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Abstract

Political scientists routinely use power analysis when designing their empirical re-

search. However, it is often neglected that power analysis relies on untested assumptions

about the true values of key parameters, such as the effect size. Researchers commonly

use auxiliary empirical information to make guesses about those parameters, such as

results from a pilot study or a similar experiment reported in the literature. In this

paper, we show that such practice is problematic due to neglected uncertainties in the

empirically obtained parameter values. We propose a conceptual distinction between

empirical and non-empirical power analyses and analyze the former as an estimation

problem, investigating their statistical properties both analytically and via simulations.

Our results indicate that estimators for power and minimum required sample size tend

to perform poorly under scenarios resembling typical political science applications. We

offer practical guidelines for empirical researchers on when to (and not to) trust power

analysis results.

Keywords: power analysis, sample size, experimental design, research transparency.



1 Introduction

With the surge of randomized experiments and the introduction of pre-analysis plans and

research pre-registration, today’s political scientists routinely use statistical power analysis.

Many researchers, especially those employing experimental methods, consider power analysis

an essential part of empirical research. For example, Evidence in Governance and Politics

(EGAP), a prominent network of researchers and practitioners engaged in field experiments,

recommends power analysis as an “important component of a pre-analysis plan” (Chen and

Grady, 2019). Indeed, EGAP’s research registration form asks every registered study whether

a power analysis was conducted prior to data collection. It is also common for research grant

agencies to either recommend or require power calculations to be included in study proposals

(e.g., National Science Foundation, 2013). In the domain of academic publications, Journal

of Experimental Political Science lists statistical power as one of the key criteria reviewers

are asked to evaluate “registered reports” submissions on (Journal of Experimental Political

Science, nd).

Power analysis refers to various statistical techniques that involve power either as an input

or an output. Power, or the probability of rejecting the null hypothesis when it is false, is

often an important consideration when a researcher designs an empirical study under real-

world constraints. For example, a researcher may be constrained by the maximum sample

size they can use due to their financial or logistical capacity. In such a scenario, an important

pre-study question of interest is whether the conceived study can be expected to achieve a

level of statistical power that is sufficiently high to render the study worthwhile. Another

common situation is when a researcher seeks to infer how large a sample they will need to

achieve the desired power (e.g., 80%), perhaps for the purpose of calculating the budget for

a research grant proposal.

In statistics textbooks, power is described as a quantity that is calculated given the

true values of parameters for a hypothesis test. In practice, however, power analysis often

rests on empirical information. Power analysis in its simplest form requires two of the three
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population values as inputs: the standardized effect size (i.e. the raw effect size divided

by the standard deviation of the outcome), the sample size, and the power itself. While

the latter two parameters typically come from external constraints, such as research budget

or convention, the standardized effect size is a feature of the data-generating process itself

and, therefore, is almost never known by the researcher. Thus, researchers employing power

analysis often use some empirical information to cope with the fundamental uncertainty

about the standardized effect size.

More specifically, two approaches are particularly common in empirical research. First,

researchers often employ a pilot study to obtain an estimate of the treatment effect and use

that estimate as an input to their power calculation. Second, researchers may look for a

previous empirical study testing a similar hypothesis and use an estimate of the effect size

in the study as if it were equivalent to their effect of interest. Both of these approaches use

existing empirical information about a population parameter (i.e., the standardized effect

size) to make inferences about the likely value of a function of the parameter (i.e., power or

minimum required sample size). That is, power analysis is an estimation method used to

solve empirical problems in these contexts. Despite this, current practice in applied research

does not require researchers to formalize the degree of uncertainty in the “estimates” from

their power analysis.

To illustrate the current practice, we survey the political science pre-registrations created

in the Open Science Foundation (OSF) registry in 2024 with some discussion of sample size

rationale.1 Table 1 summarizes the result. Of the 580 pre-registered studies, 84 (or 14.5%)

fall under our “empirical power analysis” category, explicitly stating that they refer to either

a pilot or a previous study to determine their hypothesized treatment effect. This is the

second largest category among the pre-registrations that cite any reason, only next to the

“cost/resource constraints” category which cite some resource constraints (166 studies, or
1We collected all pre-registration entries from that year that had a unique identifier in the metadata

under the “sample size rationale” label. From the total of 1,393 entries, we exclude 742 entries that are either
empty or for qualitative studies and 71 entries that refers to attached supplemental files. All classifications
are hand-coded.
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Type Count Proportion

No reference of inputs 246 42.4%
Cost/resource constraints 166 28.6%
Empirical power analysis 84 14.5%
Sample size of pervious studies 35 6.0%
Part of larger studies 31 5.3%
Universe 18 3.1%

Total 580 100.0%

Table 1: Review of Sample Size Rationale Entry in Metadata of OSF in 2024

28.6%). It is also worth noting that some entries in the latter category specifically mention

the lack of prior studies as part of their rationale. Of the remaining pre-registrations, the vast

majority (246) include no reference to how they chose their hypothesized treatment effects.

We suspect that many of these come from informal beliefs formed on related studies that have

previously been conducted. In sum, the practice of referring to a pilot or a previous study

to get an “estimate” for the hypothesized treatment effect appears to be quite prevalent.

In this paper, we propose to call these types of power analyses empirical power analyses

and distinguish them from the variants that do not use empirical information2. Specifically,

we analyze two types of empirical power analysis techniques: power estimation and mini-

mum required sample size (MRSS) estimation. Viewed as statistical estimation techniques,

empirical power analyses can be examined in terms of their statistical properties as estima-

tors, such as bias and sampling uncertainty. We thus investigate the properties of standard

power and MRSS estimators, both analytically and via Monte Carlo simulations, focusing

on the range of parameter values that we find to correspond well with real-world scenarios

in empirical political science, based on our survey of the literature. That is, we ask: Can we

trust the results of empirical power analyses in typical political science applications? Is the

bias in a power or MRSS estimate small enough to be useful given an unbiased estimate of

the standardized effect size from a pilot study? How precise are those estimates likely to be

when the pilot study contains a typical number of observations?

These questions are crucial to answer for several reasons. First, researchers often need
2The latter is therefore not subject to much of our critique in this paper. See our discussion in Section 5.
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to use data from a small pilot study or a loosely related previous study. Given the large

amount of uncertainty in the estimates from such studies, a natural concern is whether the

downstream estimate of the power or the MRSS may also be poor. Second, despite the

potentially large degree of uncertainty in empirical power analysis results, research practice

in empirical political science is increasingly reliant on them. Indeed, researchers employing

survey or field experiments routinely use empirical power analysis to make important deci-

sions in the planning stage of their study, including whether to proceed with the study at

all. This implies that misinterpreting power estimation results could lead to serious ineffi-

ciencies, such as missed opportunities and wasted resources. For example, an overestimation

of the MRSS could discourage a researcher from conducting an experiment that is actually

promising. Conversely, an overestimated power could lead a grant-making agency to funding

a project that is in truth bound to fail. Third, even though the stakes are high, the existing

literature has not critiqued power analysis for this estimation uncertainty3.

Overall, our investigation reveals a rather bleak picture of the usefulness of empirical

power analysis in political science research. First, we show analytically that both power and

MRSS estimates are biased even when an unbiased estimate of the true effect size is available

(as it may be when, for example, the researcher conducts a pilot study on a random sample

from the population of interest). Second, both our survey of the existing methods for bias

correction and evidence from our simulation studies indicate that the biases in these estimates

are in unknown directions and are difficult to correct. Third, our simulation results suggest

that estimation uncertainty in power and MRSS estimates is likely to be so large under typical

empirical scenarios that the estimates are unlikely to be useful for practical purposes. These

results imply that empirical researchers should exercise caution when applying empirical

power analysis. Our advice, instead, is that researchers should primarily use power analysis

for non-empirical purposes, such as to derive the required minimum sample size to detect the
3There exists a growing literature criticizing the use of power analysis on conceptual grounds, notably from

Bayesian perspectives (Gelman and Carlin, 2014; Kruschke and Liddell, 2018). Our argument is distinct from
this strand of previous research in that we primarily examine power estimates in terms of their frequentist
properties, so that the concept of power itself is well-defined and meaningful under our framework.
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desired effect size based on substantive or normative grounds. Should they choose to employ

empirical power analyses despite the likely performance problems, researchers should always

quantify and report the degree of uncertainty in their power analysis estimates.

The rest of the paper is organized as follows. In Section 2, we set up our notational frame-

work and define key concepts and quantities for our subsequent analysis. Sections 3 and 4

present the results of our analyses of the power and MRSS estimators, respectively, both

analytically and via simulations. Section 5 contains our practical recommendations based

on these results. Section 6 concludes.

2 Framework: Power Analysis as an Estimation Problem

Consider a setting where the researcher studies the average treatment effect (ATE) of binary

treatment Z ∈ {0, 1} on outcome Y . They plan a full randomized experiment with sample

size Nf on a simple random sample from the population: nf1 subjects randomly assigned to

the treatment (Z = 1), nf0 = Nf −nf1 in control (Z = 0). Beforehand, they have data from

a “pilot” study4 – another randomized experiment with the same treatment and outcome

variable, but on a separate random sample of Np subjects from the same population with

np1 subjects randomly assigned Z = 1 and the remaining nf0 = Np − np1 assigned Z = 0.

Researchers often use pilot data for empirical power analysis before the full study. Despite

the availability of complex tools (e.g., Green and MacLeod, 2016; Blair et al., 2019), we focus

on the widely used textbook two-sample t-test power analysis with the asymptotic normal

reference distribution. Suppose they test against the zero Average Treatment Effect (ATE)

via a two-sided t-test in the full experiment, letting α and β be the probabilities of type-I

and type-II errors, respectively, the (true) power of the full experiment ψ is:
4Despite the terminology, the setup encompasses a scenario where researchers use results from previously

published experiments resembling the proposed study to conduct power analysis, where Np is interpreted as
the effective sample size from previous studies.
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ψ ≡ 1−β = 1−Φ

Φ−1
(
1− α

2

)
− τ√

S2
0

nf0
+

S2
1

nf1

+Φ

−Φ−1
(
1− α

2

)
− τ√

S2
0

nf0
+

S2
1

nf1

 ,

(1)

where Φ(·) the standard normal cumulative distribution function (CDF) , τ the true

ATE, S2
1 ≡ V(Y | Z = 1), S2

0 ≡ V(Y | Z = 0), and V(�) denotes variance.

We make two simplifying assumptions: (1) the outcome variance is constant across the

treated and the control; (2) the treatment is randomly assigned to minimize the sampling

variance of the estimated ATE (Neyman, 1923), which indicates the equal treatment allo-

cation across the treatment group and the control group. The assumptions are not overly

restrictive: first, they are of practical relevance, as most researchers use constant variance in

their study designs. Second, Appendix A.6 shows that power estimation bias stems mainly

from the imprecise τ (true effect) estimation, not that of σ, so differing group standard

deviations still produce similar biases.

Assumption 1. (constant outcome variance) σ2 ≡ S2
1 = S2

0

Assumption 2. (equal treatment allocation) Nd/2 = nd1 = nd0, d ∈ {f, p}

We also clarify that the assumptions that we are NOT yet making are: (1) the parametric

assumption for the underlying distribution of the outcomes, and (2) whether the outcomes

are subject to an identical and independent distribution, as our results are based on the

sampling theory (O’Neill, 2014). Thus, the analytical results derived in this paper, unless

otherwise stated, shall apply to all cases regardless of the underlying distribution of the

outcome.

Under these assumptions, the power of the full experiment ψ depends only on three

parameters: the size of the test α, intended full sample size Nf , and the standardized effect

size τstd, defined as the true ATE scaled to the standard deviation of the outcome, τstd ≡ τ/σ.

Equation (1) simplifies to

6



ψ = 1− Φ

(
Φ−1

(
1− α

2

)
−
τstd
√
Nf

2

)
+ Φ

(
−Φ−1

(
1− α

2

)
−
τstd
√
Nf

2

)
. (2)

Of the three parameters in equation (2), two are design parameters the researchers in

theory have control of: α, conventionally set at the level of α = 0.05, and Nf , chosen under

the cost or logistical constraints. The third parameter, τstd, is empirical, whose true value

exists independently of the research design.

A common way to calculate power via equation (2) is to estimate τ̂std from a pilot ex-

periment, then plug this estimate, plus known α and Nf , into the equation. Thus, empirical

power analysis uses the following plug-in estimator:

ψ̂ = 1− Φ

(
Φ−1

(
1− α

2

)
−
τ̂std
√
Nf

2

)
+ Φ

(
−Φ−1

(
1− α

2

)
−
τ̂std
√
Nf

2

)
, (3)

where τ̂std = τ̂ /σ̂, such that

τ̂ =

∑
Y Z

np1
−
∑
Y (1− Z)

np0
, σ̂ =

√∑
(Y −

∑
Y/Np)2

Np − 1
, (4)

where all summations and terms (np1, np0, Np) refer to the pilot sample.

Another use of equation (2) is calculating the full experiment’s MRSS – the smallest

sample size for the desired power ψ. The full experiment meets ψ iff:

Nf ≥
4
[
Φ−1

(
1− α

2

)
− Φ−1 (1− ψ)

]2
τ 2std

, (5)

ignoring the negligible5 last term in equation (2).

MRSS is the smallest integer Nf satisfying this inequality (5). Since ψ is a researcher-set
5The term is strictly bounded from above by α/2.
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design parameter, conventionally at ψ = .8, the MRSS estimation adopts a plug-in estimator:

M̂RSS =

⌈
4
[
Φ−1

(
1− α

2

)
− Φ−1 (1− ψ)

]2
τ̂ 2std

⌉
, (6)

with τ̂std = τ̂ /σ̂ from equation (4).

Before we examine the statistical properties of the power and MRSS estimators (equa-

tions (3) and (6)), some general discussion is helpful. Noting that both estimators are non-

linear functions of τ̂std, the ratio of an unbiased estimator τ̂ to a nearly unbiased estimator

σ̂, by standard sampling theory (see Appendix A.2 for more details),

E[τ̂ ] = τ, V[τ̂ ] =
4σ2

Np

,
τ̂ − τ

2σ/
√
Np

d−→ N (0, 1) as Np → ∞, (7)

and

E[σ̂2] = σ2, V[σ̂2] =
1

Np

(
κ− Np − 3

Np − 1
σ4

)
,

σ̂2

σ2

approx.∼ χ2(ν)

ν
as Np → ∞,

where κ = E[(Y − E(Y ))4] and ν = 2σ4

V[σ̂2]
(O’Neill, 2014).

While these properties establish the consistency of both ψ̂ and M̂RSS as Np → ∞, they

do not ensure additional desirable characteristics. Notably, since ψ̂ and M̂RSS are nonlinear

functions of τ̂ or σ̂, these estimates are generally biased – a direct consequence of Jensen’s

inequality. Such small-sample biases are particularly problematic, as pilot study sample sizes

(Np) tend to be relatively small in most empirical settings.

3 Power Estimation

We first examine the power estimator in equation (3). Though less common than MRSS

estimation, power calculation is standard in empirical political science and foundational in
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methodology courses, where students first encounter these concepts. Researchers adopt this

estimator when constrained by fixed full-experiment sample sizes, and need to assess the

viability of a study.

For example, Tausanovitch (2015) uses data from a previous pilot study to show that his

hypothetical proposed study of 2,000 survey respondents will have 88% chance of detecting

the treatment effect that is half as large as the observed effect size in the prior pilot study.

We naturally ask, how reliable the reported power of 88% actually is, given that the

power is empirically estimated based on data from a previous pilot study. Below, we answer

this question in a more general manner via analytical investigations of the properties of the

estimator, as well as Monte Carlo simulations.

3.1 Analytical Results

As discussed in Section 2, empirical power calculation is to estimate the output of a nonlinear

function of other parameters. While the estimators of the latter parameters may behave well,

plug-in estimates for the target may not, due to the non-linear property of the function.

Focusing on α = 0.05 and approximating by ignoring the negligible final term6,

ψ̂ ≃ 1− Φ

(
1.96−

τ̂std
√
Nf

2

)
. (8)

Equation (8) shows that ψ̂ is a nonlinear function of the pilot-derived τ̂std, following a

standard normal CDF. The standard normal CDF is neither globally convex nor concave,

which prevents us from determining the bias direction via Jensen’s inequality7: ψ̂ may over-

or under-estimate its true value, even with the unbiased τ̂std. While ψ̂ is indeed consistent

and asymptotically normal as Np → ∞, pilot sizes are typically small, leaving asymptotic

properties less relevant in this setting.

6As discussed in Section 2, this term is only as large as α/2 at most and usually much smaller.
7By Jensen’s inequality, E[g(X)] ≤ g(E[X]) if g(X) is globally concave, and E[g(X)] ≥ g(E[X]) if globally

convex for a random variable X and a real-valued function g(·).
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Proposition 1. Under Assumptions 1 and 2, E[ψ̂] ̸= ψ, i.e. ψ̂ is a biased estimator for ψ.

Proof. See Appendix A.1.

Further Approximation. Before Monte Carlo simulations, further approximations in

Appendix A.2 yield key predictions about bias of the power estimator. The parametric

assumption of the outcome Y subject to a normal distribution is introduced to proceed with

the derivation without invoking asymptotic results, since Np is small in most applied settings.

First, bias nears zero as the true τstd grows, holding other parameters fixed: this is because

the negative term in equation (8) approaches zero in expectation, so ψ̂ and true power both

grow towards 1. Second, a larger Nf can increase or decrease bias, and the direction depends

on other parameters: this is because the argument of the negative term in equation (8) shifts

left and grows more variable, which leaves the net change of E[ψ̂] ambigious.

Bias-Correction. We attempt to correct the bias of ψ̂ in Appendix A.3, but standard

bias-correction methods fail in our setting, for two reasons: First, ψ̂ has a nonlinear bias.

Traditional methods like bootstrap or jackknife work poorly here as they assume a constant

or linear bias (Cordeiro and Cribari-Neto, 2014). As expected, they fail in our setting.

Second, the non-linear method proposed by MacKinnon and Smith Jr (1998) requires a

closed-form analytical bias function, which we lack because the normal CDF has no closed

form. A modified version with a simulated bias function, as presented in Appendix A.3, also

failed to improve the results. In short, existing methods cannot correct the bias of ψ̂.

While the above results offer insights into the power estimator’s theoretical behavior, their

practical value is limited. Fundamentally, the non-linearity of equation (8) prevents ex ante

predictions of bias magnitude or direction. We thus turn to Monte Carlo simulations. To

conduct Monte Carlo simulations, unlike the analytical results above, we have to introduce

parametric data-generating processes (DGPs) for practical reasons, yet we save discussions

on the choice of various DGPs in Appendix A.6.
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3.2 Simulations

To study the small-sample properties of the power estimator as in equation (3), we simulate

repeated sampling from various data-generating processes (DGPs) that match empirical

political science scenarios. We vary three key parameters: standardized effect τstd ∈ [0, 1],

pilot size Np ∈ {50, 250, 450, 650}, and full-experiment size Nf ∈ {100, 500, 900, 1300} –

all aligned with common political science applications. We assess the estimator’s bias and

standard error via 1,000 Monte Carlo draws.

Simulation Procedure For each τstd, Np, Nf combination, we run this Monte Carlo

experiment:

1. Simulate the pilot: Draw Np

2
treatment-group Y values from N (τ, 42), and Np

2
control-

group values from N (0, 42), where τstd = τ/4.

2. Compute the difference-in-means treatment effect estimator τ̂ .

3. Estimate treatment/control sample variances of the outcome: Ŝ2
1 and Ŝ2

0 .

4. Calculate power via a plug-in estimator based on equation (2), α = 0.05, nf0 = nf1 =

Nf/2:

ψ̂ = 1− Φ

1.96− τ̂√
Ŝ2
1

nf1
+

Ŝ2
0

nf0

+ Φ

−1.96− τ̂√
Ŝ2
1

nf1
+

Ŝ2
0

nf0

 .

5. Repeating Steps 1 to 4 for 1,000 times to estimate bias and standard error.

Results. Figures 1 and 2 present the simulated bias and standard error of the power

estimator, respectively, across the values of the pilot sizes, intended full experiment sizes

and true standardized treatment effects.

First, across many parameter values, the power estimator’s bias is substantial and can

be positive or negative. For fixed sample sizes, e.g. the subplot of the second row and third
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Figure 1: Simulated Bias by True Standardized Treatment Effect. The top row of plots
presents the true power for each full experiment sample size as a function of the standard-
ized effect size. The remaining plots show Monte Carlo estimates of the bias of the power
estimator on the vertical axis for a given pilot sample size (row), full experiment sample size
(column) and the standardized effect size (horizontal axis in each plot).
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Figure 2: Standard Error by True Standardized Treatment Effect. See legend for Figure 1
for the interpretation of the graph components.
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column in Figure 1, bias is positive and largest when τstd is close to zero. The bias decreases

to zero, flips negative at around τstd = 0.175, then fades as true power hits 1. Since power

ranges between 0 and 1, and most design aims for a power greater than 0.8, a bias of 0.1 is

significant – our results show a bias greater than 0.1 in a wide range of scenarios.

Second, the power estimator is also highly imprecise across various parameter values. For

example, with Np = 50 and Nf = 100, in Figure 2, the standard error exceeds 0.1 for all

τstd ∈ [0, 1]. In other sub-plots, the standard error stays below 0.1 only if τstd is greater than

approximately 0.4, except in unrealistic cases where pilot size far exceeds full experiment

size (first column, bottom three subplots).

Third, viewing Figure 1 horizontally, as Appendix A.2 shows analytically, bias generally

increases with the Nf/Np ratio, holding τstd constant. We confirm this with the simulation.

This is the contrapositive of a later observation: with fixed Nf , larger Np tends to reduce

the bias of power estimation.

Fourth, bias becomes negligible once true τstd exceeds 0.3 to 0.8, varying by sample sizes.

A helpful rule of thumb is that when the expected τstd > 0.5, there is no need to worry about

the bias. A typical political science Nf makes power for τstd = 0.5 close to 1.

Fifth, bias decreases monotonically as pilot size Np increases. Since τ̂std is consistent, ψ̂

is also consistent for ψ with a convergence rate of
√
Np and asymptotically normal. Larger

Np activates these asymptotic properties, reducing bias and variance until they vanish.

Finally, the first row of Figure 1 shows that the true power function is convex in some

areas and concave in others. Due to the estimation uncertainty of τ̂std, researchers cannot

tell if the true τ̂std falls in the convex or concave area, unless the pilot size is unrealistically

large. As Appendix A.3 discusses, this ambiguity, plus other method limitations, hinders

existing bias correction approaches.
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3.3 Calibrating Simulation Results

A key insight from our simulations is that the power estimator’s bias and precision depend

crucially on the true standardized effect size. Naturally, we ask: where do we fall on the

horizontal axes of Figures 1 and 2? Should political scientists worry about the bias of the

power estimation in a typical experiment?

To answer, we rely on reported standardized effect sizes in the literature. We collected

articles from 4 top political science journals8 published between 2015 and 2024, focusing on

those with ATEs (or similar quantities) reported. This yielded 410 standardized effect size

observations9.

Figure 3 shows the distribution of standardized effect sizes from our sample, classified by

study type. Before the interpretation, we note that our sample from top journal articles is

unrepresentative of all political science experimental effect sizes: publication bias and file-

drawer effects (Schäfer and Schwarz, 2019) skew observations toward the right tail, i.e., larger

effects. Thus, our reported statistics overestimate true standardized effect sizes, possibly by

significant margins.

Strikingly, our estimated standardized effect sizes are mostly concentrated between 0.1

and 0.4, even with the likely overestimation. The median is about 0.18 for survey experi-

ments, slightly smaller for field experiments, and slightly (but not much) larger for experi-

ments using economic games as treatment or outcome.

Comparing these results to our bias and standard error simulations in Figures 1 and

2 paints a bleak picture of power estimation in political science. Empirical standardized

effect sizes between 0.1 and 0.4 fall exactly where bias is most sensitive to τstd and where

the standard error is the largest. For example, with a typical Np = 50 and Nf = 900 and

τstd = 0.25, the bias reaches about −0.2, and the standard error is approximately 0.35. Even
8American Journal of Political Science, American Political Science Review, Journal of Politics, Political

Analysis, chosen for high impact and frequent experimental studies.
9Although few articles directly report standardized ATE, we calculated τstd (with assumptions if needed)

using reported uncertainty estimates (see Appendix A.7 for details).
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Figure 3: Distribution of Standardized Effect Sizes and Full Experiment Sample Sizes in
Top Published Political Science Articles (2015-2024)
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with an unrealistically large Np = 850, bias remains 0.1 and the standard error hits 0.3 when

τstd = 0.15 and Nf = 1300.

4 Minimum Required Sample Size Estimation

Next, we turn to MRSS estimation – likely the most common form of empirical power analysis

in political science. For example, Dunham and Lieberman (2013)’s EGAP-registered pre-

analysis plan10 reports using a 100-participant pilot to estimate expected effect size, deriving

an MRSS range of 342 to 1,043 for a 90% power, and choosing N=1,000 for the final study.

We investigate the reliability of this method using both analytical and simulation approaches.

4.1 Analytical Results

We start by deriving the expectation of the MRSS estimator (equation (6)) to find its bias.

However, this expectation does not exist, leaving the bias of M̂RSS undefined. Observe:

E
[
M̂RSS

]
= E

{
4
[
Φ−1

(
1− α

2

)
− Φ−1 (1− ψ)

]2
τ̂ 2std

}

= 4
[
Φ−1

(
1− α

2

)
− Φ−1 (1− ψ)

]2
E
{

1

τ̂ 2std

}
.

In Appendix A.4, we show E
{

1
τ̂2std

}
diverges under the regularity assumption 3. Thus,

EM̂RSS diverges under this condition as well.

Assumption 3. (continuous and bounded density for τ̂std) fτ̂std(x), the probability density

function for τ̂std, is continuous and bounded from both below and above.

Proposition 2. Under Assumptions 1, 2 and 3, E
[
M̂RSS

]
does not exist.

Proof. See Appendix A.4.
10Notably, they used ANOVA-based power analysis for a factorial design, unlike our t-test, so our results

may not directly apply.
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The non-existence of E
[
M̂RSS

]
means empirical samples of E

[
M̂RSS

]
may have wild

values, as simulations later show. It also makes V[M̂RSS] non-existent, since the first

moment is required for the second moment to be defined. Although Appendix A.5 shows

the consistency of M̂RSS for large Np, the pilot sizes are by definition small, so asymptotic

results offer little help.

Again, we clarify here that the analytical results should apply regardless of the parametric

distribution of the outcome Y , as our analytical results are based on the sampling theory.

Admittedly, the following Monte Carlo simulations require specified parametric DGPs, our

main simulation results are robust under different DGPs as in Appendix A.6.

4.2 Simulations

Since MRSS has no defined expectation or variance, standard performance measures, such

as bias or root mean squared errors, do not apply. We instead investigate its small-sample

performance via simulations of 1,000 MRSS realizations per DGP to examine how the empir-

ical distribution changes with different pilot sizes Np and τstd. Parameters are set to match

political science applications: τstd ∈ {0.125, 0.25, 0.5, 1}, Np ∈ {10 ≤ n ≤ 5000, n ∈ Z}.

Simulation Procedure For each τstd, Np combination, we run this Monte Carlo experi-

ment:

1. Simulate the pilot: Draw Np

2
treatment-group Y values from N (τ, 42), and Np

2
control-

group values from N (0, 42), where τstd = τ/4.

2. Compute the difference-in-means treatment effect estimator τ̂ .

3. Calculate MRSS via a plug-in estimator based on equation (6), α = 0.05, ψ = 0.8:

M̂RSS =

⌈
4 [1.96− Φ−1 (0.2)]

2

τ̂ 2std

⌉
.
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4. Repeat Steps 1 to 4 for 1,000 times to obtain a simulated sampling distribution of

M̂RSS.

Results Figure 4 shows the simulated sampling distributions of the MRSS estimation

across four different values of the standardized effect size (from the top to the bottom panels)

and different pilot sample sizes (along the horizontal axis). The y-axis is log 10 scaled.

MRSS shows striking sampling variability across a wide range of parameters. Its simu-

lated distribution is highly right-skewed, where the empirical mean nearly always exceeds the

95th percentile. Take τstd = 0.125, an empirically likely scenario in Figure 3 as an example,

with ψ = 0.8, and α = 0.05, its true MRSS is 2,008. With a pilot Np = 100, τ̂std ranges from

−2.42 to 2.52 out of the 1,000 simulations. The central 90% spans −1.16 (5th percentile)

to 1.42 (95th percentile). This makes MRSS range between 5 and 561 million (5th to 95th

percentile: 12 - 7,109). The mean of MRSS estimator (604 thousand) wildly overestimates

the true MRSS, while the median (112) underestimates it11

Suppose a researcher uses a 5,000-participant pilot to reduce MRSS uncertainty – unreal-

istically large for typical political science field/survey pilots, but possible from a prior large

study. Even so, the situation remains bleak: estimated MRSS ranges between 154 and 332

million (5th to 95th percentiles: 311 – 170,683), with a mean of 727 thousand and a median

of 1,861.

Finally, take the most optimistic scenario: true τstd = 1, atypically large in political

science as shown in Figure 3. With a 1,000-participant pilot, MRSS estimates range between

9 and 555 (5th to 95th percentiles: 16 – 97), with stabilized mean/median at 41/31. While

this seems promising, true MRSS here is just 32 – and the pilot’s estimated ATE is almost

always highly significant, making MRSS for a separate full experiment arguably pointless.

Our simulations show MRSS estimation, based on empirical standardized effect size es-

timates, has limited use in typical political science applications. Estimates are unhelpfully
11These numbers only illustrate the MRSS estimator’s sampling behavior – not estimating the true dis-

tribution’s order statistics or moments. They will likely differ by a large amount (except the median) in
another simulation run, but the overall variability pattern will remain the same.
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Figure 4: Simulated Sampling Distributions of the MRSS Estimator. Each of the four
plots presents characteristics of the simulated sampling distribution of the MRSS estimator
(maximum, 95th percentile, mean, median, 5th percentile and minimum) as functions of the
pilot study sample size (Np), with each plot corresponding to an assumed size of the true
standardized effect size (τstd). The red horizontal line indicates the true MRSS corresponding
to τstd in each plot. Note that the y-axis is on the log 10 scale for interpretability.
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variable in most relevant scenarios, and when estimation is reliable, the pilot’s treatment

effect estimate is already almost certainly highly significant.

4.3 MRSS Estimation in Practice

In practice, researchers tend to estimate MRSS only when pilots are “promising.” Pilots often

help explore design choices (e.g., treatment content) to finalize full experiment specifications.

Empirical power analysis typically occurs when researchers select treatment-outcome com-

binations with effects that seem to indicate the existence of an impact, yet do not meet

conventional statistical significance.

This research practice deviates from our Section 4.2 simulations, which assume an MRSS

estimation regardless of the estimated pilot effect. Instead, under this practice, the distri-

bution of actually conducted MRSS estimates is likely conditional on the estimated pilot

effect falling within a specific range of statistical significance. Under this more realistic

regime, MRSS variability is much lower: extreme MRSS draws in Figure 4 correspond to

those close-to-zero estimated pilot effects, and are not part of the actually conducted MRSS

estimates.

However, this does not make our pessimistic simulation conclusion irrelevant. In fact,

conditioning empirical power analysis on a promising pilot result is flawed and should be

abandoned. We discuss two reasons for this below, using our framework that treats power

analysis as an estimation problem. Before we proceed, we clarify that the two reasons below

are generally applicable regardless of the underlying distribution of the outcome Y , as the

results are based on sampling theories.

First, researchers may prematurely abandon statistically and substantively significant

experiments by dropping the full study after a pilot with a large p-value (see also Kraemer

et al., 2006). Take τstd = 0.25 as an example: a 100-participant pilot has τ̂std with mean

0.25 and variance 0.04 per equation (7). Suppose the researcher only proceeds if the pilot

t-stat is “promising but not significant,” i.e., between 1 and 2. Using a standard normal
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approximiation for the t-statistic, there’s only a 34% chance12 that they will conduct a

power analysis, and potentially run the full experiment, even though the true τ is 0.25. In

other words, the probability that the researcher would prematurely give up the research,

which would otherwise be promising, is 50%13.

Second, more fundamentally, basing full experiment decisions on pilot treatment effect

p-values makes the pilot data irrelevant. We show analytically that there is a one-to-one

mapping between pilot p-values (or t-statistics) and MRSS. In other words, the decision

rule, using pilot p-value and sample size alone, fully determines MRSS, ignoring actual

experimental data obtained from the pilot. Thus, given the pilot size, one can estimate

MRSS from a hypothetical Np pilot without conducting the real one.

Specifically, since E[τ̂std] = τstd and V[τ̂std] = 4/Np, the pilot t-statistic against the zero

effect null is τ̂std
2

·
√
Np. Suppose the researcher proceeds only if this t-statistic is between

1 and 2. Using the standard normal reference distribution, τ̂std must fall between 2√
Np

and

4√
Np

. Plugging this into equation (6) gives:

[
Φ−1

(
1− α

2

)
− Φ−1 (1− ψ)

]2
Np

16
≤ Nf ≤

[
Φ−1

(
1− α

2

)
− Φ−1 (1− ψ)

]2
Np

4
.

All parameters for this Nf range, α, ψ, Np, are known pre-pilot. Thus, the pilot provides

no additional information to determine the minimum required sample size range.

In sum, the practice of conditioning MRSS estimation on the statistical significance of

a pilot study is not advised. Ironically, this practice itself gave researchers the illusion that

MRSS is useful: by only estimating MRSS when pilots show promising effects, they can

pre-fetch estimates that are less extreme.

121 ≤ τ̂
1
5

≤ 2 ⇒ 1
5 ≤ τ̂ ≤ 2

5 ⇒ Pr
(
1
5 ≤ τ̂ ≤ 2

5

)
= Φ

(
2
5−

1
5

1
5

)
− Φ

(
1
5−

1
5

1
5

)
≃ 0.34.

13We deduct the probability of the researcher obtaining a statistically significant result from pilot:1 −
0.34− Pr (τ̂ significant) = 1− 0.34− Pr

(
τ̂
1
5

> 2
)
= 1− 0.34−

(
1− Φ

(
2
5−

1
5

1
5

))
≃ 0.50.
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5 Practical Recommendations

Our analysis of two common empirical power analysis techniques – power estimation and

MRSS estimation – highlights their serious limitations for political science applications.

Below, we offer practical guidelines for empirical researchers using power analysis.

First, empirical power analysis is generally not recommended for most political science

scenarios – such as field or online survey experiments. Given the range of standardized ef-

fect sizes in recently published top-journal experimental studies (Figure 3), neither power nor

MRSS estimation will likely produce reliable results. The problem is exacerbated when using

ATE/outcome variance estimates from small pilots, as their large uncertainty is amplified

by the nonlinear transformations in power or MRSS estimators. If researchers still pro-

ceed with empirical power analysis, they must calculate the estimation uncertainty in their

power/MRSS estimate and report a standard error alongside the point estimate, treating it

like any other estimation problem and adopting the same reporting standards.

Our critique does not apply to non-empirical power analysis – techniques that avoid

empirical estimation of the standardized effect size. Power analysis is non-empirical when

all parameters are clearly set by external constraints or normative criteria, and thus no sta-

tistical uncertainty is involved. For example, the minimum detectable effect size (MDES)

calculation14 identifies the smallest standardized effect detectable with specified power (ψ),

significance level (α), and full sample size (Nf ). Researchers can then compare MDES to a

pre-set threshold for substantive importance. A related approach is the MRSS calculation

using a normatively defined effect size, e.g., a grant agency’s required target without statis-

tical uncertainty. That said, we caution that non-empirical power and MRSS use the same

formulas as empirical methods – meaning results remain sensitive to even small changes in

pre-specified effect sizes.

14The minimum detectable effect size is shown to be τstd ≥ 2[Φ−1(1−α
2 )−Φ−1(1−ψ)]√
Nf

or τ ≥
2[Φ−1(1−α

2 )−Φ−1(1−ψ)]√
Nf

σ.
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As noted in Section 4.3, a particularly problematic empirical power analysis practice is

using pilot data to estimate the target treatment effect, then conducting a formal power

analysis only if the estimate is “promising” (moderately statistically significant). Given

the pilot’s statistical significance (p-value/t-statistic) and sample size, the actual pilot data

contains no additional information for power calculation. In short, if researchers pre-decide,

before collecting data, to propose a full study only if a pilot of size Np has a p-value in a

particular range, they do not need to collect any pilot data to determine the full experiment’s

MRSS range.

Given our findings, are pilots, or preexisting same-hypothesis studies, useful for power

analysis? One remaining way pilot data can empirically inform power analysis is to trans-

form the standard effect size into the substantively meaningful scale of an actual outcome

variable. MDES, our recommended non-empirical power tool, produces standardized effect

sizes, minimum detectable effects in outcome standard deviations. To judge if this meets

a normative threshold, researchers need to interpret MDES in the outcome’s original scale,

which usually requires an empirical estimate of the outcome’s standard deviation. Estimat-

ing raw effect sizes from the estimated standard deviation and a standardized effect is far

safer than power/MRSS estimation. Typical pilot sizes are large enough for precise outcome

standard deviation estimates, yielding reliable raw effect estimates. Thus, pilots still matter

in empirical political science, in addition to their other roles unrelated to power analysis

(Leon et al., 2011).

Finally, our recommendations add to the growing body of power analysis critiques (e.g.,

Rothman and Greenland, 2018; Gelman and Carlin, 2014). Other scholars have criticized

practices like post-hoc power calculation using observed effect sizes (Gelman, 2019) and only

proceeding with full experiments if pilot-based MRSS seems feasible (Albers and Lakens,

2018). We advise researchers to follow both these existing recommendations and ours.
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6 Conclusion

Power analysis is increasingly prominent in political science – researchers routinely use it in

study design and include the outputs in pre-analysis plans or grant proposals. But not all

power analyses are equal. We introduce a conceptual distinction between empirical power

analysis, which uses empirical data as inputs, and non-empirical power analysis, which does

not. We then propose an analytical framework that treats empirical power analysis as a sta-

tistical estimation problem to systematically investigate its reliability, without the necessity

to assume the underlying distribution of the outcome. We apply this framework to the two

most common empirical forms, the power estimation and the MRSS estimation, to analyze

their properties as estimators, with a focus on parameter ranges that political scientists may

likely encounter.

Our theoretical and simulation analyses reveal that empirical power analysis has poor

utility in political science. Power estimates are strongly biased with an unpredictable direc-

tion and sensitive to small input changes, when the key parameters of the true standardized

effect and the pilot size are within the range for typical political science applications. MRSS

also has an infinite expectation and variance, leading to extreme variability for reasonable

pilot sizes and true effects. We further identify a fallacy in current pilot-based empirical

power analysis: estimating MRSS conditional on pre-specified statistical significance. From

these findings, we offer practical recommendations and generally advise against empirical

power analysis as it is currently practiced.

Our analysis leaves several questions for future research. First, we focus on power anal-

ysis for simple randomized experiments with a binary treatment and under simple ran-

dom sampling. It is the basis for most power calculations, covering much of the empirical

work, but other designs also exist. With trends toward complex experiments and using pre-

treatment covariates to boost efficiency, future work may analyze non-traditional power anal-

ysis, such as simulation-based ones. Second, existing bias correction methods perform poorly

for power estimation, and this suggests a demand for alternative statistical or design-based
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bias-correction solutions for empirical power analysis. Finally, the current paper brackets

the more fundamental criticism against the concept of power analysis itself, which ties into a

broader argument criticizing null hypothesis significance testing in applied research. Indeed,

our findings should be understood in the context of the ongoing discipline-wide debate about

what constitutes good empirical science.
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Appendix

A.1 Proof of Proposition 1

Note ψ̂ = 1−Φ

(
Φ−1

(
1− α

2

)
− τ̂std

√
Nf

2

)
+Φ

(
−Φ−1

(
1− α

2

)
− τ̂std

√
Nf

2

)
, we work on the

second term Φ

(
Φ−1

(
1− α

2

)
− τ̂std

√
Nf

2

)
and the third term follows.

We expand Φ

(
Φ−1

(
1− α

2

)
− τ̂std

√
Nf

2

)
into a Taylor series around the true τstd,

Φ

(
Φ−1

(
1− α

2

)
−
τ̂std
√
Nf

2

)
≈Φ

(
Φ−1

(
1− α

2

)
−
τstd
√
Nf

2

)

− 1(
2√
Nf

)ϕ(Φ−1
(
1− α

2

)
−
τstd
√
Nf

2

)
(τ̂std − τstd)

+
1

2

(
2√
Nf

)2ϕ
′

(
Φ−1

(
1− α

2

)
−
τstd
√
Nf

2

)
(τ̂std − τstd)

2

where Φ(�) is the standard normal CDF, ϕ(�) the standard normal probability distribution

function (PDF), and ϕ′
(�) the first derivative of the standard normal PDF.

We apply the expectation on both sides and get

E

{
Φ

(
Φ−1

(
1− α

2

)
−
τ̂std
√
Nf

2

)}
≈Φ

(
Φ−1

(
1− α

2

)
−
τstd
√
Nf

2

)

− 1(
2√
Nf

)ϕ(Φ−1
(
1− α

2

)
−
τstd
√
Nf

2

)
E (τ̂std − τstd)

+
1

2

(
2√
Nf

)2ϕ
′

(
Φ−1

(
1− α

2

)
−
τstd
√
Nf

2

)
E (τ̂std − τstd)

2

Note the remainder term on the right hand side does not equal zero, because: (1) E[τ̂std] ̸=
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τstd, and (2) the second-order term equals V(τ̂std)

2

(
2√
Nf

)2ϕ
′
(
Φ−1

(
1− α

2

)
− τstd

√
Nf

2

)
, which is

indeed 1
2
� Nf

Np
ϕ

′
(
Φ−1

(
1− α

2

)
− τstd

√
Nf

2

)
.

A.2 Properties of the Plug-in Power Estimator

To derive properties of the power estimator in equation (8), we begin by deriving the exact

mean and variance of τ̂std, our estimate of the standardized effect size from the pilot data.

We make two simplifying assumptions: (1) the outcome variance is constant across the

treated and the control, so σ2 ≡ S2
1 = S2

0 ; (2) the treatment is randomly assigned to

minimize the sampling variance of the estimated ATE (Neyman, 1923), so Nd/2 = nd1 = nd0,

d ∈ {f, p}.

We also clarify that the assumptions that we are NOT making are: (1) the paramet-

ric assumption for the underlying distribution of the outcomes in the population, and (2)

whether the outcomes are subject to an identical and independent distribution, as our results

are based on the sampling theory (O’Neill, 2014). Thus, the analytical results derived in this

paper shall apply to all cases regardless of the underlying distribution of the outcome.

Thus, utilizing the fact that all observations in the treated group are drawn randomly from

the population of the potential outcomes under treatment, where the population distribution

has mean τ and variance σ2, the sample mean of the treated group, which itself is a random

variable, has a mean of τ , and a variance of σ2

1
2
Np

= 2σ2

Np
, under the standard random sampling

theory (O’Neill, 2014). For a similar reason, the sample mean of the control group has a

mean of 0, and a variance of 2σ2

Np
.

Recalling that τ̂ is the difference in the estimated sample means, we have

E[τ̂p] = τ, V(τ̂p) =
4σ2

Np

.
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Since τ̂ ⊥⊥ σ̂2 (Cox and Reid, 1987; Huang and Rathouz, 2017), we have

E[τ̂std] = E

{
τ̂√
σ̂2

}
= E[τ̂ ]E

{
1√
σ̂2

}

= τ � E

{
1√
σ̂2

}

At this point we need some distributional assumptions to proceed with the derivation without

invoking asymptotic results, which we want to avoid since Np is small in many applied

settings.

Assumption A1. (outcome normality) The outcome variable Y is normally distributed.

Then, (Np−1)

σ2 σ̂2 ∼ χ2
Np−1, and therefore

√
Np−1

σ2 �
√
σ̂2 ∼ χNp−1. Indeed,

√
σ2

Np−1
� 1√

σ̂2
∼

Inv − χNp−1.

Following Lee (2012), when Np > 5,

E

√
σ2

Np − 1
�

1√
σ̂2

≈
√

1

Np − 5
2

Hence,

E

[
τ̂√
σ̂2

]
≈

τ
√

Np−1

σ2√
Np − 5

2

=
τ

σ

√
1 +

3

2Np − 5
(9)

Thus, τ̂std is downward biased when Np < 4 and upward biased when Np > 4. However, the

bias is negligibly small even for a moderately sized pilot experiment.
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Next, we consider the variance of τ̂std. Note that

E
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− E
τ̂√
σ̂2

]2
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τ̂ 2
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− E2 τ̂√
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E
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E
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1
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]
− τ 2

σ2

(
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3

2Np − 5

)

As we know (Np−1)
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Np−1, we have 1
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n−1. Hence,
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Further,
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+ τ 2

Thus,

V [τ̂std] =

(
4σ2

Np

+ τ 2
)(

Np − 1

Np − 3
�
1

σ2

)
− τ 2

σ2

(
1 +

3

2Np − 5

)
=

4(Np − 1)

n(Np − 3)
+
τ 2

σ2

Np − 1

(Np − 3)(2Np − 5)
. (10)

Thus, E[τ̂std] and V[τ̂std] are given by equations (9) and (10), respectively. While we could

in theory continue the derivation with these results, we instead opt to ignore the sampling

variability of σ̂2 for simplicity, effectively assuming τ̂std = τ̂ /σ. This can be justified for two

reasons. First, as noted above, E[τ̂std] is approximately unbiased unless Np is very small.

Second, V(τ̂std) can be shown to be greater than V(τ̂ /σ) as long as Np > 4, since V
[
τ̂
σ

]
= 4

Np

33



and

V [τ̂std]− V
[
τ̂

σ

]
=

4

Np

�

(
2

Np − 3

)
+ τ 2std

Np − 1

(Np − 3)(2Np − 5)
> 0

when Np > 4.

Now, define the random variable x = 1.96 − τ̂std
√
Nf

2
and scalar xtrue = 1.96 − τstd

√
Nf

2
,

we get ψ̂ = 1− Φ(x), where

x ∼ N
(
1.96− τstd

2

√
Nf ,

Nf

Np

)

To evaluate E
[
ψ̂
]
, we would need to evaluate E [Φ(x)]. Since Φ(·) cannot be expressed in

closed form, we apply the following approximation (Shah, 1985):

Φ(z) ≈



0 z ≤ −2.6

0.01 −2.6 < z ≤ −2.2

0.5− −4.4z−z2
10

−2.2 < z ≤ 0

4.4z−z2
10

+ 0.5 0 < z ≤ 2.2

0.99 2.2 < z ≤ 2.6

1 z > 2.6

Hence, for a random variable x,

E [Φ (x)] ≈ 0.01×
∫ −2.2

−2.6

p(x)dx+

∫ 0

−2.2

[
0.5− −4.4x− x

10

]
p(x)dx

+

∫ 2.2

0

[
4.4x− x2

10
+ 0.5

]
p(x)dx+ 0.99×

∫ 2.6

2.2

p(x)dx+

∫ +∞

2.6

p(x)dx (11)

where p(x) is the probability density function for random variable x.

The approximate form of E[ψ̂] allows us to investigate the likely behavior of the bias of

the estimator in several scenarios:
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1. If the density function of x, p(x) is mostly to the left of −2.2, EΦ (x) ≈ 0.01, and

Φ (xtrue) ≈ 0.01, and the bias would be small.

2. If the density function of x, p(x) is mostly concentrated between−2.2 and 0, then

E [Φ (x)] ≈ 0.5− −E [4.4x]− E [x2]

10

while

Φ (xtrue) ≈ 0.5− −4.4xtrue − x2true
10

the bias of the power would approximately be

[1− E [Φ (x)]]− [1− Φ (xtrue)] =
x2true − E [x2]

10

= −var (x)
10

= − Nf

10 �Np

3. If the density function of x, p(x) is mostly concentrated between 0 and 2.2, then

E [Φ (x)] ≈ 4.4E [x]− E [x2]

10
+ 0.5

while

Φ (x) ≈ 4.4xtrue − x2true
10

+ 0.5

and the bias of the power would approximately be

[1− E [Φ (x)]]− [1− Φ (x)] =
E [x2]− x2true

10

=
var (x)

10

=
Nf

10 �Np
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4. If the density function of x, p(x) is mostly to the right of 2.2,E
[
Φ
(
X̂1

)]
≈ 0.99, and

Φ (xtrue) ≈ 0.99, and the bias would be small.

These observations allow us to make the following conclusions about the bias of ψ̂:

• If the intended size for the full experiment is quite large, xtrue = 1.96− τstd
2

√
Nf would

be quite small. Thus, p(x) would be mostly to the left of −2.2, the bias for power

estimation would be small.

• If the true standardized treatment effect is quite large, xtrue = 1.96 − τstd
2

√
Nf would

be quite small as well. p(x) would be mostly to the left of −2.2, the bias for power

estimation would be small.

• If the intended size for the full experiment is not large enough to push p(x) to the left

of −2.2, the larger the intended full experiment is, the larger the bias, because the

absolute value for the bias would be in proportion to ratio of the full experiment size

and the pilot size, Nf

Np
.

• Given the size of the pilot and the intended full experiment, the direction of the bias

could be easily flipped even though there is only a small difference in the true stan-

dardized treatment effect. This is because the direction of the bias all depends where

p(x) is more heavily distributed, whether on the negative part or on the positive part.

A.3 Bias Correction Methods

To fully illustrate the point that the bias for Equation (8) cannot be corrected due to our

ignorance of the local convexity and local concavity in the neighborhood of the equation

around the true τ , we have tried several conventional bias correction methods on power

estimation. Our simulation results show that none of these bias correction methods work in

this setting.
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Figure A.1 compares the bias of bias-corrected estimators with the bias of the naive esti-

mator when true τ changes from 0 to 8. In this simulation, we specify σ = 4, so equivalently

the standardized treatment effects range from 0 to 2. The pilot size is set at Np = 100, and

the full size is set at Nf = 800, a very common scenario for political scientists. We repeat

the sampling process by 1, 000 times to obtain the simulated bias.

In Figure A.1, the solid black curve depicts the simulated bias for the naive difference-

in-means estimator. Consistent with our simulations in Figure 1, the bias looks like a check

sign. We over-estimate the power when the treatment effect is smaller, but under-estimate

the power when the treatment effect gets larger. Yet, the bias approaches zero when the

treatment effect is sufficiently large.

The red dashed line and greed dotted line record the bias for two versions of estimators

obtained from bootstrapping bias correction method (Tibshirani and Efron, 1993). Despite

a slight improvement on the cases when τ < 1, the bias is essentially identical, if not slightly

larger, when τ > 1. As a result, the bootstrapping methods we have tried fail to universally

reduce the bias. Indeed, their relative performance compared with the naive estimator

depends on specific values of true τ , and sample sizes Np, Nf .

The blue dashed line, the purple solid line and the orange dashed line show the bias for

a jackknife bias corrected estimator, and two versions of double bootstrap bias correction

estimators (Tibshirani and Efron, 1993). Similar to the case for the bootstrap bias correction

method, none of these estimators show a significant improvement in reducing the bias.

The light blue dashed line, on the other hand, is an oracle power estimator where we

assume the researchers know the true treatment effect, but need to estimate the standard

deviation from the pilot study. Thus, the researcher plugs the true treatment effect and

the estimated standard deviation into Equation (8) to obtain her power estimation. This

setting is not realistic, but it illustrates the validity of our simplifying assumption in the

main text where we assume for homogenous variance for the outcome of the treated units

and the control units, as well as in the previous section of appendix where we assume away
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Figure A.1: Comparison of the Bias Correction Techniques Applied to the Power Estimator.
The results show that none of the existing techniques appreciably improves estimates over
the naive uncorrected estimator. (The light blue dashed line represents the unfeasible “or-
acle” estimator where the true effect size (but not the standard deviation) is known to the
researcher.)

the sampling error for variance estimation and only focus on the sampling error for treatment

effect.

A.4 Divergence of E
[
M̂RSS

]
We begin by deriving the expectation of the MRSS estimator defined in equation (6) to find

its bias. Unfortunately, it turns out that this expectation does not exist, making the bias of
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M̂RSS undefined. To see this, note that:

E
[
M̂RSS

]
= E

{
4
[
Φ−1

(
1− α

2

)
− Φ−1 (1− ψ)

]2
τ̂ 2std

}

= 4
[
Φ−1

(
1− α

2

)
− Φ−1 (1− ψ)

]2
E
{

1

τ̂ 2std

}
.

We now show E
{

1
τ̂2std

}
does not converge as long as the probability density function for τ̂std,

fτ̂std(x) is continuous and bounded from above15. Letting f be the upper bound for fτ̂std(x),

we have

E
{

1

τ̂ 2std

}
=

∫ +∞

−∞

1

x2
fτ̂std(x)dx

=

∫ −1

−∞

1

x2
fτ̂std(x)dx+

∫ 0

−1

1

x2
fτ̂std(x)dx+

∫ 1

0

1

x2
fτ̂std(x)dx+

∫ +∞

1

1

x2
fτ̂std(x)dx

We know 0 ≤ fτ̂p(x) ≤ fτ̂p(τ) = f . Hence, 0 ≤
∫ +∞
1

1
x2
fτ̂p(x)dx ≤ f . Similarly, 0 ≤∫ +∞

1
1
x2
fτ̂p(x)dx ≤ f . As a result, for a given Np, the first term and the last term in

the above summation is non-negative and bounded. We now investigate the property for

the second term
∫ 0

−1
1
x2
fτ̂p(x)dx. First, in the domain of [−1, 0], fτ̂p(x) is greater than or

equal to its minimum within this domain, i.e.
∫ 0

−1
1
x2
fτ̂p(x)dx ≥ min

x∈[−1,0]
fτ̂p(x)

∫ 0

−1
1
x2
dx =

min
x∈[−1,0]

fτ̂p(x)
∫ 1

0
1
x2
dx16. Second, similarly,

∫ 1

0
1
x2
fτ̂p(x)dx ≥ min

x∈[0,1]
fτ̂p(x)

∫ 1

0
1
x2
dx. Hence, the

sum of the second and third term will be greater than 2× min
x∈[−1,1]

fτ̂p(x)
∫ 1

0
1
x2
dx. Yet,

∫ 1

0
1
x2
dx

is positive and not upper bounded. As a result, E
{

1
τ̂2p

}
is a sum of two non-negative terms

with an upper bound and another non-negative term without an upper bound, and hence

does not converge to a finite value.
15A probability density function is by definition bounded from below by 0.
16The standard normal probability distribution function is continuous within such domain and thus ex-

treme value theorem holds. The second equality holds because of symmetry of 1
x2 .
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A.5 Consistency for M̂RSS

We claim that the sequence M̂RSSNp =
4[Φ−1(1−α

2 )−Φ−1(1−ψ)]
2

τ̂2std
converges in probability to-

wards N =
4[Φ−1(1−α

2 )−Φ−1(1−ψ)]
2

τ2std
. To show that, we need to find Nupper such that for any

ε > 0, δ > 0, we have P
(∣∣∣M̂RSSNp −N

∣∣∣ ≤ ε
)
< δ, for all Np ≥ Nupper.

With the classical central limit theorem, we have τ̂std
d→ N

(
τ, 4

Np

)
. Thus, for any u and

1
5
δ, there exists Nk such that for all Np ≥ Nk,

P (τ̂std ≤ u) ∈

[
Φ

(
u− τ

2/
√
Np

)
− 1

5
δ,Φ

(
u− τ

2/
√
Np

)
+

1

5
δ

]

remembering P (τ̂std ≤ u) = P
(

τ̂std−τ
2/
√
Np

≤ u−τ
2/
√
Np

)
, where Φ(�) is the standard normal cumu-

lative distribution function.

Let C = 4
[
Φ−1

(
1− α

2

)
− Φ−1 (1− ψ)

]2, so when Np ≥

 Φ−1( 1
5
δ)

τstd
2

(√
C

C+ετ2std
−1

)


2

and Np ≥

Nk

P
(
C

τ̂ 2std
≥ C

τ 2std
+ ε

)
= P

(
τ̂ 2std ≤ C

C
τ2

+ ε

)
= P

(
τ̂std ≤

√
C

C
τ2

+ ε

)

≤ Φ


√

C
C
τ2

+ε
− τstd

2/
√
Np

+
1

5
δ

≤ Φ

(√
Np

τstd
2

(√
C

C + ετ 2std
− 1

))
+

1

5
δ

≤ 1

5
δ +

1

5
δ =

2

5
δ
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Similarly, when Np ≥

 Φ−1(1− 1
5
δ)

τstd
2

(√
C

C−ετ2std
−1

)


2

and Np ≥ Nk, we have

P
(
C

τ̂ 2std
≤ C

τ 2std
− ε

)
= P

(
τ̂ 2std ≥ C

C
τ2

− ε

)
= P

(
τ̂std ≥

√
C

C
τ2

− ε

)

≤ 1− Φ


√

C
C
τ2

−ε − τstd

2/
√
Np

+
1

5
δ

≤ 1− Φ

(√
Np

τstd
2

(√
C

C − ετ 2std
− 1

))
+

1

5
δ

≤ 1

5
δ +

1

5
δ =

2

5
δ

Thus, for any ε and δ, there existsNupper = max


 Φ−1( 1

3
δ)

τstd
2

(√
C

C+ετ2std
−1

)


2

,

 Φ−1(1− 1
3
δ)

τstd
2

(√
C

C−ετ2std
−1

)


2

, Nk


such that whenNp ≥ Nupper, P

(∣∣∣M̂RSSNp −N
∣∣∣ ≤ ε

)
= P

(
C
τ̂2std

≥ C
τ2std

+ ε
)
+P
(

C
τ̂2std

≤ C
τ2std

− ε
)
≤

4
5
δ < δ.

A.6 Decomposition of the Standardized Effect τ̂std

To further study whether it is τ̂ , the estimated treatment effect, or σ̂, the estimated standard

deviation of the outcome, that leads to the bias in the power estimation. We further conduct

the following two simulation exercises:

Simulation Procedure with True σ We conduct the following Monte Carlo experiment

for each combination of the τstd, Np and Nf values, same as those in Section 3:

1. Randomly draw Np

2
realizations of Y for the treatment group such that Y1 = µ1 + ε1,

and Np

2
realizations of Y0 = µc + εc for the control group, where ε1 ∼ 4√

3
t(3) and

εc ∼ 4√
3
t(3). Such set-up indicates S2

1 ≡ V(Y | Z = 1) = S2
0 ≡ V(Y | Z = 0) = 42, and

the true average treatment effect being µ1 − µc.
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2. Calculate the difference-in-means estimate of the treatment effect τ̂ .

3. Assume that a researcher knows the true variances of Y in the treatment and control

groups, S2
1 and S2

0 , respectively. Denote those by Ŝ2
1 = Ŝ2

0 = 42 .

4. Estimate power using a plug-in estimator based on equation (2), setting α = 0.05:

ψ̂ = 1− Φ

1.96− τ̂√
Ŝ2
1

nf1
+

Ŝ2
0

nf0

+ Φ

−1.96− τ̂√
Ŝ2
1

nf1
+

Ŝ2
0

nf0

 ,

where nf0 = nf1 = Nf/2.

5. Evaluate performance of the power estimator by repeating Steps 1 to 4 for 1,000 times

and calculating Monte Carlo estimates of the bias and the standard error.

In Figure A.2, we replicate Figure 1 with the same parameter space of τ̂std, Np and Nf ,

but a different data generation process whose outcome variable features a fatter tail and a

different simulation procedure that assumes the knowledge of the true σ. The simulations

look very similar to those in Figure 1. This indicates, first, our observations for the bias in

power estimation is robust to a different outcome generation process (normal DGP in Figure

1 vs student-t DGP in Figure A.2). Second, the knowledge of the true standard deviation

of the outcome variable does not alleviate the bias in power estimation.

Simulation Procedure with True τ We conduct the following Monte Carlo experiment

for each combination of the τstd, Np and Nf values, same as those in Section 3:

1. Randomly draw Np

2
realizations of Y for the treatment group such that Y1 = µ1 + ε1,

and Np

2
realizations of Y0 = µc + εc for the control group, where ε1 ∼ 4√

3
t(3) and

εc ∼ 4√
3
t(3). Such set-up indicates S2

1 ≡ V(Y | Z = 1) = S2
0 ≡ V(Y | Z = 0) = 42, and

the true average treatment effect being µ1 − µc.

2. Assume the researcher knows the true µ1 and µc. Let τ̂ = τ = µ1 − µc.
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Figure A.2: Simulated Bias by True Standardized Treatment Effect with Knowledge of True
σ. The top row of plots present the true power for each full experiment sample size as a
function the standardized effect size. The remaining plots show Monte Carlo estimates of
the bias of the power estimator on the vertical axis for a given pilot sample size (row), full
experiment sample size (column) and the standardized effect size (horizontal axis in each
plot). The outcome is generated according to a scaled student-t distribution with a degree
of freedom at 3.
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3. Estimate S2
1 and S2

0 with the sample variances of Y in the treatment and control groups,

respectively. Denote those by Ŝ2
1 and Ŝ2

0 .

4. Estimate power using a plug-in estimator based on equation (2), setting α = 0.05:

ψ̂ = 1− Φ

1.96− τ̂√
Ŝ2
1

nf1
+

Ŝ2
0

nf0

+ Φ

−1.96− τ̂√
Ŝ2
1

nf1
+

Ŝ2
0

nf0

 ,

where nf0 = nf1 = Nf/2.

5. Evaluate performance of the power estimator by repeating Steps 1 to 4 for 1,000 times

and calculating Monte Carlo estimates of the bias and the standard error.

In Figure A.3, we replicate Figure 1 with the same parameter space of τ̂std, Np and Nf ,

but a different data generation process whose outcome variable features a fatter tail and

a different simulation procedure which assumes the knowledge of true τ . The simulation

results indicate that the bias of power estimation is much smaller compared with that in

Figure 1 and Figure A.2. This indicates the bias in the power estimation is mainly driven by

the imprecise estimation of τ , the true treatment effect, rather than that of σ, the standard

deviation of the outcome.

A.7 Details on Data Collected from Journals

We collected all publications that involve the reporting of at least a result on an experiment

on American Journal of Political Science, American Political Science Review, Journal of Pol-

itics and Political Analysis between 2015 and 2024. The challenge was that it was generally

not conventional for most researchers to report standardized treatment effects. Instead, re-

searchers almost always reported either a t-statistic or a standard error for their treatment

effects. In addition, researchers reported the sample size of their experiments. Hence, we re-

covered the estimated standardized treatment effect with the following formula. With equal
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Figure A.3: Simulated Bias by True Standardized Treatment Effect with Knowledge of True
τ . The top row of plots present the true power for each full experiment sample size as a
function the standardized effect size. The remaining plots show Monte Carlo estimates of
the bias of the power estimator on the vertical axis for a given pilot sample size (row), full
experiment sample size (column) and the standardized effect size (horizontal axis in each
plot). The outcome is generated according to a scaled student-t distribution with a degree
of freedom at 3.

45



sample size for the treated group and the control group, remembering τ̂ d→ N
(
τstd,

4σ2

N

)
and

thus V̂ (τ̂) as a consistent estimator for 4σ2

N
, we can recover τ̂std by

τ̂std =
2τ̂√

V̂ (τ̂)×Nf

with the definition of a t-statistic tτ̂ = τ̂√
V̂(τ̂)

, τ̂std can also be recovered by

τ̂std =
2tτ̂√
Nf

We identified 305 publications across these four journals that involved at least one ex-

periment. For each experiment, we identified its main causal quantity via the following

procedure:

1. If the experiment reports a causal quantity in the main text, we consider this causal

quantity as its main causal quantity for the experiment.

2. If the experiment does not report a causal quantity in the main text, but report a

causal quantity in tables or figures, we consider this causal quantity as its main causal

quantity for the experiment.

3. If the experiment reports a causal quantity neither in the main text nor in a table or

figure, but report a causal quantity in the appendix, we consider this causal quantity

as its main causal quantity for the experiment.

Each experiment could contain multiple “main” causal quantities according to the criteria

above. To reduce duplicates, we used the following rules to select one causal quantity into

our collection, and discard the others:

1. If there is only one causal quantity tied to the substantive research hypothesis, we

select this causal quantity into our collection.
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2. If there are multiple causal quantities tied to the substantive research hypothesis, we

select the causal quantity estimated with the simplest model.

3. If there are multiple causal quantities estimated via equivalently simple modes, from a

conservative perspective, we select the causal quantity with the largest (standardized)

size.

4. We exclude the quantity (and the publication) if the main text and the appendix of the

paper does not report at least a conventional numeric standard error or a t-statistic

(e.g. when the author adopts permutation tests, or have just reported the results in a

figure but not numbers in the appendix) – this means we cannot infer the standardized

treatment effects without looking into replication files.

Our resulting dataset contain 410 effect size observations that are either average treatment

effects (ATE), or similar causal quantities that can be estimated via difference in means.

This number is larger than the number of publications identified because some publications

contain multiple studies (experiments).
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