findings, we offer practical recommendations and generally advise against empirical
power analysis as it is currently practiced.

Our analysis leaves several questions for future research. First, we focus on power anal-
ysis for simple randomized experiments with a binary treatment and under simple ran-
dom sampling. It is the basis for most power calculations, covering much of the empirical
work, but other designs also exist. With trends toward complex experiments and using pre-
treatment covariates to boost efficiency, future work may analyze non-traditional power anal-
ysis, such as simulation-based ones. Second, existing bias correction methods perform poorly

for power estimation, and this suggests a demand for alternative statistical or design-based

25



bias-correction solutions for empirical power analysis. Finally, the current paper brackets
the more fundamental criticism against the concept of power analysis itself, which ties into a
broader argument criticizing null hypothesis significance testing in applied research. Indeed,
our findings should be understood in the context of the ongoing discipline-wide debate about

what constitutes good empirical science.
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Appendix

A.1 Proof of Proposition

2 2 2 2

Noteyp = 1—® (CD_l (1-2) - M) +o <—<D_1 (1-2)- %Std\/N—f), we work on the

second term ® (<I>_1 (1 — %) — #) and the third term follows.

We expand & ((191 (1 — %) — M) into a Taylor series around the true 7yyq4,

2

1 )¢ (cl)_l <1 _ g) _ Tstd\/N__f> (Tstd — Tstd)

where ®(.) is the standard normal CDF, ¢(.) the standard normal probability distribution
function (PDF), and ¢'(.) the first derivative of the standard normal PDF.

We apply the expectation on both sides and get

E{CD (‘1’_1(1_9_%7@)}%@ <¢—1(1_%>_ﬂ>

1 _ (6% Tstd\/Ff ~

(07 (1-5) - T ) E (fua — 7

- T
Ny

b (@‘1 (1-3) - =5~ Nf) E (faa = 7oa)
2

Q(TNT)

Note the remainder term on the right hand side does not equal zero, because: (1) E[7yq] #
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Tstd, and (2) the second-order term equals —Vwa) ' (@_1 (1 — %) — %), which is

()

. ’ _ o Tst N
1ndeed%.]]\\;—£¢ (CD 1(1—5)— d2 f).

A.2 Properties of the Plug-in Power Estimator

To derive properties of the power estimator in equation , we begin by deriving the exact
mean and variance of 7.4, our estimate of the standardized effect size from the pilot data.

We make two simplifying assumptions: (1) the outcome variance is constant across the
treated and the control, so ¢* = S? = S2; (2) the treatment is randomly assigned to
minimize the sampling variance of the estimated ATE (Neyman) 1923), so Ny/2 = ng1 = napo,
de{f,p}

We also clarify that the assumptions that we are NOT making are: (1) the paramet-
ric assumption for the underlying distribution of the outcomes in the population, and (2)
whether the outcomes are subject to an identical and independent distribution, as our results
are based on the sampling theory (O’Neill,|2014)). Thus, the analytical results derived in this
paper shall apply to all cases regardless of the underlying distribution of the outcome.

Thus, utilizing the fact that all observations in the treated group are drawn randomly from
the population of the potential outcomes under treatment, where the population distribution
has mean 7 and variance o2, the sample mean of the treated group, which itself is a random

a2 202

variable, has a mean of 7, and a variance of + ~ = 7, under the standard random sampling
2Np P

theory (O’Neill, 2014). For a similar reason, the sample mean of the control group has a
mean of 0, and a variance of %

Recalling that 7 is the difference in the estimated sample means, we have
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Since 7 1L 62 (Cox and Reid, [1987; Huang and Rathouz, 2017), we have

7 1
E[fga) = E{ —= p = EF|E{ ——
=R - )

1
:T.E{ A}
o2

At this point we need some distributional assumptions to proceed with the derivation without

invoking asymptotic results, which we want to avoid since [V, is small in many applied

settings.

Assumption Al. (outcome normality) The outcome variable Y is normally distributed.

Then, (Nf;—;l)ab ~ X?\rp—u and therefore 4/ N§;1 Vo2~ Xn,—1- Indeed, ﬂ/% . ﬁ ~

Inv — xn,-1-

Following |Lee| (2012), when N, > 5,

S

_ 5
2
Hence,
Np—1
E %A] =~ ! o
o2 N, -2
T 3
=1 9
o toN 5 2N, —5 9)

Thus, 7sq is downward biased when N, < 4 and upward biased when N, > 4. However, the

bias is negligibly small even for a moderately sized pilot experiment.
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Next, we consider the variance of 74. Note that

1 72 14+ 3
2|  o? 2N, — 5

Np—1) 2
As we know ((‘;—2)02 L

E{i}:Np_l_i

o2 N, -3 o2

Further,
E [#*] =var(f) + 7
4o L2
=—+7
Np
Thus,

V [l = (

Np—1

n(N, — 3)

—1
(N, — 3)(2N —5)

) e) w ()
N, -3 02 o? 2N, -5
7_
T2

2 12 2
~ Xn,-1, We have w1t 50 Inv — x;_;. Hence,

(10)

Thus, E[7yq] and V[7q4] are given by equations @ and , respectively. While we could

in theory continue the derivation with these results, we instead opt to ignore the sampling

variability of 62 for simplicity, effectively assuming 7yq = 7/0. This can be justified for two

reasons. First, as noted above, E[7yq4] is approximately unbiased unless N, is very small.

Second, V(7ya) can be shown to be greater than V(7 /o) as long as N, > 4, since V [Z]
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and

T 4 2 N, —1
V([twa =V |=| = —. 2 P
[T td] [‘71 Np (Np - 3) " ot (Np - 3)(2Np - 5) 0
when N, > 4.
7A—std\/]\[_f
2

Tstdy/ Ny

and scalar Ty = 1.96 — —F—,

Now, define the random variable x = 1.96 —

we get ¢ = 1 — ®(z), where

g N
xNN(L%—T;MN%ﬁg

p

To evaluate E [@/AJ}, we would need to evaluate E [®(z)]. Since ®(-) cannot be expressed in

closed form, we apply the following approximation (Shah) 1985):

(

0 2 < 26
0.01 —2.6 <z < —2.2
0.5 — =2=22 99 <2 <0

L 105 0<z<22

0.99 22<2<26

1 z> 2.6

\

Hence, for a random variable x,

—2.2

Iﬂ@@ﬂ%001x/;6p@Mx+/iQP5—:é%%:qpmﬂx

2.2 4.4 — .ZUQ 2.6 +o0
+ / [— + 0.5} p(x)dx + 0.99 x / p(x)dx +/ p(x)dx (11)
0 10 2.2 2.6

where p(x) is the probability density function for random variable x.

The approximate form of E[¢] allows us to investigate the likely behavior of the bias of

the estimator in several scenarios:
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1. If the density function of =, p(x) is mostly to the left of —2.2, E® () ~ 0.01, and

® (244e) ~ 0.01, and the bias would be small.

2. If the density function of x, p(z) is mostly concentrated between—2.2 and 0, then

—E [4.42] — E [2?]
10

E[®(z)] ~ 0.5 —

while
2
—4. 4% e — T

10

S (24rye) =~ 0.5 —
the bias of the power would approximately be

1-EB @) - [~ @ ()] = e
_var (z)
10
Ny
10. N,

3. If the density function of x, p(z) is mostly concentrated between 0 and 2.2, then

_44E[2] - E 27
- 10

E[® (x)] +0.5

while

2
A Ax e — T,

and the bias of the power would approximately be

1—E[® )]~ [1 - ® (@)] = 20— Tirue
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4. If the density function of x, p(x) is mostly to the right of 2.2/E [CID (5(:)] ~ 0.99, and

O (244e) & 0.99, and the bias would be small.
These observations allow us to make the following conclusions about the bias of 4

e If the intended size for the full experiment is quite large, x4, = 1.96 — TST“’\ /Ny would
be quite small. Thus, p(z) would be mostly to the left of —2.2, the bias for power

estimation would be small.

e If the true standardized treatment effect is quite large, x4 = 1.96 — %2/ Ny would
be quite small as well. p(z) would be mostly to the left of —2.2, the bias for power

estimation would be small.

e If the intended size for the full experiment is not large enough to push p(x) to the left
of —2.2, the larger the intended full experiment is, the larger the bias, because the
absolute value for the bias would be in proportion to ratio of the full experiment size

and the pilot size, %—i

e Given the size of the pilot and the intended full experiment, the direction of the bias
could be easily flipped even though there is only a small difference in the true stan-
dardized treatment effect. This is because the direction of the bias all depends where

p(z) is more heavily distributed, whether on the negative part or on the positive part.

A.3 Bias Correction Methods

To fully illustrate the point that the bias for Equation (8|) cannot be corrected due to our
ignorance of the local convexity and local concavity in the neighborhood of the equation
around the true 7, we have tried several conventional bias correction methods on power
estimation. Our simulation results show that none of these bias correction methods work in

this setting.
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Figure compares the bias of bias-corrected estimators with the bias of the naive esti-
mator when true 7 changes from 0 to 8. In this simulation, we specify o = 4, so equivalently
the standardized treatment effects range from 0 to 2. The pilot size is set at N, = 100, and
the full size is set at Ny = 800, a very common scenario for political scientists. We repeat
the sampling process by 1,000 times to obtain the simulated bias.

In Figure the solid black curve depicts the simulated bias for the naive difference-
in-means estimator. Consistent with our simulations in Figure[I] the bias looks like a check
sign. We over-estimate the power when the treatment effect is smaller, but under-estimate
the power when the treatment effect gets larger. Yet, the bias approaches zero when the
treatment effect is sufficiently large.

The red dashed line and greed dotted line record the bias for two versions of estimators
obtained from bootstrapping bias correction method (Tibshirani and Efron) [1993). Despite
a slight improvement on the cases when 7 < 1, the bias is essentially identical, if not slightly
larger, when 7 > 1. As a result, the bootstrapping methods we have tried fail to universally
reduce the bias. Indeed, their relative performance compared with the naive estimator
depends on specific values of true 7, and sample sizes N,, Ny.

The blue dashed line, the purple solid line and the orange dashed line show the bias for
a jackknife bias corrected estimator, and two versions of double bootstrap bias correction
estimators (Tibshirani and Efron) (1993). Similar to the case for the bootstrap bias correction
method, none of these estimators show a significant improvement in reducing the bias.

The light blue dashed line, on the other hand, is an oracle power estimator where we
assume the researchers know the true treatment effect, but need to estimate the standard
deviation from the pilot study. Thus, the researcher plugs the true treatment effect and
the estimated standard deviation into Equation to obtain her power estimation. This
setting is not realistic, but it illustrates the validity of our simplifying assumption in the
main text where we assume for homogenous variance for the outcome of the treated units

and the control units, as well as in the previous section of appendix where we assume away
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Simulated Bias by True Treatment Effect

— Naive
—— Bootstrap
Bootstrap by Part
—— Jackknife
0.4 — True TE Estimated SD
—— Double Bootstrap
Double Bootstrap by Part
8 02+
m
0.0 e —
-0.2

I I [ I [ I [ I I I I I I I I [ I
0 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8

Standardized Treatment Effect
Pilot Size = 100 Full Size = 800

Figure A.1: Comparison of the Bias Correction Techniques Applied to the Power Estimator.
The results show that none of the existing techniques appreciably improves estimates over
the naive uncorrected estimator. (The light blue dashed line represents the unfeasible “or-
acle” estimator where the true effect size (but not the standard deviation) is known to the
researcher.)

the sampling error for variance estimation and only focus on the sampling error for treatment

effect.

A.4 Divergence of E {@S]

We begin by deriving the expectation of the MRSS estimator defined in equation (6] to find

its bias. Unfortunately, it turns out that this expectation does not exist, making the bias of
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MRSS undefined. To see this, note that:

=
uy)
n
e
=
—N—
W
B
—
|
3

We now show E {T%

} does not converge as long as the probability density function for 744,
std

f#...(z) is continuous and bounded from abov Letting f be the upper bound for f; (),

we have

1 e
E = Tstd
{ASQtd} /;oo fs ()

-1 0 q 19 toq
= [ S [ St [ i [T S

We know 0 < fi,(v) < fo(r) = f. Hence, 0 < [ L f: (x)dx < f. Similarly, 0 <

f+oo 1 = f3,(z)dr < f. As a result, for a given N,, the first term and the last term in
the above summation is non-negative and bounded. We now investigate the property for
the second term ffl ?12 J+,(x)dx. First, in the domain of [-1,0], f; (v) is greater than or
equal to its minimum within this domain, i.e. f 13 pr x)dx > n[nn Jr,(x fi)l #dw =
xgr[zzzzo] fz,(x fol - dl Second, similarly, fo 5 fr,(x)dz > mm fT ) o ! —>dz. Hence, the
sum of the second and third term will be greater than 2 x xg[L—Zﬁ pr fo I—Bd:v. Yet, fol I_12d:v

is positive and not upper bounded. As a result, | {T—Q} is a sum of two non-negative terms
p

with an upper bound and another non-negative term without an upper bound, and hence

does not converge to a finite value.

15A probability density function is by definition bounded from below by 0.
16The standard normal probability distribution function is continuous within such domain and thus ex-
treme value theorem holds. The second equality holds because of symmetry of gﬂ%
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A.5 Consistency for MRSS

— “1(1_a)_p-1(1—)]?
We claim that the sequence M RSSy, = e 2?2 27'0-v) converges in probability to-

Tstd

11 o) _@d-1(1_.n12
wards N = i 2)2 i d) . To show that, we need to find Ny, such that for any

Tstd

e>0,6>0, wehaveP(‘WSN —N‘ <5> < 0, for all N > Nypper-
With the classical central limit theorem, we have 744 A N ( TN, > Thus, for any v and

%(5, there exists Ny such that for all N, > Ny,

1

P (7 < u) € [cb (2/—\;?) -0, (2/\/_) + =6

remembering P (7yq < u) = ( Tatd 7 < ), where ®(.) is the standard normal cumu-
2/\/N, 2/‘/

lative distribution function.

Let C =4[ (1-%)—-d ' (1- w)] so when N, > ( » 1 (30) and N, >

Ny,
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. o
Thus, for any € and ¢, there exists Nyppe, = max , :
Tstd c__ 1 Tstd c_ 1
2 C+er2 2 C—eT

suchthatwheanZNuppeT,]P’(‘@SNP—N‘ §6>:P<g > § +6>+IP’<A§ < g —6) <

25 < 6.

A.6 Decomposition of the Standardized Effect 7,y

To further study whether it is 7, the estimated treatment effect, or &, the estimated standard
deviation of the outcome, that leads to the bias in the power estimation. We further conduct

the following two simulation exercises:

Simulation Procedure with True 0 We conduct the following Monte Carlo experiment

for each combination of the 744, N, and Ny values, same as those in Section @

1. Randomly draw % realizations of Y for the treatment group such that Y; = uy + &1,
and % realizations of Yy = pu. + €. for the control group, where ¢; ~ \%t(?)) and
Ee ~ \%t(?)). Such set-up indicates S? =V(Y | Z=1)=S2=V(Y | Z =0) = 42, and

the true average treatment effect being py — g
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2. Calculate the difference-in-means estimate of the treatment effect 7.

3. Assume that a researcher knows the true variances of Y in the treatment and control

groups, S7 and S2, respectively. Denote those by S? = S2 = 42 .

4. Estimate power using a plug-in estimator based on equation , setting a = 0.05:

3>

b=1-®|196—- — [+ | -196— —— |,
TLfl nf() TLfl nf()

where npy = np = Ny /2.

5. Evaluate performance of the power estimator by repeating Steps 1 to 4 for 1,000 times

and calculating Monte Carlo estimates of the bias and the standard error.

In Figure , we replicate Figure [I| with the same parameter space of 7yq, N, and Ny,
but a different data generation process whose outcome variable features a fatter tail and a
different simulation procedure that assumes the knowledge of the true o. The simulations
look very similar to those in Figure[I] This indicates, first, our observations for the bias in
power estimation is robust to a different outcome generation process (normal DGP in Figure
vs student-t DGP in Figure . Second, the knowledge of the true standard deviation

of the outcome variable does not alleviate the bias in power estimation.

Simulation Procedure with True 7 We conduct the following Monte Carlo experiment

for each combination of the 744, N, and Ny values, same as those in Section

1. Randomly draw % realizations of Y for the treatment group such that Y; = uy + ¢4,

and % realizations of Yy = pu. + ¢, for the control group, where e; ~ \/igt(?)) and
Ec \%t(B). Such set-up indicates S? =V(Y | Z=1)=S2=V(Y | Z =0) = 42, and

the true average treatment effect being p1 — pic.

2. Assume the researcher knows the true p; and p.. Let 7 =7 = g — pe.
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Simulated Bias by True Standardized Treatment Effects
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Figure A.2: Simulated Bias by True Standardized Treatment Effect with Knowledge of True
o. The top row of plots present the true power for each full experiment sample size as a
function the standardized effect size. The remaining plots show Monte Carlo estimates of
the bias of the power estimator on the vertical axis for a given pilot sample size (row), full
experiment sample size (column) and the standardized effect size (horizontal axis in each
plot). The outcome is generated according to a scaled student-t distribution with a degree
of freedom at 3.
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3. Estimate S? and S? with the sample variances of Y in the treatment and control groups,

respectively. Denote those by S? and SZ.

4. Estimate power using a plug-in estimator based on equation , setting a = 0.05:

3>

V=1-3|196—- ——" | +&| -1.96—- —n |,
bel 'n,f() nf1 nf()

where npy = np = Ny /2.

5. Evaluate performance of the power estimator by repeating Steps 1 to 4 for 1,000 times

and calculating Monte Carlo estimates of the bias and the standard error.

In Figure , we replicate Figure [1] with the same parameter space of 744, N, and Ny,
but a different data generation process whose outcome variable features a fatter tail and
a different simulation procedure which assumes the knowledge of true 7. The simulation
results indicate that the bias of power estimation is much smaller compared with that in
Figure [[] and Figure[A.2] This indicates the bias in the power estimation is mainly driven by
the imprecise estimation of 7, the true treatment effect, rather than that of o, the standard

deviation of the outcome.

A.7 Details on Data Collected from Journals

We collected all publications that involve the reporting of at least a result on an experiment
on American Journal of Political Science, American Political Science Review, Journal of Pol-
itics and Political Analysis between 2015 and 2024. The challenge was that it was generally
not conventional for most researchers to report standardized treatment effects. Instead, re-
searchers almost always reported either a t-statistic or a standard error for their treatment
effects. In addition, researchers reported the sample size of their experiments. Hence, we re-

covered the estimated standardized treatment effect with the following formula. With equal
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Simulated Bias by True Standardized Treatment Effects
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Figure A.3: Simulated Bias by True Standardized Treatment Effect with Knowledge of True
7. The top row of plots present the true power for each full experiment sample size as a
function the standardized effect size. The remaining plots show Monte Carlo estimates of
the bias of the power estimator on the vertical axis for a given pilot sample size (row), full
experiment sample size (column) and the standardized effect size (horizontal axis in each
plot). The outcome is generated according to a scaled student-t distribution with a degree
of freedom at 3.
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sample size for the treated group and the control group, remembering 7 AN (Tstd, %) and

thus V (7) as a consistent estimator for 42

X, We can recover 7gq by

with the definition of a t-statistic ¢ = % , Tsta can also be recovered by
G

7

. 2t;

Tstd = \/ﬁf

We identified 305 publications across these four journals that involved at least one ex-
periment. For each experiment, we identified its main causal quantity via the following

procedure:

1. If the experiment reports a causal quantity in the main text, we consider this causal

quantity as its main causal quantity for the experiment.

2. If the experiment does not report a causal quantity in the main text, but report a
causal quantity in tables or figures, we consider this causal quantity as its main causal

quantity for the experiment.

3. If the experiment reports a causal quantity neither in the main text nor in a table or
figure, but report a causal quantity in the appendix, we consider this causal quantity

as its main causal quantity for the experiment.

Each experiment could contain multiple “main” causal quantities according to the criteria
above. To reduce duplicates, we used the following rules to select one causal quantity into

our collection, and discard the others:

1. If there is only one causal quantity tied to the substantive research hypothesis, we

select this causal quantity into our collection.
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2. If there are multiple causal quantities tied to the substantive research hypothesis, we

select the causal quantity estimated with the simplest model.

3. If there are multiple causal quantities estimated via equivalently simple modes, from a
conservative perspective, we select the causal quantity with the largest (standardized)

size.

4. We exclude the quantity (and the publication) if the main text and the appendix of the
paper does not report at least a conventional numeric standard error or a t-statistic
(e.g. when the author adopts permutation tests, or have just reported the results in a
figure but not numbers in the appendix) — this means we cannot infer the standardized

treatment effects without looking into replication files.

Our resulting dataset contain 410 effect size observations that are either average treatment
effects (ATE), or similar causal quantities that can be estimated via difference in means.
This number is larger than the number of publications identified because some publications

contain multiple studies (experiments).
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