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Abstract

We provide a unified model of stablecoins with quantitative implications for the is-

suer’s stablecoin-management strategy, equity valuation, and responses to regulations.

The issuer earns seigniorage, but negative shocks to reserve assets can force depegging,

reducing seigniorage precisely when needed the most by the issuer to recover and re-

store the peg. This fragility of seigniorage creates an instability trap. A risk paradox

also emerges: reducing reserve-asset risk can make depegging more likely, challenging

conventional views. Capital requirements serve a distinct role: by limiting the issuer’s

reliance on seigniorage as a source of profits, they enhance stability and eliminate the

risk paradox.
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1 Introduction

The rapid growth of stablecoins in market capitalization and the regulatory momentum in

major economies have drawn enormous attention. Governments view stablecoins as instru-

ments to extend the international reach of their currencies, while major financial institutions

are closely examining the competitive threats posed by stablecoin issuers. Stablecoins are

blockchain-based assets pegged to fiat currencies, typically backed by the issuers’ reserve

assets. The risk profile of reserve assets is central to ongoing debates, with restrictions on

risk-taking being a primary regulatory focus, as exemplified by the GENIUS Act in the U.S.1

How does reserve-asset risk transmit to stablecoin users through depegging? What trade-

offs shape an issuer’s decision to depeg? How to evaluate various regulatory proposals? We

develop a dynamic model of stablecoin issuers to address these questions. Following Jermann

(2024) and Jermann and Xiang (2025b), our analysis emphasizes the joint determination of

the issuer’s decisions, including depegging, stablecoin issuance, user fees, external financ-

ing, and payout policies. Our continuous-time model is tractable enough for an analytical

characterization of equilibrium dynamics, yet rich enough to be calibrated to data for quan-

titative implications on key policy and market issues—such as the severity and persistence

of depegging, the benefits of granting issuers access to equity financing (as illustrated by

Circle’s IPO), the valuation of issuers’ equity, and the distinct effects of capital requirements

and reserve-asset risk limits that are the two pillars of the GENIUS Act.

At the core of our model is a novel mechanism of fragile and procyclical seigniorage. The

issuer earns seigniorage from issuing stablecoins, but after negative shocks to reserve assets,

its net worth declines and the stablecoin may depeg. Depegging lowers transactional benefits

and thereby reduces seigniorage—precisely when it is most needed by the issuer to rebuild

net worth and to restore the peg. As a result, the stablecoin may enter an instability trap.

Our baseline model considers a laissez-faire environment where the issuer faces no regu-

latory constraints and is not bound to maintain the peg, having certain degree of discretion

over its liability value.2 This benchmark is essential for evaluating the effects of various

1Reserve-asset risk has been a major concern. See, for example, “Stablecoins could trigger taxpayer
bailouts, warns Nobel economics laureate”by Olaf Storbeck, Financial Times, August 31, 2025.

2According to the contracts that the major issuers offer to stablecoin users, a stablecoin is neither a defini-
tive claim on the issuers or their assets that presumably back the stablecoin. An issuer can change the redemp-
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regulations. The issuer differs from banks that legally commit to redeem deposits at par

on a first-come, first-served basis, provided they have liquidity—a commitment that under-

pins the classic run mechanism based on banks’ liquidity mismatch and coordination failures

among depositors (Diamond and Dybvig, 1983).3 Our model features run-like dynamics but

the mechanism differs. It follows another strand of the financial intermediation literature:

instead of liquidity transformation, it emphasizes risk transformation and the role of net

worth in determining intermediation capacity (e.g., He and Krishnamurthy, 2013; Brunner-

meier and Sannikov, 2014). We will compare the two approaches in the literature review.

Next, we summarize our model of stablecoin issuer and the main results. On the asset side

of the issuer’s balance sheet is the reserve assets. The liability side (funding sources) consists

of outstanding stablecoins and the issuer’s net worth. The issuer earns a spread between

the return on assets and costs of issuing stablecoins, which include the stablecoin users’

required return (their discount rate) and operating expenses. As in Biais, Bisière, Bouvard,

Casamatta, and Menkveld (2023), the users derive transactional benefits (monetary utility)

from holding the stablecoin. Such utility reduces the users’ required return, thereby creating

seigniorage revenues for the issuer in the form of reducing funding costs.

The issuer maintains net worth above an endogenous threshold, n. Falling to this thresh-

old implies that the revenues from reserve assets are insufficient to cover the costs of sta-

blecoin liabilities, leading to a permanent loss of profitability—an absorbing state where the

value function is zero. This induces concavity in the value function, rendering the issuer

effectively risk-averse. In an extension, the issuer may raise equity financing to restore net

worth, but effective risk aversion still exists due to the costs of external financing.4

The users’ monetary utility decreases when depegging happens—that is, when the sta-

blecoin price falls below one and fluctuates. What triggers depegging are the negative shocks

to the issuer’s reserve assets.5 In effect, the issuer dynamically transforms one type of assets

tion terms “without prior notice” (see, for example, Tether’s Terms of Service at https://tether.to/en/legal).
3Similarly, money market mutual funds operate under NAV-based redemption rules. In general—and not

only in the financial sector—it is rare for non-financial firms to have the discretion to alter the promised
value of their liabilities without undergoing bankruptcy or a formal restructuring process.

4The issuer’s objective is to maximize the present value of consumption flows (payout) with a risk-
neutral preference but it becomes effective risk-averse under financial frictions as in the literature on dynamic
corporate finance (e.g., Bolton, Chen, and Wang, 2011; Décamps, Mariotti, Rochet, and Villeneuve, 2011;
Hugonnier, Malamud, and Morellec, 2015; Abel and Panageas, 2023) .

5In reality, some stablecoin issuers hold safer assets than others, but it is impossible to completely avoid
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(its reserve assets) into another type of assets (stablecoins), using its net worth as a risk

buffer, much like in securitization (e.g., Malamud, Rui, and Whinston, 2013). Below, we

describe the shock transmission mechanism that gives rise to an instability trap.

When negative shocks reduce the issuer’s net worth, its effective risk aversion rises en-

dogenously. To reduce risk exposure and preserve net worth against subsequent shocks, the

issuer faces two options, deleveraging and depegging. When deleveraging, the issuer reduces

the outstanding amount of stablecoin liabilities, selling reserve assets and using the proceeds

to repurchase stablecoins out of circulation (quantity adjustment). This is the preferred op-

tion if the issuer’s net worth is above a threshold, ñ; otherwise, the issuer does not maintain

the redemption at par, and depegging occurs (quality adjustment).

Below ñ, as depegging lowers the stablecoin users’ utility, an inward shift of their demand

curve takes place, representing redemption requests and resembling a run. The further the

issuer’s net worth falls, the more severe depegging becomes, as in the process, the issuer

supplies more stablecoins albeit at increasingly lower prices, desperately to raise revenues.

Once the system enters this region of low net worth, it gets trapped here for a long time.

The stationary density increases sharply as net worth approaches n.

What lies at the heart of this instability trap is the procyclicality and fragility of seignior-

age. Seigniorage is given by the stablecoin quantity multiplied by the users’ monetary utility

per unit of stablecoin. In response to negative reserve-asset shocks, seigniorage declines be-

cause the issuer either reduces the stablecoin quantity (deleverages) or quality (depegs the

stablecoin) to preserve net worth. A lower seigniorage in turn slows down the rebuild of net

worth, resulting in persistently high effective risk aversion and persistently low seigniorage.

Depegging is disciplined by the users. When the users’ monetary utility has a sufficiently

high sensitivity to stablecoin price fluctuation, the issuer refrains from depegging at all values

of net worth and focuses on quantity adjustment (deleveraging) as the only risk-management

tool. Therefore, one contribution of this paper is to characterize the parameter condition

under which, even in a laissez-faire environment where reserve assets are risky, a stablecoin

is perfectly stable in price (though its quantity varies significantly).

risk. For quantitative implications, we calibrate our model parameters, including the risk-return profile of
reserve assets, to data on Tether, the issuer of USDT (the largest stablecoin by market capitalization).
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Given the users’ sensitivity to price fluctuation in their monetary utility, the parameter

region where depegging never happens enlarges when the riskiness of reserve assets rises.

This risk paradox is due to the issuer’s precaution against the instability trap. When the

reserve-asset risk is higher, reducing stablecoin quality (depegging) as a way to control risk

exposure causes a greater reduction of seigniorage. As a result, the issuer prefers quantity

adjustment (deleveraging) for managing risk exposure of its net worth.

In addition, we show that in the parameter region where depegging actually happens, the

highest level of stablecoin volatility has an inverse-U shaped relationship with the reserve-

asset riskiness. If reserve assets are completely risk-free, depegging does not occur as there

are no shocks to reserves. As reserve-asset risk increases, stablecoin volatility increases.

However, once reserve-asset risk rises above a threshold, the issuer’s precaution against the

instability trap kicks in forcefully, causing stablecoin volatility to be decreasing in reserve-

asset risk. This is another form of risk paradox.

Since the problem lies in reserve-asset risk, a natural question is: what if risk-taking is

regulated? The GENIUS Act restricts the types of assets that stablecoin issuers can hold.

Our results on the risk paradox suggests caution: the relationship between reserve-asset risk

and stablecoin volatility can be inverse, as long as some risk—even at a low level—exists in

the issuer’s reserves. What if issuers were instead required to hold only perfectly safe assets?

In addition, the GENIUS Act requires issuers to maintain positive net worth (i.e., a capital

requirement), effectively restricting the issuer to be a narrow bank. Our calibrated model

shows that, relative to the laissez-faire benchmark, this narrow-banking framework lowers

the supply of stablecoins by 73–88% and users’ welfare by 60–70%, depending on the issuer’s

net worth, and cuts the issuer’s equity valuation by 33%.6

Allowing the issuer to take some risk—and thereby earn higher expected returns on

reserve assets—can be beneficial, as it strengthens the incentive to intermediate (i.e., issue

stablecoins to fund reserve assets). By contrast, when restricted to narrow banking, the

issuer compensates for the limited returns on reserves by raising user fees, which ultimately

reduces stablecoin demand and lowers overall user welfare.

6A direct implication of our analysis is that imposing regulations that constrain stablecoin issuers to
operate like money market mutual funds holding only safe assets, or as narrow banks, may be suboptimal.
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We also show that more flexibility in the issuer’s asset choice is beneficial in general. In an

extension, we allow the issuer to dynamically adjust the riskiness of reserve assets. The issuer

takes more risk to earn a higher expected return on assets when it is well-capitalized, and in

response to negative shocks, it de-risks the asset portfolio as a preferred way to reduce risk

exposure before engaging in stablecoin depegging (offloading risk to the stablecoin users).

As previously discussed, there are two pillars of the GENIUS Act, risk-taking restric-

tion and capital requirement. We find that capital requirement alone already significantly

improves stability and user welfare. Adding an additional requirement of risk-free reserves

only marginally improves the stability of stablecoin price but causes a large reduction of

user welfare. Next, our discussion focuses on capital requirements and their unique role in

regulating stablecoin issuers. This role is absent for traditional financial institutions.

Reserve assets are funded by the issuer’s net worth (equity) and stablecoin issuances.

Increasing equity reduces the issuer’s reliance on seigniorage—the liability side of balance

sheet—as a source of profits and increases the share of profits from the equity-funded re-

serve assets. Reserve-asset return is determined in the broader financial markets and thus

exogenous to the depegging dynamics. It does not suffer from the feedback loop behind the

procyclicality of seigniorage (i.e., comovement between seigniorage and net worth) that leads

to the instability trap. Therefore, capital requirement improves stability by regulating the

issuer’s profit composition between the return on reserve assets and seigniorage.

Capital requirement also eliminates the risk paradox in the parameter region where de-

pegging happens: as reserve-asset risk increases, stablecoin volatility increases (i.e., the

inverse relationship no longer exists). In the laissez-faire environment, risk paradox emerges

from the issuer’s precaution against the instability trap. Under capital requirement, such

precaution is no longer needed because the force of instability trap is already weak.

Finally, we extend our model to account for stochastically growing stablecoin demand. In

practice, demand varies with technology changes, competition, and growth or contraction of

the community that transacts on blockchains. Some stablecoin issuers hold cryptocurrencies

in their asset portfolio. Cryptocurrency adoption and prices tend to be correlated with

stablecoin demand. We find that such correlation amplifies the procyclicality of seigniorage

and exacerbates the instability trap. Capital requirement dampens this harmful impact by

5



reducing the issuer’s reliance on procyclical seigniorage. This result reveals a distinctive role

of capital requirement in the presence of randomly evolving stablecoin demand.

Extending our model to incorporate the growth of stablecoin demand brings important

insights into our model mechanism. Demand growth improves stability by imputing a trend

in the issuer’s seigniorage profits that counterbalances the procyclical fluctuation along the

trend. As a result, for any given level of stablecoin liabilities, the issuer maintains a lower

net worth when the growth rate of demand is higher. Intuitively, as demand growth fosters

stability, the issuer finds it less necessary to maintain net worth to buffer shocks.

Currently, the majority of stablecoin issuers are private companies. The recent IPO of

Circle, the issuer of stablecoin USDC, has brought enormous attention to stablecoin issuers’

access to equity-market financing and their equity valuation. We show that being able to

raise external equity significantly improves the stability of stablecoin because equity issuance

essentially allows the stablecoin issuer to share risk with external equity investors, adding a

risk-management tool beyond deleveraging and depegging. A major hurdle to public listing is

the ambiguity in the valuation of the issuer’s equity and, in particular, its connection with the

growing trend of stablecoin adoption. By incorporating a rich set of modeling ingredients—

such as, the issuer’s profits from both reserve-asset returns and stablecoin seigniorage, its

dynamic decision to deleverage and depeg, its payout (consumption) policy, and dynamic fees

charged on stablecoin users—our model provides a valuation framework that goes beyond

the discounted cash-flow analysis. We calibrate the model to data on Tether. Under different

projections of demand growth, we map out the implied valuation of Tether’s equity.

Related Literature. There is a growing literature on cryptocurrencies (“tokens”).7 By

characterizing the endogenous interactions among depegging, tokens’ transactional benefits,

and the token issuer’s seigniorage, our paper uncovers novel theoretical results—including

the instability trap and risk paradox—that are distinctive to stablecoins and do not arise for

7Prior theoretical studies focus on various aspects from the blockchain technology and the formation
of decentralized consensus to tokens as platform currencies and financing instruments, including, but not
limited to, Biais, Bisière, Bouvard, and Casamatta (2019); Saleh (2020); Sockin and Xiong (2020, 2023);
Cong, Li, and Wang (2021, 2022); Chod and Lyandres (2021); Gryglewicz, Mayer, and Morellec (2021);
Hinzen, John, and Saleh (2022); Biais et al. (2023); Brunnermeier and Payne (2023); Goldstein, Gupta,
and Sverchkov (2024); John, Rivera, and Saleh (2025). For surveys, see Brunnermeier, James, and Landau
(2019); John, O’Hara, and Saleh (2022); Makarov and Schoar (2022); John, Kogan, and Saleh (2023).
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other types of tokens with transactional benefits (e.g., Biais et al., 2023). As in Fanti, Kogan,

and Viswanath (2019), Jermann (2023, 2024) and Jermann and Xiang (2025b), our goal is

to develop a dynamic model that delivers quantitative implications and provides a unified

account of various aspects of tokenomics, including token issuances, fees/remuneration for

token holders, the issuer’s payout and financing decisions, and valuation of the issuer’s equity.

Stablecoin issuers form a new category of financial intermediaries.8 There are two main

approaches to modeling financial intermediaries: one centered on liquidity transformation

and the other on risk transformation. The existing stablecoin literature largely adopts the

former, with the classic run mechanism of Diamond and Dybvig (1983) at the core. In

contrast, our paper takes the latter approach, following He and Krishnamurthy (2013) and

Brunnermeier and Sannikov (2014), that facilitates an analysis of the transmission of the

issuer’s reserve-asset risk to stablecoin users via depegging and highlights the role of the

issuer’s net worth. Next, we compare the two approaches.

The liquidity transformation approach requires two ingredients. First, the stablecoin is

liquid in the sense that the issuer commits to first-come, first-serve redemption at par until

it exhausts resources. Second, the issuer’s reserve assets are illiquid—that is, it incurs costs

when liquidating assets to meet redemption requests. Together they lead to coordination

failure among stablecoin holders that is key to the instability mechanism in those models.9

Neither ingredient appears in our model. Instead, the issuer may depeg the stablecoin

following negative shocks to reserve assets or negative shocks to stablecoin demand (i.e.,

redemption requests), in line with the current practice.10 The issuer holds risky yet liquid

reserve assets, which is also consistent with the reality.11 When issuing stablecoins backed

8Stablecoin issuers intermediate between reserve assets and their stablecoin liabilities. Our focus is on
stablecoins backed by assets rather than algorithmic ones like TerraUSD (Liu, Makarov, and Schoar, 2023).

9In the classic run mechanism, depositors would front-run one another, resulting in a coordination failure,
because early withdrawal, if met at par value, imposes asset liquidation costs on those that withdraw later.
Similar forces appear in those stablecoin models (e.g., Routledge and Zetlin-Jones, 2022; Uhlig, 2022; Gorton,
Klee, Ross, Ross, and Vardoulakis, 2022; Ma, Zeng, and Zhang, 2023; Bertsch, 2023; Ahmed, Aldasoro, and
Duley, 2024; Goel, Lewrick, and Agarwal, 2025). Gorton and Zhang (2021) provide an overview.

10For example, USDT holders possess an unsecured contractual right to redeem at par, but Tether’s Terms
of Service can be amended “without prior notice.” (source: https://tether.to/en/legal). From a theoretical
standpoint, it is not obvious why committing to par redemption would be optimal for an issuer. Liquidity-
transformation models offer no explanation; they assume such a commitment by analogy to banks and money
market funds. By contrast, we stress that stablecoin issuers constitute a distinct category of intermediaries.

11In Appendix H, we provide an overview of Tether’s reserve-asset portfolio as part of calibration exercises.
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by risky reserves, the issuer engages in a risk transformation. Its intermediation capacity

depends on its net worth as in models of intermediary asset pricing (e.g., He and Krishna-

murthy, 2012, 2013; Brunnermeier and Sannikov, 2014; Drechsler, Savov, and Schnabl, 2018;

Kondor and Vayanos, 2019; Malamud, Schrimpf, and Zhang, 2025). This risk-transformation

approach allows us to uncover how shocks to reserve assets are transmitted to stablecoin users

through depegging. This is central to evaluating regulatory proposals that restrict issuers’

risk-taking and to clarifying the problems such restrictions aim to solve.

The instability mechanism faced by stablecoin issuers still differs from that of financial

intermediaries in intermediary-based asset pricing models. When negative shocks reduce

balance-sheet capacity (tied to intermediaries’ net worth), stablecoin issuers deleverage as

other intermediaries but have another lever to pull—depegging, albeit facing discipline from

the stablecoin users. We emphasize that the procyclicality of stablecoin issuers’ seigniorage

contrasts sharply with the countercyclicality of risk premia that intermediaries earn in in-

termediary asset pricing models. Those intermediaries in bad times face falling asset prices

and rising risk premia, which lead to stronger expected net-worth growth and accelerate re-

covery (e.g., He and Krishnamurthy, 2013). By contrast, in our setting the stablecoin issuer

experiences a decline in seigniorage after negative shocks, which causes the instability trap.

The stablecoin issuer’s intermediation capacity depends on its effective risk aversion,

which is inversely related to net worth. Restoring net worth after negative shocks requires

either internal earnings accumulation or external equity issuance. The former is slow due to

the procyclicality of seigniorage, while the latter incurs financing costs. Hence, our modeling

approach is closely related to dynamic agency problem and corporate finance models, where

firms’ effective risk aversion arises from financial constraints (e.g., DeMarzo and Sannikov,

2006; Biais, Mariotti, Plantin, and Rochet, 2007; Biais, Mariotti, Rochet, and Villeneuve,

2010; Décamps, Mariotti, Rochet, and Villeneuve, 2011; Bolton, Chen, and Wang, 2011;

Hugonnier, Malamud, and Morellec, 2015; Hartman-Glaser, Mayer, and Milbradt, 2025).

Capital requirements are a cornerstone of financial regulation and feature prominently in

proposed frameworks for stablecoins—often in the form of over-collateralization mandates,

such as those in the U.S. GENIUS Act. Our paper uncovers a novel role for capital require-

ments: they reduce stablecoin issuers’ dependence on procyclical seigniorage. This role has
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no counterpart in models of capital regulation for traditional financial institutions (e.g., Van

den Heuvel, 2008; Begenau, 2020; Jermann and Xiang, 2025a; Rivera, 2025).

Our model offers distinctive asset-pricing perspectives on stablecoins and their issuers.

Stablecoin price depends on the expected future paths of reserve-asset risk offloaded by the

issuer to users via depegging. Unlike intermediary-based asset-pricing models that emphasize

intermediaries as asset buyers, we model stablecoin issuers, following the focus on asset

issuers in the production-based asset-pricing literature (see, e.g., Cochrane (1991); Jermann

(1998); Gomes, Kogan, and Zhang (2003); see Kogan and Papanikolaou (2012) for a review).

In addition, our model provides a framework for valuing stablecoin issuers’ equity shares,

which takes into account the issuer’s various state-contingent decisions (e.g., depegging).

Among contemporaneous dynamic models of stablecoins, our work differs sharply from

d’Avernas, Maurin, and Vandeweyer (2022) who also depart from the liquidity-transformation

approach. First, their paper analyzes an issuer facing uncertain demand but holding risk-

free reserve assets, while our model incorporates both demand and reserve risk, with a focus

on the transmission of reserve-asset risk to stablecoin users through depegging. Second, in

our setting the issuer’s net worth is the state variable, evolving endogenously over time and

determining its capacity to supply stablecoins and generate seigniorage. Third, we analyze

the role of equity financing and provide a framework for valuing stablecoin issuers’ equity.

Finally, our model is calibrated to real-world data for quantitative implications on various

issues from the persistence and severity of depegging to the effects of regulatory measures.

2 Model

Consider an infinite-horizon economy in continuous time. An issuer supplies stablecoins to

users who derive utility from their stablecoin holdings. This utility, modeled in line with the

literature on monetary assets, generates a demand curve that evolves dynamically driven by

the endogenous risk of depegging and fees charged by the issuer. The issuer’s proceeds from

stablecoin issuance and fees are invested in reserve assets, which the issuer uses as sources of

funds for managing the stablecoin supply (e.g., repurchasing stablecoins out of circulation).

The issuer also decides on its consumption (i.e., pays itself a dividend). In the following, we
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first introduce the demand for stablecoins and then set up the issuer’s problem.

2.1 Stablecoin demand

We model a unit mass of representative stablecoin users. The generic consumption goods

(“dollars”) are the numeraire in this economy. Let pt denote the price of one unit of stablecoin

in dollars. When pegged to the numeraire, pt = 1; otherwise, pt < 1 represents depegging.

A unit mass of atomic users take as given the equilibrium process of stablecoin price,

dpt
pt

= µp
tdt+ σp

t dZt , (1)

where µp
t and σp

t in the drift and diffusion terms, respectively, are determined after we solve

the issuer’s optimal strategy, and dZt is a Brownian shock to the issuer’s reserve assets,

which is the only risk in our baseline model.12 In an extended model, we consider shocks to

Kt that scales the users’ demand and allow such demand shocks to be correlated with Zt.

The representative user derives the following monetary utility (transactional benefits)

from holding the stablecoin:

U(Xt) :=
1

ξ
K1−ξ

t Xξ
t −Xtη|σp

t | =
(1
ξ
xξ
t − xtη|σp

t |
)

︸ ︷︷ ︸
u(xt)

Kt, (2)

where the parameter ξ is a constant in (0, 1), Kt is the demand scaler, Xt is the numeraire

value of stablecoin holdings, and xt = Xt/Kt.
13 Quantity variables are homogeneous of

degree one in Kt (i.e., the model is “scale-invariant”). In our baseline model, we consider a

constant demand scaler, Kt = K. When calibrating the model for quantitative analysis, we

set K to one billion so that the quantities variables match their empirical counterparts. In

Section 7, we extend our model to allow Kt to evolve stochastically over time.

The first component of u(xt) = 1
ξ
xξ
t − xtη|σp

t | is increasing in the numeraire value of

stablecoin holdings in line with the modeling approach of real balance-in-utility in monetary

12Appendix G.2 shows that implementing a continuous price path is in fact optimal for the issuer.
13There always exists a trivial equilibrium where pt is a constant and equal to zero and Xt = 0 (implying

u(Xt) = 0). We focus on the equilibrium where pt > 0.
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economics (e.g., Baumol, 1952; Tobin, 1956; Feenstra, 1986; Freeman and Kydland, 2000).14

The second component is decreasing in the stablecoin price’s shock sensitivity, |σp
t |. The

user’s safety preference is captured by η (> 0). Such safety preference can be motivated, for

example, by the role of stablecoins as means of payment. As a transaction medium, an asset

must be information-insensitive and thereby deters private information acquisition, prevent-

ing asymmetric information on the payment instrument between trade counterparties (e.g.,

Gorton and Pennacchi, 1990; DeMarzo and Duffie, 1999). Safety preference is defined on the

absolute value of σp
t as any loading on the issuer’s asset shock (the source of “information”

in the baseline model), whether positive or negative, generates information sensitivity.

The user has a quasi-linear instantaneous utility over dt that constitutes the utility from

stablecoin holdings and her consumption, Ku(xt)dt + dY u
t , where Y u

t is the cumulative

(undiscounted) consumption process with superscript “u” for users. The user is risk-neutral

in the consumption streams and discount them at the risk-free rate r (> 0). The user chooses

xt at any t ∈ [0,∞) to maximize the life-time utility

max
{xt}t≥0

E
[∫ ∞

0

e−rt
[
dY u

t +Ku(xt)dt
]]

. (3)

Let Nu
t denote a representative user’s wealth. The user faces the budget constraint:

dNu
t = rNu

t dt+Kxt(µ
p
tdt+ σp

t dZt − ftdt− rdt)− dY u
t (4)

and the transversality condition, lim
s→∞

e−r(s−t)Et[N
u
s ] = 0. The user allocates wealth between

a risk-free asset and stablecoins. The stablecoin holdings, Xt = Kxt, earns an excess return

dpt/pt − ftdt− rdt where dpt/pt = µp
tdt+ σp

t dZt and ft is the fees charged by the issuer.

Proposition 1 (Stablecoin demand). The users’ demand is given by Xt = Kxt, where

xt =

(
1

r − µp
t + η|σp

t |+ ft

) 1
1−ξ

. (5)

The user’s demand has several intuitive properties. It is increasing in the expected return

14This approach of modeling money demand functions has received empirical support (e.g., Poterba and
Rotemberg, 1986; Lucas and Nicolini, 2015; Sunderam, 2015; Nagel, 2016; Krishnamurthy and Li, 2022).
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from price change, µp
t , decreasing in the fees, ft, and the riskiness of the stablecoin, σp

t , and

the user’s discount rate r, which is the prevailing risk-free rate in the economy. If at time t

the stablecoin is pegged to one dollar, then its price does not fluctuation, that is µp
t = 0 and

σp
t = 0, which implies a downward-sloping demand curve: Xt = K

(
1

r+ft

) 1
1−ξ

, where r + ft

is essentially the carry cost (the forgone interest-rate difference) for holding stablecoins. As

will be made clear, we have r−µp
t +η|σp

t |+ft > 0 in equilibrium, i.e., xt in (5) is well-defined.

In equilibrium, the stablecoin market clears:

Xt = Stpt, (6)

where St is the total outstanding units of stablecoin (i.e., the aggregate nominal supply).

Next, we set up the issuer’ s problem with supply as part of the issuer’s optimal strategy.

2.2 The stablecoin issuer

The issuer chooses a strategy, (St, ft, dYt)t≥0, that involves the processes of stablecoin supply

St, fees ft, and consumption, Yt (or equivalently, consumption, dYt). We assume dYt ≥ 0 to

capture restricted access to external equity financing, as, for example, in Bolton, Chen, and

Wang (2011).15 In Section 4.3, we allow the issuer to raise equity at a cost. At t = 0, the

issuer is endowed with net worth, N0 (i.e., the initial equity position).

At time t, the liability side of the issuer’s balance sheet includes its net worth, Nt, and

outstanding stablecoins, ptSt, so on the asset side, its total reserve assets are At = Nt+ptSt.

We assume At ≥ 0—that is, the issuer does not take short position in the reserve assets.

The issuer’s assets generate return µdt + σdZt over dt, where dZt is a standard Brownian

shock, the only source of risk in our baseline model. Later in Section 7, we extend our model

to incorporate shocks to users’ demand. In our quantitative analysis, we calibrate µ and σ

based on the composition and risk-return profiles of major stablecoin issuers’ reserve assets.

In Appendix C, we derive the following law of motion of Nt, the issuer’s net worth:

dNt = (Nt + ptSt)(µdt+ σdZt)− ptSt(µ
p
tdt+ σp

t dZt) + ptStftdt− ptStκdt− dYt. (7)

15As in Brunnermeier and Sannikov (2014), negative consumption is equivalent to equity issuance.
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The first term is the return on its reserve assets. The second term is the price appreciation of

stablecoin liabilities (dpt/pt = µp
tdt+σp

t dZt). The third term represents the fee revenues. The

operating cost, κdt per numeraire value of stablecoins, broadly reflects the issuer’s expenses

for sustaining the stablecoin’s utility or function for its users, for example, by supporting and

promoting it as a means of payment. And, the last term is the issuer’s consumption. Note

that when issuing more stablecoins and investing the proceeds in reserve assets, the issuer

simultaneously expands liabilities and assets, which does not change the net worth, so dNt

only depends on the relative appreciation or depreciation of existing assets and liabilities

(i.e., the first two terms), fee revenues, operating costs, and consumption.

In the law of motion (7), the right side contains the current state, Nt, the stablecoins

supply, St, the stablecoin price, pt (and its rate of change over dt, i.e., dpt/pt), the fees, ft, and

the issuer’s consumption, dYt. Note that once the supply process is given, the price process

is determined by the market-clearing condition under the stablecoin demand characterized

in Proposition 1. Therefore, dNt essentially depends on Nt and the strategy (St, ft, dYt)t≥0.

We introduce a parameter condition:

λ := r + κ− µ > 0 . (8)

Consider the hypothetical scenario where users’ utility from stablecoin holdings is absent,

i.e., u(xt) = 0. Then the users requires a return of r to hold stablecoins, and on top

of that, the issuer also covers the operational cost, κ. Under r + κ − µ > 0, such pure

financial intermediation—that is, the issuer raises funds via stablecoin issuances and invests

in the reserve assets without providing any utility to users—is not profitable. Therefore, the

condition (8) states that the users’ utility, u(xt), from stablecoin holdings is the source of

seigniorage for the issuer and ultimately justifies a positive amount of stablecoin supply.

The issuer chooses a strategy (St, ft, dYt)t≥0 to maximize the present value of its lifetime

consumption:

V0 := max
(St,ft,dYt)t≥0

E
[∫ ∞

0

e−ρtdYt

]
, (9)

subject to the law of motion of Nt in (7), as well as dYt ≥ 0 and Nt + Stpt = At ≥

0. The issuers chooses the optimal strategy at t = 0, as, for instance, in Jermann and
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Xiang (2025b). Such commitment to a long-term strategy can be relaxed: we discuss in

Appendix G.1 that short-term commitment over dt period is sufficient. We assume ρ > µ,

which is standard in dynamic corporate finance and macro-finance models with financial

constraints, e.g., Décamps et al. (2011), Bolton, Chen, and Wang (2011), Brunnermeier

and Sannikov (2014) among others. Impatience induces consumption; otherwise, the issuer

never consumes and always accumulates financial slack (net worth) so that eventually the

restriction on external financing (i.e., dYt ≥ 0) no longer matters. Since ρ determines the

issuer’s willingness to grow net worth (rather than consume it), we calibrate ρ by matching

data on stablecoin issuers’ net worth. Appendix A presents an overview of our parameter

assumptions; it also introduces a standard regularity condition used in an appendix proofs.

In the next section, we solve for the equilibrium dynamics. An equilibrium is defined by

the issuer’s strategy that maximizes its payoff as in (9), the stablecoin users’ optimization

summarized in the demand curve given by (5), and the stablecoin price (pt)t≥0 that clears

the market, satisfying the market-clearing condition Stpt = Xt.

3 Model Solution

In this section, we characterize the solution to the issuer’s problem and provide analytical

results describing the model dynamics. The next section focuses on quantitative analysis.

Specifically, we analyze the issuer’s optimal strategy, including its decisions on stablecoin

depegging, issuances, fees, and consumption. We also characterize the issuer’s franchise value

through the value function and to what extent the stablecoin can be under-collateralized (i.e.,

the issuer’s net worth can turn negative). The model reveals several distinct phenomena

about stablecoins, such as the risk paradox and instability trap.

3.1 State variable, strategy space, and value function

In the following, we start our analysis by simplifying the issuer’s strategy space. As previously

discussed, we divide all quantity variables by K, the stablecoin-demand scaler, and use nt, st,

and dyt to denote, respectively, the K-scaled net worth (Nt/K), stablecoin supply (St/K),

and consumption (dYt/K). We simply refer to nt, which is the state variable in our model,
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as the issuer’s net worth, st as supply, and dyt as consumption. The next lemma summarizes

the law of motion of nt. It shows that the strategy space of three stochastic processes, i.e.,

(St)t≥0, (ft)t≥0, and (dYt)t≥0, can be transformed into a more tractable form.

Lemma 1 (State variable law of motion). The issuer’s net worth, nt, evolves as follows:

dnt = [µ(nt + xt)− xt(r − ζt)− xtκ]︸ ︷︷ ︸
µn(nt)

dt+ [σ(nt + xt)− xtσ
p
t ]︸ ︷︷ ︸

σn(nt)

dZt − dyt, (10)

where ζt is the stablecoin user’s marginal utility from holding stablecoins:

ζt = u′(xt) = xξ−1
t − η|σp

t |. (11)

Let V (nt) denote the issuer’s value function at time t, i.e., the continuation value:

V (nt) = E
[∫ ∞

t

e−ρsdYs

]
= E

[∫ ∞

t

e−ρsdys

]
K, (12)

and v(nt) = V (nt)/K, the K-scaled value function, which we simply refer to as value func-

tion. Three variables control the law of motion of nt: 1) the value or quantity of stablecoins,

xt; 2) the instantaneous volatility of stablecoin (price) returns, σp
t ; 3) the issuer’s consump-

tion, dyt. Once they are determined as functions of nt, the dynamics given by (10) yield

an autonomous law of motion. Note that (St, ft, dYt)t≥0 affects the dynamics of nt only

through (xt, σ
p
t , dyt)t≥0. Therefore, instead of characterizing optimal processes for stablecoin

supply, fees, and the issuer’s consumption, we solve an auxiliary problem of optimization

over (xt, σ
p
t , dyt)t≥0. We then show that this auxiliary problem indeed solves the problem

given by (9), in that the optimal choice of (xt, σ
p
t , dyt)t≥0 can be implemented via a strategy

(St, ft, dYt)t≥0 (see Appendix D for details on the solution).

The law of motion of nt given by (10) has several intuitive properties. In the drift, µn(nt),

the first term represents the expected return on reserve assets funded by the issuer’s net worth

and stablecoin issuances. The second term is the cost of issuing stablecoins: the issuer must

compensate the users their required rate of return, r, minus the user’s marginal utility from

holding stablecoins, ζt, which is the marginal seigniorage earned by the issuer. The third
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term is the operating cost. The diffusion, σn(nt), includes the risk in the reserve-asset return,

and the second part captures the risk borne by stablecoin holders. Under σp
t > 0, the issuer

effectively offloads risk to users. Under these circumstances, the stablecoin price and value

of the issuer’s stablecoin liabilities decline following a negative shock to reserve assets. This

effect reduces the risk exposure of the issuer’s net worth. We will show that this risk sharing

mechanism is key for understanding the stablecoin issuer’s incentives to maintain the peg.

Next, we characterize the issuer’s optimal strategy and how it affects the law of motion

of nt, starting with the issuer’s consumption choice. The next proposition shows that the

issuer consumes, dyt > 0, only when nt reaches n, an endogenous upper boundary of nt.

Proposition 2 (The issuer’s consumption). There exists n, a reflecting upper bound

of nt with the following properties: 1) the issuer consumes variations of nt that move nt

beyond n: when nt reaches n, dyt = dnt if dnt > 0, and dyt = 0 if dnt ≤ 0; 2) consumption

optimality implies that the value function satisfies the following two boundary conditions:

v′(n)− 1 = 0, and, v′′(n) = 0. (13)

The issuer does not consume (i.e., dyt = 0 in the law of motion (10)) if nt < n. Thus, for

n < n, the value function, v(n), satisfies the Hamilton-Jacobi-Bellman (HJB) equation:

ρv(n) = max
σp,x

{
v′(n)

[
µ(n+ x)− rx+ xξ − ηx|σp| − κx

]
+

v′′(n)

2

[
σ(x+ n)− xσp

]2}
. (14)

We suppress the time subscripts to simplify the notations. The following Proposition sum-

marizes the properties of value function and introduces the issuer’s effective risk aversion.

Proposition 3 (Value function). The value function, v(n), is strictly increasing and con-

cave in n for n < n, i.e., v′(n) > 0 and v′′(n) < 0. The issuer’s effective risk aversion based

on the value function is defined as

γ(n) = −v′′(n)

v′(n)
> 0, (15)

for n < n. γ(n) is strictly decreasing in n, i.e., γ′(n) < 0. At n = n, γ(n) = 0.
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The issuer’s effective risk aversion arises from its financial constraint—that is, it cannot

raise external funds and must rely its own net worth for managing the stablecoin. The

wedge between v′(n), the marginal value of net worth (“retained earnings” accumulated up

to time t), and 1, the marginal value of consumption (“payout”), reflects how tight the

financial constraint is. At the consumption (upper) boundary of nt, the issuer is effectively

unconstrained with v′(n) = 1 (see the boundary condition (13)) and not risk-averse, i.e.,

γ(n) = 0. At any n < n, we have v′(n) > 1 (implied by the concavity of v(n) and v′(n) = 1),

and v′(n) is higher when n falls further below n, indicating that the issuer is more financially

constrained and thus more risk-averse (i.e., γ′(n) < 0). In Section 4.3 where we allow the

issuer to raise external financing at a cost, this pattern remains. In the next subsection, we

show that γ(n) is key for understanding the issuer’s decision to depeg the stablecoin.

Finally, to complete the characterization of the state space and value function, we char-

acterize the lower bound of nt in the following proposition, denoted by n. In the Appendix

C.3, we provide the closed-form expression for n (see (C.4)).

Proposition 4 (State variable lower bound). There exists n (< n), an absorbing bound

of nt that is never reached in the equilibrium (i.e., nt > n). The value function is zero at n:

v(n) = 0 . (16)

The intuition behind n as an absorbing lower bound is as follows. The condition nt =

at − xt ≥ n states that the issuer needs to maintain adequate reserves, at = At

K
, relative

to its stablecoin liabilities, xt. If its reserves fall short, the issuer lacks the revenues from

reserve assets to cover the costs of its stablecoin liabilities and thus cannot generate profits

to grow net worth.16 Once n falls to n, the issuer has no prospect of recovery: both the

drift and diffusion of nt fall to zero. This permanent lack of profitability translates to a zero

continuation value, which the issuer seeks to avoid. In order to maintain nt above n, the

issuer may have to depeg the stablecoin, which we discuss in the next subsection.

In summary, the issuer’s value function solves (14), a differential equation for v(n), subject

to the boundary conditions (13) and (16), and its net worth evolves according to (10) in (n, n].

16As previously discussed, the issuer must compensate the users their required return, r, minus their
marginal utility from holding stablecoins, ζt, and incurs the operating cost, κ.
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We also show that for all n > n, the issuer maintains strictly positive reserve assets and the

constraint At ≥ 0 never binds, in that n+ x > 0; accordingly, we omit it going forward and

do not explicitly account for it in the HJB equation optimization.

3.2 Depegging, risk paradox, and instability trap

The next proposition lays out when and how depegging happens in equilibrium.

Proposition 5 (Stablecoin quality and optimal depegging). Under the condition,

µ− (1− ξ)(r + κ)− ησ ≤ 0 , (17)

the issuer optimally sets σp(n) = 0 and the stablecoin price is always pegged to one, i.e.,

p(n) = 1 for all n ∈ (n, n]. If the condition (17) does not hold, there exists a unique

ñ ∈ (n, n) that separates two regions:

• For n ≥ ñ, the peg holds, i.e., p(n) = 1 and σp(n) = 0;

• For n < ñ, depegging happens, i.e., p(n) < 1, and the stablecoin price comoves with the

issuer’s reserve-asset shocks, i.e., p′(n) > 0 and σp(n) > 0, with σp(n) decreasing in n.

As previously discussed and specified in (2), the quality or “moneyness” of stablecoin

is inversely related to σp
t = σp(nt). The proposition above shows that the issuer always

maintains the peg if the condition (17) holds; otherwise, depegging happens once the issuer’s

net worth falls below a threshold. In the following, we first explain the intuition behind the

condition (17) and then discuss depegging when the condition does not hold.

According to Proposition 3, the issuer’s effective risk aversion, γ(n), is highest when n

approaches n, where the issuer’s risk-bearing capacity is exhausted. To reduce risk exposure,

the issuer can either reduce stablecoin issuance, i.e., deleverage (the quantity margin), or

offload asset risk to the users through depegging and allowing the stablecoin price to fluctuate

with asset shocks, i.e., σp(n) > 0 (the quality margin). The latter option—that is, issuing

a marginal unit of stablecoin, investing the proceeds in reserve assets, and offloading the

reserve-asset risk to the stablecoin users—generates a marginal profit of µ−(1−ξ)(r+κ)−ησ.

Here, µ−(1−ξ)(r+κ) is akin to a net interest margin: the marginal asset funded by stablecoin
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issuance earns µ, but the issuer must compensate the users’ required return, r, and cover

the operating cost, κ, facing an overall cost of (1 − ξ)(r + κ), where (1 − ξ) is tied to the

users’ demand elasticity (see (5)). The last term, ησ, is the reduction of users’ marginal

utility from holding stablecoins (i.e., the issuer’s seigniorage given by (11)). Therefore, if

the condition (17) holds, i.e., µ − (1 − ξ)(r + κ) − ησ < 0, compromising quality is not

optimal, and the issuer would prefer adjusting quantity to reduce risk exposure. Since γ(n)

is the highest and the issuer’s incentive to depeg strongest as n approaches n, if adjusting

the quality margin is not profitable near n, the issuer would not depeg when n is higher.

Therefore, if the condition (17) holds, depegging does not happen in the whole range of n.

If the condition (17) does not hold, the issuer depegs the stablecoin and offloads risk to

the users by setting σp(n) > 0, once its net worth falls below the threshold ñ and it becomes

sufficiently risk-averse. As shown in Proposition 3, γ(n) rises as n falls. Therefore, the issuer

shares more risk with the users by increasing σp(n) when n falls further below ñ. Under

p′(n) > 0 and σp(n) > 0, when the issuer’s reserve assets are hit by negative shocks, its

liabilities—the value of stablecoins—decline as well, mitigating the impact on its net worth.

An increase in η—the parameter for users’ stability preference—enlarges the parameter

region where depegging does not happen. Under a higher η, the reduction of seigniorage trig-

gered by the issuer’s depegging is larger, thus making the quality adjustment less attractive

as a way to control risk exposure (the issuer focuses on the quantity adjustment).

Interestingly, increasing σ (reserve-asset riskiness) while holding other parameters fixed

makes the condition (17) more likely to hold, which implies a greater parameter region

where a perfectly safe stablecoin can be sustained. In contrast, reducing σ—that is, the

issuer’s reserve assets are safer—enlarges the parameter region where depegging happens.

The following proposition summarizes this result of risk paradox.

Corollary 1 (Risk paradox: parameter region). Higher reserve-asset risk, σ, shrink

the parameter region where the condition (17) does not hold and depegging happens.

When reserve assets are riskier, the parameter region where the condition (17) fails and

depegging happens actually shrinks, and the region without depegging expands. This seem-

ingly counterintuitive result is due to the users’ discipline on the issuer’s depegging decision.
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As shown in (5), offloading risk to users dampens demand. When σ is higher, reducing sta-

blecoin quality as a way to control risk exposure (i.e., sharing risk with the users) causes a

larger reduction of seigniorage. As a result, the issuer would prefer quantity adjustment (i.e.,

reducing stablecoin issuance or deleveraging) when its net worth is low. As shown below by

our results on the “instability trap”, once depegging happens, it causes persistent demand

destruction. Under a higher σ, such demand destruction is more significant.

In the parameter region where depegging can happen (i.e., the condition (17) does not

hold), we observe the following self-reinforcing dynamics, which we call the “instability trap.”

In this parameter region, the depegging happens and the price fluctuates, when the issuer’s

net worth, n, falls below the critical threshold (i.e., p(n) < 1 and σP (n) > 0 for n < ñ in

Proposition 5). Depegging reduces the seigniorage revenues.17 The further n declines, the

lower the issuer’s profits from the seigniorage is as depegging becomes more severe and σP (n)

increases. Profit reduction slows net-worth rebuild, trapping the system in the low-n region

where depegging becomes persistent. Put differently, seigniorage revenues are procyclical,

comoving with the issuer’s net worth. This procyclicality underlies the instability trap.

The next proposition characterizes the stationary distribution of state variable that de-

scribes the amount of time the system spends at each level of the issuer’s net worth, n. The

instability trap manifests itself into the rising probability density of the stationary distribu-

tion as n falls, which reflects that the lower boundary n is absorbing.

Proposition 6 (Instability trap). If the condition (17) does not hold and thus depegging

happens at n < ñ, where ñ is defined in Proposition 5, the stationary density of state variable

n, denoted by g(n), is strictly decreasing in n, i.e., g′(n) < 0, for n < ñ.

Next, we introduce a new aspect of risk paradox in our model. The next proposition

describes what happens within the parameter region where the condition (17) does not hold

and depegging happens once the issuer’s net worth, n, falls below ñ given by Proposition 5.

In this parameter region, the highest level of volatility is inverted U-shaped in σ.

17The seigniorage revenues are given by xtζt. Specifically, when nt falls below ñ, a further decline raises
σp(nt), so the seigniorage per dollar value of stablecoin, ζt = ζ(nt) in Lemma 1), decreases. Moreover, we
will show in Proposition 9, xt = x(nt) is a constant for nt < ñ. Therefore, xtζt is decreasing in nt.
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Proposition 7 (Risk paradox: endogenous volatility). When the condition (17) does

not hold (depegging happens when n < ñ in Proposition 5), stablecoin volatility satisfies

σp(n) ≤ sup
n∈(n,n)

{σp(n)} = σ

(
µ− (1− ξ)(r + κ)− ησ

ξ(µ− ησ)

)
, (18)

where the supremum is first increasing in σ and, when σ is sufficiently high, decreasing in σ.

Intuitively, volatility starts at zero when σ = 0, i.e., σP (n) = 0 for any n under σ = 0. As

σ increases, the issuer starts sharing risk with the users in the low-n region, so the highest

level of σp(n) rises. This is the scaling effect of σ on the right side of (18).

The risk paradox emerges once σ passes a threshold—that is, a higher σ leads to a

reduction in the maximum level of stablecoin-price volatility. The scaling effect is dominated

by the issuer’s precaution against the instability trap triggered by quality adjustment (i.e.,

risk-sharing with the users). The instability trap is more potent a force under a higher

σ. Instead of quality adjustment, the issuer relies more on the quantity margin (reduces

stablecoin issuance) to control risk exposure when σ is higher.

Having summarized the dynamics of stablecoin price, we introduce the next proposition

that provides an intuitive representation of stablecoin price.

Proposition 8 (Stablecoin price and risk-sharing). Stablecoin price can be written as

p(n) = exp

(
−
∫ ñ

n

σp(ν)

σn(ν)
dν

)
, (19)

in the parameter region where depegging happens (i.e., when the condition (17) does not

hold), where the threshold ñ is given by Proposition 5.

As shown in Proposition 5, p(n) = 1 for any n if the condition (17) holds; otherwise, the

proposition above shows that the price of stablecoin reflects the extent to which the issuer

shares reserve-asset risk with the users. The ratio σp(ν)
σn(ν)

measures the fraction of risk exposure

in the issuer’s net worth that has been offloaded to the users. Since only when n < ñ, the

issuer shares risk (sets σp(n) > 0), the upper limit of the integral is ñ. Intuitively, the more

risk the issuer offloads to the users, the lower the stablecoin price is.
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3.3 Stablecoin supply dynamics

So far, our analysis focuses on stablecoin price or “quality”. The next proposition summarizes

the quantity dynamics, i.e., how the value of stablecoins outstanding evolves.

Proposition 9 (Issuance dynamics). If condition (17) holds, the issuer supplies stable-

coins worth x(n) that is strictly increasing in its net worth n, i.e., x′(n) > 0. If condition

(17) does not hold, x′(n) > 0 if n > ñ, and for n < ñ, x(n) = x =
(

ξ
λ+ησ

) 1
1−ξ

, a constant.

A key message from the proposition above is that the issuer creates more stablecoins

when it accumulates net worth. Supplying stablecoins backed by the reserve assets requires

risk-taking capacity that is inversely tied to the issuer’s effective risk aversion, γ(n), and

from Proposition 3, γ′(n) < 0. Increasing x(n), the value of stablecoins issued, allows the

issuer to earn the spread between the reserve assets and stablecoins as sources of funds. The

stablecoin funding cost is r − ζt as shown in nt’s law of motion (10). In Lemma 1, we show

that ζt is the users’ marginal utility from holding stablecoins, which reduces the issuer’s

funding cost and is essentially a form of seigniorage for the money supplier. However, a

higher x(n) also means the issuer bears more risk, as shown by the diffusion term in (10),

unless the issuer allows the stablecoin price to fluctuate and thereby share risk with the

users. Sharing risk, i.e., increasing σp(n), reduces the seigniorage per dollar of stablecoins

issued, as shown in (11). Therefore, the issuer faces a trade-off between seigniorage profits

and risk exposure when determining the value of stablecoins issued, x(n).

The next corollary derives the dynamics of s(n) = x(n)/p(n), the nominal supply or units

of stablecoins outstanding from the results in Proposition 5 and 9.

Corollary 2 (Stablecoin supply). If the condition (17) holds, we have s′(n) > 0; other-

wise, s′(n) > 0 for n > ñ, where ñ is defined in Proposition 5, and s′(n) < 0 for n < ñ.

If the condition (17) holds, the stablecoin is always pegged (see Proposition 5), so under

p(n) = 1, s(n) = x(n)/p(n) = x(n). Therefore, s(n) = x(n) is strictly increasing in n (see

Proposition 9). If the condition (17) does not hold, we have s(n) = x(n) under p(n) = 1

for n ≥ ñ (see Proposition 9) with s′(n) = x′(n) > 0 (see Proposition 5) and, for n < ñ,

we have p′(n) > 0 (see Proposition 9) and x(n) being a constant (see Proposition 5), so
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s(n) = x(n)/p(n) is decreasing in n. The units of stablecoins supplied, s(n), is U-shaped

in n. The issuer follows a pecking-order strategy when negative shocks erode its net worth:

first, when n is still above the critical threshold ñ, it deleverages by reducing the value and

units of stablecoins supplied, i.e., x′(n) = s′(n) > 0, while maintaining the peg; second,

once n falls below ñ, the dollar value of stablecoins is held constant at x, and the issuer

offloads risk to the users through depegging, reducing the quality of stablecoins as shown in

Proposition 5. In addition, the further its net worth falls, the more units of stablecoins it

issues albeit at lower prices as depegging intensifies.

In summary, our approach to solve the issuer’s optimization was as follows. Proposition

2 shows the issuer’s optimal consumption, dyt. In Lemma 1, we show that the law of motion

of the state variable, nt, depends on (St, ft) only via (xt, σ
p
t ), whose optimal choices are

given by Propositions 5 and 9. Finally, we characterize the supply, st, in Corollary 2 and, in

Appendix D.5, the fees, ft that implement optimal (xt, σ
p
t ).

3.4 Under-collateralization

Finally, we turn to a widely debated question about stablecoins: can under-collateralization

be sustained? The next proposition confirms that this is indeed the case: the lower bound for

nt, the issuer’s net worth—the difference between the value of reserve assets and that of out-

standing stablecoins—is negative, which gives the maximum level of under-collateralization.

Corollary 3 (Under-collateralization). The lower bound n in Proposition 4 satisfies

closed form expression (C.4). Further, it is never reached, negative, and has the following

properties: (1) ∂n/∂r > 0; (2) when the condition (17) holds (i.e., depegging does not

happen), n does not depend on σ; otherwise, ∂n/∂σ > 0.

The issuer maintains its net worth above the absorbing bound n where the franchise

value falls to zero. The bound is negative, which implies that the stablecoins can be under-

collateralized. When users’ required return increases, n becomes less negative, implying a

smaller room for under-collateralization. The issuer has to deliver a higher return to the

users, so its seigniorage and franchise value decline, and its net worth, n, cannot fall too far

below zero before the franchise value (or value function) reaches zero.
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If the condition (17) holds, the issuer always maintains the peg, as shown in Proposition

5, and as a result, the riskiness of its reserve asset, σ, does not affect the lower bound of

its net worth. However, when the condition (17) does not hold and depegging happens in

the low-net worth region, the users absorb the issuer’s asset risk. Therefore, the riskier

the issuer’s asset is, the more risk the users absorb, which either dampens their stablecoin

demand or, to sustain demand, leads to less fees to the issuer (i.e., fee reduction as users’

risk compensation). Both forces reduce the issuer’s franchise value, and the second force

requires the issuer to hold more reserve assets. These mechanisms raise the lower bound, n.

One may argue that under-collateralization is infeasible because over-collateralization is

necessary to meet the users’ withdrawal. Such argument ignores the fact that any withdrawal

can be met if the issuer is willing to depeg the stablecoin. As shown in Proposition 5,

maintaining the peg or not is the issuer’s choice, which is different from the traditional

corporate finance settings where debt repayments are legally binding and failing to repay

leads to bankruptcy. In other words, the value of the issuer’s liabilities—stablecoins—is

chosen by the issuer itself.18 Such choice is priced in through the users’ expectation of

price volatility as shown in (see (5)). Expectation of depegging weakens the users’ demand

and reduces the issuer’s seigniorage—that is, the stablecoin issuer faces a trade-off between

preserving net worth by offloading asset risk to the users (i.e., maintaining nt > n) and

sustaining the users’ demand and seigniorage (i.e., ζt in Lemma 1).

A “run-like” phenomenon can emerge in our model if the condition (17) does not hold.

Following negative shocks to the issuer’s assets, its net worth declines. As shown in Proposi-

tion 5, the price of stablecoin falls and volatility rises, which dampens the users’ demand (see

Proposition 1). Such phenomenon of depegging and withdrawal (i.e., a decrease of users’

demand) resembles a run but is not due to coordination failure that is seen in Diamond

and Dybvig (1983) among others; instead, it is due to the issuer’s optimal decision to dy-

namically share reserve-asset risk with the users. As previously discussed and formalized in

Proposition 6, such run-like behavior is self-reinforcing, resulting in the instability trap.19

18We also want to highlight that the issuer maintains a positive continuation value—that is, nt > n and
v(nt) > 0. Thus, it does not voluntarily shut down the operation. Therefore, the users’ withdrawal cannot
force the issuer into bankrupt, and the issuer is not willing to declare bankruptcy on its own.

19The absorbing lower bound n is never reached so the stationary distribution in Proposition 6 exists.
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4 Quantitative Analysis

We calibrate the model, conduct quantitative analysis of equilibrium dynamics, and evaluate

several regulatory proposals. Our numerical solution is obtained by solving the differential

equation for v(n) (the HJB equation (14)) with the boundary conditions (13) and (16).

4.1 Model calibration

We calibrate our model to Tether, the largest stablecoin issuer. Its U.S. dollar stablecoin is

USDT. Tether’s report as of December 31, 2024 states that Tether holds reserve assets of

$143.7 billion, with liabilities (stablecoins outstanding) of $136.6 billion, resulting in equity

(net worth) of $7.1 billion (Tether Transparency Report). In our model, all quantity variables

are scaled by K, which we set to 1 billion. We map the balance-sheet status of Tether to

nt = n, i.e., the level (upper bound) of issuer’s net worth that triggers payout, which is in line

with the fact that Tether made a sizable payout in 2024. Therefore, we have x(n) = 136.6

and n = 7.1. We adjust the composite parameter λ (defined in (8)) and the issuer’s discount

rate ρ to match these two numbers. As a result, obtain λ = 0.0282 and ρ = 0.1371.

We calibrate ξ that governs the users’ demand elasticity (see (5)). As shown in Proposi-

tion 5, the stablecoin is pegged at p(n) = 1 at this level of the issuer’s net worth, which is

in line with the robust peg of USDT around 2024 year end. At n, σp(n) = 0, so the users’

marginal utility from stablecoin holdings is ζ(n) = x(n)ξ−1 = 136.6ξ−1 (see (11)), which we

calibrate to the marginal convenience yield of USDT to obtain ξ = 0.441. In Appendix H,

we provide details on how to measure the convenience yield of USDT.

We set µ and σ to 13.4% and 7%, respectively, based on Tether’s disclosure of reserve

assets. In Appendix H, we provide details on the decomposition of reserve assets into different

asset classes and how we compute the returns and volatilities of each asset class. Note that in

our model, r and κ appear in equilibrium conditions together with µ as part of the composite

parameter, λ = r + κ− µ. Once λ and µ are set, we no longer need to pin down r and κ.

Finally, for the parameter η that represents the stablecoin users’ risk sensitivity, we

consider a value that is sufficiently low so the condition (17) for perfect stability does not

hold and depegging is possible. Given the parameter values above, the upper bound for η
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Figure 1: Stablecoin Price and Quantity Dynamics.

is 0.61. For the lack a direct empirical counterpart, we set η to 0.25 and report in Figure 2

results of comparative statics across different values of η, such as η = 0.1 and η = 0.4; our

results are robust to the choice of η.

Our calibrated model sheds light on Tether’s payouts. According to Proposition 2, the

issuer pays out dnt > 0 at nt = n, where dnt has the drift and diffusion components. We have

a drift µn(n) = 5.84, which is $5.84 billion as quantity variables are scaled by K = $1 billion.

The diffusion component is random, loading on the Brownian shocks. Tether reported a $10

billion payout for 2024. Through the lens of our model, it includes the $5.84 billion expected

component and $4.16 billion due to unexpected gains from reserve-asset shocks. In Section

7, we extend our model to allow the demand-scaler K to evolve stochastically over time and

discuss how our model can be used to value stablecoin issuers’ equity.

4.2 Model performances

Price and issuance dynamics. Figure 1 illustrates the model dynamics under the cali-

brated parameters. In each panel, we plot the endogenous variable against the issuer’s net

worth, n. In Panel A, we plot the stablecoin price, p(n). The peg holds until the issuer’s net

worth falls below ñ—the critical threshold in Proposition 5. This threshold is significantly

below zero. Near n, the maximum deviation from the peg is about 30%. In Panel B, we plot

the instantaneous volatility of dp/p (see (1)). As depegging takes place in the low-n region,
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Figure 2: The Stationary Probability Density and Instability Trap.

the (annualized) volatility ranges from 0% to above 3.5%.

In Panel B of Figure 1, we plot the value of stablecoins supplied by the issuer (solid line).

It is strictly increasing in its net worth for n > ñ, reaching $136.6 billion at n, which is one of

our calibration targets. The value of stablecoins supplied drops by almost 60% once n falls

below ñ. As shown in Proposition 9, the value of stablecoin supplied is a constant if n < ñ.

Thus, as the price declines when n falls further below ñ, more units of stablecoins are issued.

In Panel C, we plot the units of stablecoin or the nominal supply in the dotted line. It shows

a sharp upturn as n approaches n, which, in practice, is often viewed as the stablecoin issuer

desperately trying to raise revenues by expanding supply in spite of a rapidly falling price.

Panel C of Figure 1 illustrates the risk-sharing mechanism behind depegging. As dis-

cussed in the previous section, depegging happens because the issuer wants to offload risk to

the users, which manifests into a rising σp(n) as n falls below ñ. As shown in (10), a higher

σp(n) reduces the issuer’s risk exposure—that is, for n < ñ, when shocks hit the issuer’s

assets and n varies, the value of its stablecoin liabilities adjusts as well.

Instability trap. Once the issuer’s net worth falls below ñ, it faces a difficult trade-off:

risk-sharing through depegging is necessary for net worth preservation but the resultant

demand destruction and decline of profits (i.e., the reduction of seigniorage ζt given by (11))

slows down the rebuild of net worth. The endogenous procyclicality of seigniorage revenues

leads to the instability trap in Proposition 6. In Figure 2, we plot the logarithm of stationary

probability density of n. The stationary density shows the amount of time the system spends
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Figure 3: Risk Paradox.

at different levels of n. In Panel A, we plot it for different values of the stablecoin users’ risk

sensitivity, η, and in Panel B, we plot the stationary density for different levels of reserve-

asset riskiness, σ. Across different values of η and σ, the pattern is consistent: the instability

trap emerges and is represented by the rising density as n falls below ñ.

Panel A of Figure 2 shows that instability trap emerges across different values of η. It

also delivers an interesting message: as η increases, the system spends less time in the region

near n—that is, the force of instability trap weakens. When the users become more averse

to fluctuation in the stablecoin price, the issuer is more “disciplined” in its decision to share

risk with the users through depegging, so the downward spiral of depegging, demand and

profit destruction, and persistently low net worth is less likely to be triggered.

Panel B of Figure 2 plots the stationary probability density under different values of σ.

The instability trap intensifies as σ increases, as shown by sharper upturns in the density

function in the low-n region. This relationship may eventually reserves as σ increases further:

the issuer’ precaution against the instability trap, which can be rather destructive under high

σ, makes it refrain from depegging too often, which makes the stablecoin price more stable.

Risk paradox. In Figure 3, we demonstrate the risk paradox. Note that there are two

aspects of risk paradox. The first aspect is about the parameter region where a perfect peg

is maintained (Proposition 1). This result is straightforward as one can simply inspect how

σ affects the condition (17). Figure 3 is not about this aspect of risk paradox. The figure
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is about the second aspect, i.e., the results in Proposition 7: in the parameter region where

depegging happens, an inverted-U shaped relationship exists between the highest level of

stablecoin-price volatility and the riskiness of the issuer’s reserve assets, which is illustrated

by the dotted line in Panel A. We also plot the average volatility against n, where the

average is computed from the stationary probability density of n conditional on depegging

(i.e., p(n) < 1, or equivalently, σp(n) > 0). A similar inverted-U shape emerges.

As previously discussed in Section 3.2, the inverted-U shape results from two forces. First,

under σ = 0, the issuer does not need to share any risk with the users, so the stablecoin

price does not fluctuate. As σ increases, the need for risk sharing arises, which leads to

depegging and stablecoin-price fluctuation. The second force is about the issuer’s endogenous

precaution against the instability trap, and it becomes the dominant force once σ surpasses

a certain level. In Panel B of Figure 3, we show the inverted U-shaped relationship between

the average volatility and σ. Different from the solid line in Panel A, the average volatility

here is computed over the full state space (not conditional on n < ñ, i.e., being in the

depegging region). In Panel C, we plot the probability of n < ñ (depegging) in the long run

using the stationary distribution of n and demonstrate a similar inverted-U shape.

Overall, our results on the risk paradox is about the transmission of exogenous risk in

the issuer’s reserve assets to the endogenous fluctuation of stablecoin price. One may argue

that we can legally force stablecoin issuers to hold reserves in perfectly safe assets. However,

as we will show in Section 6.1, such restriction significantly reduces stablecoin supply and

the users’ welfare. Moreover, in reality, perfectly safe assets are rare. Even for the U.S.

Treasuries, once the maturity goes beyond one year, significant risk emerges due to changes

in inflation, the stand of monetary policy, and currency exchange rates for foreign investors.

4.3 Equity issuance

We extend our model by allowing the stablecoin issuer to raise equity. In practice, equity

financing may come from traditional sources, such as public offerings and venture capital

investments, or the issuance of “governance tokens” that resemble equity.20 We introduce is-

20One example of governance token is MKR, the governance token of the MakerDAO protocol that issues
DAI, the fourth largest stablecoin by market capitalization.
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Figure 4: Equity Issuance.

suance costs following the literature on dynamic corporate finance (e.g., Riddick and Whited,

2009; Décamps, Mariotti, Rochet, and Villeneuve, 2011; Bolton, Chen, and Wang, 2011).

Specifically, the issuer faces a fixed cost F . As standard in the literature, the issuer raises

equity to a targeted level, denoted by nE.

Since the equity investors are competitive (i.e., they require shares worth of one dollar for

each dollar contributed), it is optimal for the issuer to raise equity as long as the marginal

value, v′(n), is greater than one, once the issuance cost is incurred. As shown in Proposition

3, the value function is strictly concave, so the marginal value of equity, v′(n), is greater

than one for any n < n, and equal to one at n. Therefore, we have nE = n. Appendix F.3

provides details on the solution. We set F = 6 in our numerical solution.21

In Figure 4, we plot the stablecoin price (Panel A), the value of stablecoin issued (Panel

B), and the price volatility or “stablecoin quality” (Panel C) against the issuer’s net worth

n, where we use solid lines for the baseline model and dotted lines for the extended model

with equity issuance. The ability to raise equity allows the issuer to share risk with eq-

uity investors, albeit at a cost. Therefore, the issuer relies less on the stablecoin users for

risk sharing. In particular, the ability to raise equity financing allows the issuer to limit

depegging. Overall, the stablecoin becomes more stable, and the issuer supplies a higher

value of stablecoins. Our findings indicate that granting stablecoin issuers access to equity

21Given that the amount of equity raised at the lower boundary is close to 40, this implies an issuance cost
of 15% of money raised, which is conservative relative to the underpricing of Circle (the issuer of stablecoin
USDC) implied by the immediate market response after the initial public offering.
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Figure 5: The Impact of Capital Requirement.

markets—as exemplified by the recent IPO of Circle that issues USDC, the second-largest

stablecoin by market capitalization–enhances both the stability and supply of stablecoins.

5 Capital Requirement

The U.S. GENIUS Act (Guiding and Establishing National Innovation for U.S. Stablecoins

Act), signed into law on July 18, 2025, requires stablecoin issuers to hold reserve assets

backing stablecoins on an at least 1-to-1 basis, (i.e., the issuer’s net worth cannot be negative,

nt ≥ 0). Similar regulations have been adopted in other regions, such as the EU’s Markets

in Crypto-Assets Regulation (MiCA), the Amendments to Japan’s Payment Services Act,

and the stablecoin regulatory framework in Singapore’s Payment Services Act.

We consider a regulatory lower bound on the issuer’s net worth: nt ≥ nC where nC is

greater than n in the laissez-faire case (see Proposition 4). Breaching the regulation forces

the issuer into liquidation.22 Note that nt ≥ nC can also be self-imposed, as in practice,

22This implies that the issuer is infinitely risk-averse as nt approaches n
C (i.e., γ(n) approaches ∞). The

issuer meets the regulatory requirement by debasing stablecoin liabilities and offloading risk to the users,
reducing σn(n) and maintaining µn(n) > 0, as we show in the appendix. The bound, nC , is never reached.
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stablecoin issuers may advertise their commitment to over-collateralization, in which case

nC = 0. We will show that such restriction reduces the issuer’s payoff. The solution method

is similar to the baseline case as detailed in Appendix F.1. In addition, since we evaluate

users’ welfare, Appendix F.2 shows how to derive (K-scaled) users’ welfare as a function of

n—that is, users’ welfare is given by w(n)K, where w(n) is the scaled welfare and we apply

a discount rate of 5% to calculate user welfare.

In Figure 5, as the regulator tightens the capital requirement (i.e., increasing nC starting

from nC = n), the probability of depegging is significantly reduced (see Panel A), and tighter

regulation in fact increases stablecoin supply (see Panel B). While the users experience

a welfare gain, the issuer’s payoff decline (see Panel C and D), suggesting that capital

requirement effectively transfers value from the issuer to users.23

We explore the mechanism by revisiting the law of motion of the issuer’s net worth (10):

dnt = (nt + xt)µdt+ xtζtdt− xtrdt− xtκdt︸ ︷︷ ︸
µn(nt)dt

+ [(nt + xt)σ − xtσ
p
t ]dZt︸ ︷︷ ︸

σn(nt)dZt

− dyt,

where xtζt is the seigniorage revenue (see definition of ζt given by (11)):

xtζt = xξ
t − η|σp

t |xt. (20)

In the drift, µn(nt)dt, the issuer has two sources of revenue, the expected gain from reserve

assets (funded by both stablecoin issuance and net worth), (nt + xt)µdt, and the seigniorage

earned from issuing stablecoins, xtζtdt where either xt (the quantity margin) or ζt (the quality

margin) declines when the issuer loses its net worth following negative shocks and thus has

to reduce risk exposure.24 These two sources of revenues differ in cyclicality: while the first

source accrues at a fixed expected return µ, the second — through both xt and ξt — comoves

with the issuer’s net worth, rendering seigniorage revenues procyclical.

23We compute the issuer’s valuation as v(n)− n. This is the payoff that an issuer earns, starting with an
initial wealth of zero and raising equity n at t = 0 to start the business. n is the targeted level of equity
once issuance is allowed, as we have shown in Section 4.3.

24The procyclicality of seigniorage revenues is shown in Proposition 5 and 9. In the parameter region
where the condition (17) holds, ζt is a constant and xt is increasing in nt. In the parameter region where the
condition (17) does not hold, for nt ≥ ñ, ζt is a constant and xt is increasing in nt, and, for nt < ñ, σp(nt)
is increasing in nt, which implies ζ(nt) is increasing in nt (procyclical), and x(nt) is a constant.
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Figure 6: Capital Requirement and Reserve-Asset Riskiness.

The capital requirement mitigates the instability trap by forcing the issuer to derive a

sufficiently high share of revenues from the first revenue source rather than the second source

of procyclical seigniorage. A capital requirement, nt ≥ nC , implies that, given any level of

stablecoin supply xt, the issuer’s first source of revenues (reserve assets’ expected returns) are

bounded below, i.e., (nt+xt)µdt ≥ (nC +xt)µdt. Note that forcing the issuer to hold a high

level of reserve assets also adds reserve-asset risk: given any level of stablecoin supply, xt, the

first term in the diffusion, σn(nt)dZt, is also bounded below, i.e., (nt+xt)σdt ≥ (nC+xt)σdt.

As the issuer’s net worth declines, the issuer deleverages (i.e., reduces xt) or depegs the

stablecoin to avoid hitting the capital requirement. This effect reduces xtζt, further shrinking

the revenue share of seigniorage relative to the expected reserve-asset return.

In summary, what capital requirement does is to change the composition of the issuer’s

expected revenues, increasing the share from reserve assets and decreasing the share from

procyclical seigniorage that is responsible for the instability trap. As a result, capital require-

ment improves stability (see Panel A of Figure 5). When the force of instability trap becomes

weaker, the system would no longer be stuck in the low-nt region as in the laissez-faire case

and thus spends more time in the high-nt region where the supply of stablecoins, xt, is high.

This explains why, as capital requirement tightens (i.e., nC increases), the average stablecoin

supply, xt = x(nt), computed using the stationary distribution of nt, increases.

Admittedly, forcing the issuer to hold more reserve assets also means adding risk on the

asset side of its balance sheet. When the issuer has low net worth, it needs to offload such
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risk on the liability side to the users. Therefore, capital requirement reduces the probability

of depegging, but once depegging happens, instability can be worse than the laissez-faire

case. This result is displayed in Figure 6. In Panel A, across different levels of reserve-

asset riskiness, the depegging probability is significantly lower under capital requirement. In

contrast, Panel B shows that the maximum of price volatility (i.e., the highest level of risk

offloaded to the users) under capital requirement is greater than that in the laissez-faire case.

Figure 6 shows that capital requirement eliminates the risk paradox: the depegging

probability and maximum price volatility are no longer decreasing in σ when σ is high. As

discussed in Section 3.2, the inverse relationship between reserve-asset risk and stablecoin

volatility in Proposition 7 is due to the issuer’s precaution against the instability trap, which

restrains the issuer from offloading risk to the users via depegging once σ is sufficiently high.

Under capital requirement, the force of instability trap is weakened, and such precaution is

no longer needed; in other words, capital requirement already mandates precaution against

relying too much on the procyclical seigniorage as a profit source, and by weakening the

force of instability trap, it substitutes the voluntary precaution against the instability trap.

Discussion: the role of capital requirement. The issuer has two sources of revenues,

the returns on reserve assets that are funded by both net worth and stablecoin issuances

and the seigniorage earned by issuing stablecoins. While the former depends on the broader

financial markets, the latter depends on the issuer’s stablecoin-management strategy and

is endogenously procyclical—that is, following negative shocks that reduce the issuer’s net

worth, the issuer depegs the stablecoin to offload risk to the users, causing the seigniorage to

decline. Our model shows that capital requirement effectively forces the stablecoin issuer to

rely less on the procyclical seigniorage as a revenue source and more on the returns on reserve

assets, thus improving stability. This role of capital requirement is unique to the stablecoin

setting where the issuer’s liability is subject to depegging by its own choice. In contrast, the

traditional views on capital requirement emphasizes avoidance of runs, preventing systemic

insolvency (externality and contagion), and incentive alignment between equity and debt

investors, all motivated by studies on traditional financial institutions (e.g., banks).
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6 The Value of Flexible Risk-Taking

6.1 Narrow banking

In addition to capital requirement, the U.S. GENIUS Act restricts stablecoin issuers to hold

relatively safe reserve assets (i.e., assets with a low σ).25 Therefore, the U.S. GENIUS Act is

akin to a narrow-banking framework that entails both limits on reserve-asset riskiness and

a requirement that issuers maintain non-negative net worth.

Corollary 1 and Proposition 7 on the risk paradox show that reducing the riskiness of

reserve assets enlarges the parameter region where depegging happens and can increase

endogenous volatility of the stablecoin price. These findings suggest caution in limiting the

riskiness of reserve assets. However, if reserve assets are perfectly safe, i.e., σ = 0, we know

that the stablecoin price will be pegged at one, because without risk in reserve assets, the

issuer has no reason to offload risk to stablecoin users via depegging. While the “quality” of

stablecoins is maintained, the key question concerns the “quantity”.

Next, we show that the narrow-banking requirements (nt ≥ 0 and σ = 0) significantly

reduce the supply of stablecoins relative to the laissez-faire case. The following proposition

summarizes the narrow-banking solution.

Proposition 10 (Narrow banking). Under nt ≥ 0 and σ = 0, the stablecoin price is

pegged at one, i.e., pt = 1 and σp
t = 0. The value of stablecoins issued is x∗ =

(
ξ

r+κ−µ

) 1
1−ξ

.

The issuer maintains a zero net worth, i.e., nt = 0, and consumes all profits, i.e., dy =

x∗[µ− (r − ζ∗ + κ)]dt, where the marginal seigniorage, ζ∗ = (x∗)ξ−1, is defined in (11).

The value of stablecoins issued, x∗, is decreasing in r+κ, the users’ discount rate (required

return) and the issuer’s operating cost, both of which have to be covered by the issuer, and

x∗ is increasing in µ, the issuer’s return on reserve assets. The issuer earns a spread between

reserve assets and stablecoin liabilities, including the users’ utility from stablecoin holdings,

25The permitted reserve assets include U.S. coin and currency, bank deposits, U.S. Treasury securities
with a maturity of 93 days or less, repurchase agreements with a maturity of 7 days or less that are backed
by Treasury bills with a maturity of 90 days or less, reverse repurchase agreements with a maturity of 7 days
or less that are collateralized by that are collateralized by Treasury securities an overnight basis subject to
over-collateralization, and reserves at the central bank. The assets above can be held via money market
funds, provided that the funds do not invest in other assets.
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Figure 7: Narrow Banking.

ζ∗ (the seigniorage). The issuer consumes all the profits: for every dollar of stablecoins issued

and proceeds invested in the reserve asset, the issuer consumes the full spread, µ−(r−ζ∗+κ).

In Panel A of Figure 7, we compare the value of stablecoins issued in the laissez-faire

baseline model (the solid line) and that under narrow banking (the dashed line). Imposing

the narrow-banking restrictions leads to a significantly lower amount of stablecoins that in

turn translates into a significant decline of the users’ welfare (see Panel B).26

In the laissez-faire scenario with risk-taking, we have the calibrated value µ = 13.4%. In

Figure 7, we have µ = 5%, a realistic value for returns on safe assets. As shown in Figure 7,

the value of stablecoins issued and users’ welfare are both lower under the narrow-banking

restrictions than the laissez-faire values even in the low net-worth region where depegging

happens. In the high net-worth region, the laissez-faire values are even higher.

The reduction in stablecoin supply and user welfare arises because restricting issuers to

hold only perfectly safe assets lowers the expected return on reserves, thereby discouraging

intermediation (i.e., the issuance of stablecoins and investment in reserve assets). To offset

the decline in reserve returns, the issuer raises user fees, which in turn dampens stablecoin

demand and reduces welfare. Consequently, whether narrow banking enhances user welfare

depends on whether the gains from improved stability outweigh the foregone returns that

necessitate higher fees, as the issuer seeks to maintain profitability.

Our model solution also shows that imposing the narrow-banking requirements reduces

26The users’ risk-neutral discount rate is set to 5%, same as the return on risk-free reserve assets.
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the issuer’s valuation by 33% relative to the laissez-faire case.27 Overall, our analysis suggests

caution against the narrow-banking framework, as it reduces both the users’ welfare and

the issuer’s valuation. Forcing the issuer to avoid risk-taking at all costs can improve the

quality of stablecoins (i.e., depegging never happens) but significantly reduces the demand

of stablecoins (due to higher fees) and equilibrium quantity. A certain level of risk-taking

can be Pareto-improving relative to narrow banking. Next, in Section 6.2, we show that

more flexibility is preferred: allowing the issuer to not only take risk but dynamically adjust

reserve-asset risk improves both the stablecoin quality and quantity.

In Section 5, our analysis shows that capital requirement alone already substantially re-

duces instability and improves welfare for stablecoin users relative to the laissez-faire bench-

mark and thus even more so relative to narrow banking (as we have shown that the laissez-

faire benchmark dominates narrow banking). Therefore, imposing an additional requirement

of risk-free reserves on top of the capital requirement can be counterproductive: it yields

a marginal improvement in making the stablecoin price perfectly pegged, eliminating the

low-probability event of depegging all together, but causes a large decline in user welfare.

6.2 Flexible risk choice

In our baseline model, the issuer faces a fixed expected return, µ, and volatility, σ, of the

reserve assets. In the following, we allow the issuer to choose ωt ∈ [wL, wH ] and thereby

change the expected return to µ0 + ωtα (α > 0) and volatility to σ0 + ωtσα (σα > 0)—that

is, the issuer faces a risk-return trade-off in its choice of ωt. The law of motion of the issuer’s

net worth, previously given by (10), is now extended to the following:

dnt = [(µ0 + ωtα)(nt + xt) + xtζt − xtr − xtκ]︸ ︷︷ ︸
µn(nt)

dt+ [(σ0 + ωtσα)(nt + xt)− xtσ
p
t ]︸ ︷︷ ︸

σn(nt)

dZt − dyt,

where ζt is the stablecoin user’s marginal utility from holding stablecoins (i.e., the seignior-

age) defined in (11). The issuer’s problem has an additional control variable, ωt, but can be

solved similarly as our baseline model is. We provide the solution details in Appendix F.4.

27We compute the issuer’s valuation at the consumption boundary, n, where we map variables in our
model to Tether’s values (see Section 4.1).
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Figure 8: Dynamic Choice of Reserve-Asset Riskiness.

In Figure 8, we compare our baseline model (solid line) and the extended model (dotted

line) in the value of stablecoins issued (Panel A), price volatility or stablecoin “quality”

(Panel B), and the issuer’s choice of ω(n) as a function of net worth, n. We set µ0 = 12.9%,

σ0 = 4.5%, α = 0.5%, and σα = 2.5% and normalize wH to 1 so that the highest level of

risk-taking, i.e., ω = 1, brings the same expected return and volatility of reserve assets as

in our baseline model. Moreover, we impose and wL = 0 so that at the lowest level of risk-

taking, the expected return and volatility of reserve assets are µ0 = 12.9% and σ0 = 4.5%.

As shown in Panel C, ω decreases as the issuer loses net worth.

De-risking on the asset side of its balance sheet allows the issuer to refrain from risk-

sharing via the liability side (i.e., offloading risk to the users through depegging), so Panel

B of Figure 8 shows a smaller stablecoin-price volatility under the flexible choice of ωt.

Moreover, as shown in Panel A, the issuer supplies a higher value of stablecoins than the

baseline case, especially in the low-n region, because when it undercapitalized, the issuer can

supply stablecoins but invest the proceeds more conservatively. Without the choice of risk-

taking, the issuer has to either offload risk to the users (reducing the quality of stablecoins) or

deleverage (reducing the quantity of stablecoins). Allowing asset-risk adjustment alleviates

the tension between quality and quantity for an undercapitalized issuer.

Overall, our analysis in this section points towards the benefits of allowing the stable-

coin issuer to flexibly manage its reserve risk. We demonstrate quantitatively the cost of

forbidding risk-taking completely in Section 6.1 and, in Section 6.2, we show how the issuer
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behaves when allowed to adjust risk exposure in a state-contingent fashion.

7 Stablecoin Demand Dynamics

7.1 The general setup

We extend the model by introducing shocks to the stablecoin demand scaler, Kt = K:

dKt

Kt

= µKdt+ σKdZ
K
t , (21)

where µK is a constant, σK ≥ 0, and ZK
t is a standard Brownian motion. The correlation

between the demand shock, dZK
t , and the shock to the issuer’s reserve assets, dZt, is ϕdt.

The users take as given the price process, which now also loads on dZK
t :

dpt
pt

= µp
tdt+ σp

t dZt + σp
K,tdZ

K
t , (22)

where the shock loadings σp
t and σp

K,t are endogenously determined. We define

Σp
t :=

√
(σp

t )
2 + (σp

K,t)
2 + 2ϕσp

t σ
p
K,t, (23)

the instantaneous volatility of dpt/pt. In analogy to (2), the users’ utility from holding

stablecoins is given by Ktu(xt), where u(xt) is defined as follows

u(xt) =
(xξ

t

ξ
− xtη|Σp

t |
)
. (24)

As in the baseline model, xt = Xt/Kt, and the users’ optimal demand for stablecoin is scaled

with Kt, i.e., Xt = Ktxt with

xt =

(
1

r − µp
t + η|Σp

t |+ ft

) 1
1−ξ

. (25)

This expression is analogous to the stablecoin demand (5) in the baseline model.

Given the state variables, Nt (net worth) and Kt (stablecoin demand scaler), the issuer
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Figure 9: Stablecoin Price and Quantity Dynamics under Demand Shocks.

chooses the Kt-scaled stablecoin supply, xt, consumption, dYt, and as in the baseline model,

the controls the volatilities (σp
t , σ

p
K,t). The issuer implements these choices through fee poli-

cies and supply changes, i.e., (ft, St)t≥0, as we show. In Appendix F.5, we solve the issuer’s

problem with both reserve and demand shocks. We present an overview of the solution in

Proposition F.1, while illustrating the results here with numerical analysis.

7.2 Stablecoin demand shocks and capital requirement

In this subsection, we focus on the role of demand shocks, setting µK = 0. In practice, the

correlation between the demand shock and reserve-asset shock, ϕ, is likely to be positive,

because the issuer (e.g., Tether) may hold cryptocurrencies in its reserve-asset portfolio, and

cryptocurrencies’ value is correlated with the adoption of stablecoins.

Such positive correlation exacerbates the instability trap, driven by the procyclicality of

seigniorage revenues. The stablecoin issuer’s total seigniorage revenues are given by

Xtζt = Kt

(
xξ
t − η|Σp

t |xt

)
, (26)

When negative shocks to reserve assets significantly reduce the issuer’s net worth, the issuer

offloads risk to the users through depegging (i.e., Σp
t increases) which reduces the seigniorage

for any choice of stablecoin supply, xt. Under ϕ > 0, the negative reserve-asset shocks are

likely to coincide with negative shocks to Kt, the demand scaler, which further reduces the
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Figure 10: Capital Requirement and Demand Shocks.

seigniorage revenues—that is, ϕ > 0 amplifies the procyclicality of seigniorage revenues. In

Section 3.2, we have explained that such procyclicality leads to the instability trap.

In Figure 9, we plot the stablecoin price, price volatility, and value of stablecoins issued

against the state variable, nt in Panel A, B, and C, respectively. The plots start from n, the

lower bound of nt in analogy to n in Proposition 4, and end at n, the upper bound where the

issuer consumes. Note that both boundaries are endogenous and vary with the parameter

values. Our numerical solution is based on parameter values from Section 4.1 and σK = 10%

(i.e., the annualized volatility of the growth rate of demand scaler is 10%).

The solid black lines in Figure 9 represent the baseline model with a constant K, i.e.,

ϕ = 0 and σK = 0. The yellow dashed lines represent the case of ϕ > 0, i.e., the demand

and reserve-asset shocks are positively correlated, while the red dotted lines represent the

case of ϕ < 0. As ϕ increases from -0.8 to zero and then to 0.8, depegging in the low-n

region becomes more severe (see Panel A), and once depegging happens, the price fluctuates

more aggressively (see Panel B). In addition, under positively correlated shocks, the issuer

supplies less stablecoins (see Panel C). Figure 9 shows that when the demand shock and

reserve-asset shock become positively correlated, both the quality and quantity of stablecoins

suffer because the positive correlation amplifies the procyclicality of seigniorage revenues.

In Section 5, we have explained that introducing capital requirement reduces the issuer’s

reliance on the procyclical seigniorage as a revenue source. Therefore, it can make the issuer

less sensitive to the correlation between the demand shock and reserve-asset shock, because
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ϕ > 0 exacerbates instability by amplifying the procyclicality of seigniorage revenues. Figure

10 shows that this is indeed the case. We consider a capital requirement that requires the

issuer to maintain non-negative net worth, i.e., nt ≥ 0. In Panel A, we show that the

depegging probability is significantly reduced under capital requirement and, basically, is no

longer sensitive to ϕ. In Panel B, we compute the average value of stablecoin supply, xt,

based on the stationary probability distribution of state variables under different values of ϕ.

By reducing the issuer’s reliance on procyclical seigniorage, capital requirement mitigates the

force of instability trap and thereby increases the average supply of stablecoins (as discussed

in Section 5), and importantly, it makes the supply less sensitive to ϕ.

A caveat regarding capital requirement is that it increases the worst-case volatility of

stablecoin price as we have discussed in Section 5. This is reflected in Panel C of Figure 10.

When ϕ is high, capital requirement reduces the average volatility in the depegging region

(i.e., conditional on Σp
t > 0) relative to the laissez-faire case. However, when ϕ is sufficiently

negative—that is, when the procyclicality of seigniorage revenues is already mitigated by the

negative ϕ, rendering the benefit of capital requirement less important—capital requirement

makes the depegging region more unstable relative to the laissez-faire case.

In summary, our conclusion is that, while positively correlated reserve and demand shocks

exacerbate instability, capital requirement makes the issuer less sensitive to this correlation,

thereby reducing the probability of depegging. However, once depegging happens, capital

requirement mitigates instability when the shock correlation is high but exacerbates instabil-

ity relative to the laissez-faire case when the shock correlation is sufficiently negative. Thus,

capital requirement is most valuable in the presence of positively demand and reserve risk.

7.3 Stablecoin demand growth and issuer valuation

The previous subsection focused on the role of demand shocks, where we considered σK > 0

and µK = 0. Next, we examine the impact of demand growth on the price, quantity, and

quality dynamics of the stablecoin and issuer’s equity valuation under σK = 0 and µK > 0.

In Figure 11, we plot the stablecoin price (Panel A), stablecoin quality, i.e., the instanta-

neous price volatility (Panel B), andK-scaled stablecoin quantity (Panel C) againstK-scaled

net worth, n, under our baseline parameters (solid line; µK = 0) and with demand growth
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Figure 11: Demand Growth Fosters Stability.

at rate µK = 3%. Notably, Panels A and B show, respectively, that under greater demand

growth, the stablecoin experiences less severe depegging in the low-n region and fluctuates

less. Intuitively, demand growth has a stabilizing effect: the trend in seigniorage revenues

counterbalances the procyclicality of seigniorage revenues that is the source of instability.

Panel C of Figure 11 shows that introducing demand growth essentially shifts the K-

scaled value of stablecoins x(n) to the left—that is, for any given level of stablecoin liabilities,

the issuer maintains a lower net worth. Intuitively, as demand growth fosters stability, the

issuer finds it less necessary to maintain net worth as a risk buffer.

Finally, we highlight the implications of our model on the issuer’s equity valuation under

demand growth rates. With the exception of Circle (the issuer of USDC), the majority of

stablecoin issuers are private companies whose valuations are not publicly available. Our

model provides a quantitative framework for valuing stablecoin issuers. The valuations may

serve as a reference point for private investments and public offerings.

As reported by Cointelegraph.com, a recent market analysis estimated the valuation of

Tether (the issuer of USDT, the largest stablecoin by market capitalization) at $515 billion,

which would make it the 19th most valuable company globally, ahead of firms like Costco and

Coca-Cola. However, Tether CEO Paolo Ardoino has stated that the $515 billion estimate

may be “a bit bearish”. Our model informs the valuation debate.

As discussed in Section 4.1, our model is calibrated to data on Tether, the issuer of USDT,

at n = n (the issuer’s consumption boundary), in line with Tether’s significant amount of

43

https://cointelegraph.com/news/tether-ceo-paolo-ardoino-no-public-plans-bearish-valuation


0 0.02 0.04 0.06 0.08 0.1 0.12

100

200

300

400

500

600

0 0.02 0.04 0.06 0.08 0.1 0.12

200

400

600

Figure 12: Stablecoin Issuer Valuation.

payout in 2024. In addition, when solving our model under different levels of demand growth,

we impose a capital requirement, nt ≥ 0, in line with Tether’s claim of maintaining over-

collateralization. Next, using our model, we answer the following question: how strong the

growth of USDT demand must be to support a valuation of Tether above $500 billion?

In Panel A of Figure 12, we plot the value added, i.e., the difference between the equity

valuation, v(n), and book equity, n, that reflects the franchise value, and in Panel B, we

plot the equity valuation, v(n). As a reminder, v(n) is the Kt-scaled valuation where we

consider Kt equal to $1 billion. From Panel B, a valuation above $500 billion requires a

demand growth rate, µK , of at least 12%. This growth rate is roughly in line with the

overall sector growth and rising competition within the sector. The World Economic Forum

reported an average annualized growth rate of 28% as of Q1 2025. However, competition

has risen. According to Coindesk.com (as cited by the BIS in their June 2025 bulletin), the

number of active stablecoins has nearly doubled from the start of 2024 to June 2025.

8 Conclusion

This paper develops a dynamic model of stablecoin issuers, who represent a novel category

of financial intermediaries that earn procyclical and fragile seigniorage. By analyzing the

issuer’s incentives to depeg, we show how this decision introduces a new instability channel

that is absent in models of traditional financial institutions. A key insight is the existence

44

https://www.weforum.org/stories/2025/03/stablecoins-cryptocurrency-on-rise-financial-systems
https://www.coindesk.com/research/stablecoins-and-cbdcs-report-june-2025?utm_source=chatgpt.com
https://www.bis.org/publ/bisbull108.pdf


of an “instability trap,” in which depegging reduces the issuer’s seigniorage profits, slow-

ing down its net worth rebuild after negative shocks, and thereby making depegging more

persistent. Our analysis also uncovers a risk paradox: higher reserve-asset risk can, counter-

intuitively, reduce the probability and severity of depegging.

The model delivers important implications for regulation. The mainstream proposals

that require stablecoins to be backed by assets with low risk may not resolve the underlying

instability, as the risk paradox highlights. Forcing stablecoin issuers to hold perfectly risk-

free assets with low returns hurts their profits and can significantly reduce users’ welfare, as

the issuer compensates for the lower reserve returns by raising user fees.

Capital requirements instead are effective tools to improve stability and welfare. They

play a new role: by reducing the issuer’s reliance on procyclical seigniorage from issuance,

they improve stability. This finding sheds light on how capital regulation works in the

stablecoin context, suggesting that the underlying mechanism differs significantly from those

imposed on banks and other traditional financial intermediaries.

Our model shows the value of granting stablecoin issuers’ access to equity financing.

Allowing issuers to share risk with external equity investors improves their resilience and the

robustness of the peg. In addition, we provide a framework for valuing the issuers’ equity.

Taken together, these results clarify the economic forces that shape stablecoins’ supply,

the fragility of their peg, and the regulatory levers available to improve stability. More

broadly, our paper positions stablecoin issuers as a distinct class of intermediaries whose

unique liability structure calls for tailored regulatory approaches, and we provide a quanti-

tative framework for evaluating the consequences of such policies.

Finally, our model is both flexible and tractable, allowing for an analytical characteri-

zation of the equilibrium. At the same time, it is rich enough to be calibrated to data on

real-world stablecoin issuers. We emphasize that the flexible structure could be extended in

various directions—such as, incorporating a richer treatment of demand risk (including the

classic run mechanism) and analyzing competition by embedding our single-issuer framework

into one with multiple issuers. We view these as promising avenues for future research.
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Internet Appendix

A Preliminaries and Regularity Conditions

We impose the following regularity conditions and key parameter assumptions, some of which
were introduced earlier but are repeated here for clarity and a better overview.

1. As discussed in the main text, we assume ρ > µ. This assumption is standard in liq-
uidity management models (Bolton et al., 2011), necessary for a well-behaved solution,
and ensures that the issuer does not infinitely delay consumption.

2. As discussed in the main text, we assume r + κ > µ, i.e.,

λ = r + κ− µ > 0.

The role of this assumption, as also discussed in the main text, is to introduce a cost
of stablecoin issuance.

3. We assume xt ≤ x, where x is a constant. A motivation of this assumption runs as
follows. Stablecoins are issued on blockchains that have limited capacity for processing
and recording transactions (e.g., Abadi and Brunnermeier (2019), Hinzen, John, and
Saleh (2022)). In addition, regulatory restrictions or portfolio allocation considerations
may lead to limits on stablecoin holdings — for instance, users simply have limited
capital. This assumption serves as a standard regularity condition, effectively ruling
out a Ponzi schemes; it is only used in the proof of Lemma 2. Throughout the paper,
we set x sufficiently high, in that the constraint never binds in optimum — we therefore
do not explicitly for x in our expressions.

4. As discussed in the main text, we assume At = Nt + StPt ≥ 0 (non-negative reserves).
In addition, dYt ≥ 0 (non-negative dividend payouts).

Finally, we emphasize that the Appendix follows a different structure and sequence than
the main text. The main text presents results in line with the exposition and flow. The
Appendix proves the findings according to the formal flow — potentially different from the
expositional flow. The headers of the Sections will indicate where different Propositions and
Corollaries from the main text are proven.

B User Problem: Proof of Proposition 1

This Appendix solves the user problem and proves Proposition 1.
The representative user has wealth Nu

t , evolving according to (4). It follows immediately
from dY u

t ≷ 0 — i.e., dY u
t is not sign-restricted — that the marginal utility from net

worth equals 1. We conjecture (and verify) that the user’s value function takes the form
V u
t = Nu

t + vut , where v
u
t does not depend on Nu

t and only depends on aggregate states. The
representative user takes price pt, and price dynamics dpt, and the dynamics dvut as given,
when choosing Xt.
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User Optimization. By the dynamic programming principle, a representative user solves
the HJB equation:

rV u
t dt = r(Nu

t + vut )dt = max
Xt≥0,dY u

t

[
dY u

t + U(Xt)dt+ Eu
t [dN

u
t + dvut ]

]
, (B.1)

where Eu
t is the user’s time-t expectation and dV u

t = d(vut +Nu
t ).

Next, we use the budget constraint (4), that is,

dNu
t = rNu

t dt+Xt

(
−ftdt+

dpt
pt

− rdt

)
− dY u

t ,

Xt = xtK, as well as U(Xt) = Ku(xt) to rewrite the HJB equation as

rvut dt = max
xt≥0

{
K

(
u(xt)dt− rxtdt− xtftdt+ xtEu

t

[
dpt
pt

])
+ Eu

t [dv
u
t ]

}
.

This also verifies our conjecture of the functional form of the value function.

As the user takes the dynamics of pt and vut as given, the choice of xt is determined
according to the static optimization

max
xt≥0

{
u(xt)dt− rxtdt− xtftdt+ xtEu

t

[dpt
pt

]}
, (B.2)

Using that u(xt) =
xξ
t

ξ
− ηxt|σp

t |, we obtain the first order condition with respect to xt:

xξ−1
t dt− ftdt+ Eu

t

[dpt
pt

]
− rdt− η|σp

t |dt = 0. (B.3)

We can solve (B.3) for:

xt =

 1

r + ft + η|σp
t | − Eu

t

[
dpt
ptdt

]
 1

1−ξ

. (B.4)

Note that Eu
t

[
dpt
pt

]
= µp

tdt, so this expression for xt simplifies to (5), as desired. We note

that, as will become clear, the denominator in (B.4) will be positive in equilibrium, so that
(B.4) is well-defined.

C Proof of Lemma 1 and State Variable Lower Bound

This Appendix provides a detailed derivation of the dynamics of net worth in (7), as well as
presents the proof of Lemma 1.

Importantly, we also present the auxiliary Lemma 2, which will be used in solving the
issuer’s problem.
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C.1 Derivation of (7)

Here, we derive the law of motion by starting out from the issuer’s reserve assets (an ac-
counting identity) to provide details for the main text. Specifically, based on the model
elements, the issuer’s reserve assets evolve according to:

dAt = At(µdt+ σdZt)︸ ︷︷ ︸
Return on assets

+ ftXtdt︸ ︷︷ ︸
Fee Revenues

+ dSt(pt + dpt)︸ ︷︷ ︸
Issuance proceeds

− κXtdt︸ ︷︷ ︸
Operating Cost

− dYt︸︷︷︸
Payout

.

Note that issuance of stablecoins occurs at price pt+dt ≃ pt + dpt. By Ito’s Lemma:

dXt = d(Stpt) = Stdpt + ptdSt + dStdpt.

Thus:

dNt = dAt − dXt = At(µdt+ σdZt) + ftXtdt− Stdpt − κXtdt− dYt

= (Nt + ptSt)(µdt+ σdZt)− ptSt(µ
p
tdt+ σp

t dZt) + ptSt(ft − κ)dt− dYt,

where we used that dpt = pt(µ
p
tdt+ σp

t dZt). This expression coincides with (7), as desired.

C.2 Proof of Lemma 1

First, we solve (5) for:

ft = xξ−1
t − r + µp

t − η|σp
t | = ζt − r + µp

t , (C.1)

where ζt = xξ−1
t − η|σp

t |.
Second, divide both sides of (7) by K and use Stpt = Xt = xtK to obtain:

dNt

K
= (nt + xt)(µdt+ σdZt)− xt(µ

p
tdt+ σp

t dZt) + xtftdt− xtκdt− dyt.

Inserting (C.1), we get

dnt = [µ(nt + xt)− xt(r − ζt)− xtκ]dt+ [σ(nt + xt)− xtσ
p
t ]dZt,

as desired.
We also rewrite the law of motion for nt for convenience. Inserting ζt = xξ−1

t − η|σp
t | and

using λ = r + κ− µ — defined in (8) — we obtain:

dnt =
[
µnt + xξ

t − λxt − ηxt|σp
t |
]
dt+ [σ(nt + xt)− xtσ

p
t ]dZt − dyt. (C.2)

Thus, dnt = µn(nt)dt+ σn(nt)dZt − dyt with

µn(nt) = µnt + xξ
t − λxt − ηxt|σp

t | and σn(nt) = σ(nt + xt)− xtσ
p
t .
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C.3 Auxiliary Results and Lower Bound

We state an auxiliary Lemma that we prove in this Appendix. This Lemma will be used for
solving the issuer’s problem.

Lemma 2. Consider a strategy S := (xt, σ
p
t , dyt)t≥0. Let S be the set of strategies S, sat-

isfying At = Nt + Stpt ≥ 0, dyt ≥ 0, and xt ≤ x for all t ≥ 0. Consider the net worth
nt following the law of motion (10) (or, equivalently, (C.2)), governed by a strategy S ∈ S.
Then, the following holds:

1. There exists a lower bound n′ such that nt ≥ n′ with probability one. We have µn(n
′) ≥

0, σn(n
′) = 0, and dy = dy(n) ≤ n− n′.

2. Define the minimum feasible lower bound of nt via:

n := inf

{
n′ : nt ≥ n′ at all times t ≥ 0 with probability one, for some S ∈ S

}
.

(C.3)
Then:

n =

−
(

xξ−(r+κ−µ)x−ησx
µ−ησ

)
if µ− (1− ξ)(r + κ)− ησ > 0,

−
(

1
r+κ

) 1
1−ξ if µ− (1− ξ)(r + κ)− ησ ≤ 0.

(C.4)

Here:

x =

(
ξ

r + κ− µ+ ησ

) 1
1−ξ

=

(
ξ

λ+ ησ

) 1
1−ξ

; λ = r + κ− µ. (C.5)

It follows for all S ∈ S that µn(n) = σn(n) = 0, as well as dy ≤ n− n.

Importantly, Lemma 2 states that net worth — under the issuer’s optimized controls —
will always satisfy nt ≥ n (with probability one). Put differently, nt < n would imply a
violation of At ≥ 0, xt ≤ x, or dyt ≥ 0 and thus cannot occur under a feasible strategy.

C.3.1 Proof of Lemma 2 — Part I

Due to xt ≤ x (by assumption) and At = Kt(xt + nt) ≥ 0 (by assumption), there exists
n′ ≥ −x such that nt ≥ n′ (with probability one). In particular, nt ≥ −x with probability
one. Again, note that xt ≤ x is a regularity condition; we can choose x arbitrarily large so
that the constraint on xt never binds in equilibrium.

Due to dyt ≥ 0 and the dynamics of nt in (10), any lower boundary n′ must satisfy
dy(n′) = 0 (i.e., dyt ≤ nt − n′). In particular, no payouts occur at nt = n′ (i.e., dyt = 0), as
otherwise nt would fall below n′. Likewise, in any other state nt, payouts cannot be so large
that they push nt below n′.

Moreover, at the lower boundary n′, the drift of nt must be positive µn(n
′) ≥ 0, as well

as the volatility must be zero, i.e., σn(n
′) = 0 — in order to prevent nt from falling below n′.
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C.3.2 Proof of Lemma 2 — Part II

Since, by Part I, there exists a lower bound such that nt ≥ n′ with probability one, the set
from (C.3) is non-empty and the infimum over the set (i.e., n) is well-defined. It follows that

n := inf
{
n ∈ R : max

x∈[0,x],σp
µn(nt) ≥ 0 s.t. σn(nt) = 0

}
is well-defined and satisfies n ∈ (−∞,+∞).

By continuity, it follows that

µn(n) = σn(n) = 0.

In what follows, we solve for the lower boundary n in closed form.
Doing so, we distinguish between two cases: (1) σp(n) > 0 and (2) σp(n) = 0. We omit

time subscripts unless needed:

Case (1): σp(n) > 0. First, consider σp(n) > 0, and denote x(n) = x. Due to σn(n) = 0,
we have xσp(n) = (x+ n)σ. Therefore, the drift of net worth becomes

µn(n) = max
x≤x

[
µn− λx+ xξ − ησ(x+ n)

]
.

Optimizing the drift over x, we obtain (C.5), that is:

x =

(
ξ

λ+ ησ

) 1
1−ξ

.

Assuming µ− ησ > 0, we can solve µn(n) = 0 for

n = −
(
xξ − λx− ησx

µ− ησ

)
= −

(
xξ − (r + κ− µ)x− ησx

µ− ησ

)
,

as stated.

Next, we determine the volatility σp(n). To do so, calculate

n+ x =
(µ+ λ)x− xξ

µ− ησ
=

x [ξµ− (1− ξ)λ− ησ]

ξ(µ− ησ)
> 0, (C.6)

which also implies that reserve assets are strictly positive at n (i.e., At ≥ 0 does not bind).
Moreover:

σp(n) = σmax

{
0,

ξµ− (1− ξ)λ− ησ

ξ(µ− ησ)

}
. (C.7)

Thus, a necessary condition for σp(n) > 0 is that ξµ − (1 − ξ)λ − ησ > 0. This condition
implies µ− ησ > 0, due to ξ ∈ (0, 1).

Further, we can rewrite

ξµ− (1− ξ)λ− ησ = µ− (1− ξ)(r + κ)− ησ.
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where λ = r + κ− µ.

Case (2): σp(n) = 0. Note that σn(n) = (x + n)σ − xσp = (x + n)σ = 0. Thus,
x = x(n) = −n. We can insert x = −n into the drift µn(n) from (C.2) to obtain

µn(n) = (µ+ λ)n+ (−n)ξ.

We then solve µn(n) = 0 for

n = −
(

1

µ+ λ

) 1
1−ξ

= −
(

1

r + κ

) 1
1−ξ

.

Also, note that reserve assets are zero at n.

Case Distinction. We show that case (1) prevails and σp(n) > 0 if and only if ξµ− (1−
ξ)λ− ησ > 0.

1. First, we start with the “only if” implication. Note that σp(n) > 0, i.e., case (1),
requires that ξµ−(1−ξ)λ−ησ > 0. Thus, when ξµ−(1−ξ)λ−ησ ≤ 0, we necessarily
have σp(n) = 0.

2. Second, we show that if ξµ − (1 − ξ)λ − ησ > 0, then σp(n) > 0. Suppose to the

contrary that ξµ− (1− ξ)λ− ησ > 0 and σp(n) = 0, leading to n = −
(

1
µ+λ

) 1
1−ξ

and

x(n) = −n as shown above. Consider that the issuer selects in state n = −
(

1
µ+λ

) 1
1−ξ

a different level of x, namely x = −n+ ε, while setting xσp = εσ for small ε > 0.

Thus, σn(n) = (n + x)σ − xσp = 0 under this alternative strategy. The alternative
strategy implies drift of n at n of

µε
n(n) = µn− λ(−n+ ε) + (−n+ ε)ξ − εησ

= µn(n)− λε− ησε+ ξ(−n)ξ−1ε+ o(ε2)

= ε
[
ξµ− (1− ξ)λ− ησ

]
+ o(ε2),

where we conducted a Taylor expansion around ε = 0 and used µn(n) = 0.

As such, given ξµ − (1 − ξ)λ − ησ > 0, there exists ε > 0 such that µn(n) > 0 and
σn(n) = 0 under x = n+ ε. By continuity, there exists n′ < n at which µn(n

′) ≥ 0 and
σn(n

′) = 0, a contradiction. Likewise, we have shown that x = −n and σp = 0 do not
maximize µn(n), similarly yielding a contradiction.

Combining, we obtain (C.4), which was to show.

C.4 Proof of Corollary 3

Corollary 3 directly follows from the closed-form expression (C.4) for the lower boundary
presented in Lemma 2. Clearly, n < 0.

A-6



Suppose that (17) holds, so that n = −
(

1
r+κ

) 1
1−ξ , which increases in κ and r and does

not depend on σ or η.
Suppose that (17) does not hold. Then, we can rewrite n as follows:

n = − 1− ξ

µ− ησ

(
ξ

r + κ− µ+ ησ

) ξ
1−ξ

.

Thus:
∂n

∂σ
=

η

(µ− ησ)2

( ξ

r + κ− µ+ ησ

) ξ
1−ξ µ− ησ − (1− ξ)(r + κ)

r + κ− µ+ ησ
> 0.

Finally, calculate

∂n

∂r
=

ξ

µ− ησ

(
ξ

r + κ− µ+ ησ

) ξ
1−ξ 1

r + κ− µ+ ησ
> 0.

D Issuer Optimization

We now solve the issuer’s problem, thereby proving various Propositions from the main text.
The issuer’s problem can be written as:

V0 := Kmax
G∈G

E
[∫ ∞

0

e−ρtdyt

]
, (D.1)

where the strategy G := (St, ft, dYt)t≥0 — or its K-scaled equivalent (st, ft, dyt)t≥0 —
governs the state variable Nt from (7). Here, G denotes the set of strategies that satisfy the
constraints dYt ≥ 0, At = Nt + Stpt ≥ 0, and xt ≤ x (non-binding). The issuer commits
at time t = 0 to a strategy G. We solve for the issuer’s optimal strategy. In doing so, we
conjecture that, under the optimal strategy, the stablecoin price pt is continuous and follows
(1).

In Appendix G.2, we verify that the issuer indeed finds it optimal to implement a con-
tinuous price path, following (1). This is a consequence of the issuer’s value function’s
concavity — established in Appendix D.4. In Appendix G.1, we show that full commitment
could be relaxed, i.e., short-term commitment over an instant [t, t+ dt) plus a constraint on
consumption is sufficient to implement the issuer’s strategy.

D.1 Preliminary Steps and Outline

The following argument then proceeds as follows.

First, we solve the auxiliary problem, in which the issuer can directly choose S =
(xt, σ

p
t , dyt)t≥0 subject to dyt ≥ 0 and At = Nt + Stpt ≥ 0. That is, we consider:

V Aux
0 := K max

G∈G,S∈S
E
[∫ ∞

0

e−ρtdyt

]
, (D.2)

subject to the dynamics of net worth in (7) or, equivalently, in (C.2). Here, S is the set
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of transformed strategies S = (xt, σ
p
t , dyt)t≥0 satisfying dyt ≥ 0, At = Nt + Stpt ≥ 0, and

xt ≤ x. The (optimized) issuer payoff under this auxiliary problem is, by construction, at
least as high than that under (D.1), since the issuer has a wider range of options to optimize
over.

Crucially, because payoffs are a function of the issuer’s net worth and the dynamics of
net worth depends on (St, ft) only via (xt, σ

p
t ) — see (7) — it follows that

V Aux
0 = Kmax

S∈S
E
[∫ ∞

0

e−ρtdyt

]
.

More intuitively, when the issuer can choose S, the strategy G is not payoff-relevant — in
particular, (St, ft) affect issuer payoff only via (xt, σ

p
t ), so it suffices to choose the latter two.

The key arguments behind the solution to the issuer’s (auxiliary) problem are presented in
Parts I, II, and III of the proof.

Second, we map the issuer’s optimal choice of S = (xt, σ
p
t , dyt)t≥0 to the strategy

(St, ft, dYt)t≥0—or, alternatively, to its K-scaled equivalent (st, ft, dyt)t≥0. We show that
for the optimal choice of S, there exists (St, ft, dYt)t≥0 implementing this strategy S, while
satisfying all the imposed constraints. This implies

V0 = Kmax
G∈G

E
[∫ ∞

0

e−ρtdyt

]
= Kmax

S∈S
E
[∫ ∞

0

e−ρtdyt

]
,

as desired. These arguments are presented in Part IV of the proof (see Appendix D.5).

Third, in Appendix G.2, we verify that the issuer indeed finds it optimal to implement
a continuous price path, with pt following (1) with endogenous (µp

t , σ
p
t )t≥0.

Importantly, we conjecture and verify that for all n > n, the issuer maintains strictly
positive reserve assets and the constraint At ≥ 0 never binds, in that n+x > 0; accordingly,
we omit this constraint going forward, solve the issuer’s optimization without it, and verify
in Appendix D.5 in Part IV that n+ x > 0 for all n > n.

Finally, note that this Appendix — which is organized in several parts that build on
each other — proves several results from the main text. Part I of the argument in Appendix
D.2 proves Propositions 2 and 3. Part II in Appendix D.3 provides a proof for Propositions
3, 5, and 9, as well as for Proposition 8. Part III in Appendix D.4 provides a proof for
Propositions 5 and 7. Corollary 1 directly follows from these results. Part IV in Appendix
D.5 demonstrates Corollary 2.

We also repeat our equilibrium concept. An equilibrium is defined by the issuer’s strategy
that maximizes its payoff as in (9), the stablecoin users’ optimization summarized in the
demand curve given by (5), and the stablecoin price (pt)t≥0 that clears the market, satisfying
the market-clearing condition Stpt = Xt. Solving the issuer’s problem, we also solve for
equilibrium.
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D.2 Part I: HJB Equation and Boundaries — Proof of Proposi-
tions 2 and (3)

Let the issuer’s scaled value function be denoted by v(nt), i.e., Vt = Kv(nt), for a given net
worth nt, that is:

v(n) = E
[∫ ∞

t

e−ρsdys

∣∣∣nt = n

]
. (D.3)

We omit time subscript, as all quantities and payoffs will be functions of nt = n in optimum.

HJB Equation. We invoke the dynamic programming principle. By the integral repre-
sentation in (D.2) (or in (D.3)), the issuer’s value function solves the HJB equation (in the
state space):

ρv(n)dt = max
dy≥0,x,σp

{
dy + v′(n)

[
µn(n)dt− dy

]
+

v′′(n)σn(n)
2dt

2

}
. (D.4)

where drift µn(n) and volatility σn(n) of n are defined (implicitly) in (7) or (C.2). Note that
dy satisfies dy ∈ [0, n− n] by Lemma 2. Also recall that n ≥ n by the same Lemma.

Upper Boundary. We can optimize the right-hand-side over dy ≥ 0 and obtain that
consumption is optimal only if v′(n) ≤ 1. As is standard, consumption occurs at a payout
boundary n, and follows a barrier strategy, that is, consumption causes n to reflect at n. As
such, we have v(n) = v(n) + n − n and v′(n) = 1 for n > n. The location of the payout
boundary is determined by smooth pasting and super contact conditions, that is,

v′(n) = 1 and v′′(n) = 0. (D.5)

Due to the (downward) reflection of n at n, the (endogenous) state space can be written as
an interval [n, n]. Further, note that the value function satisfies v′(n) ≥ 1 on the state space.

In the interior of the state space, i.e., for n ∈ (n, n), we have dy = 0. Inserting this
relationship into (D.4) as well as plugging in the respective values for µn(n) and σn(n), the
HJB equation simplifies to:

ρv(n) = max
σp,x

{
v′(n)

[
µn+ xξ − λx− ηx|σp|

]
+

v′′(n)

2

[
σ(x+ n)− xσp

]2}
. (D.6)

Substituting λ = r + κ − µ, equation (D.6) becomes (14) from the baseline. Recall that
we will verify the constraint At ≥ 0 never binds in the interior of the state space, so we
do not explicitly account for this constraint in the HJB equation optimization. Likewise,
the constraint x ≤ x never binds (as x is assumed to be sufficiently large) and is also not
accounted for.

Lower Boundary. Under the issuer’s strategy, we have nt ≥ n with probability one, by
Lemma 2 — where n is given in (C.4). When n = n, then S ∈ S implies by means of
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Lemma 2 that µn(n) = σn(n) = 0, as well as dy = 0 — this means that the lower boundary
is absorbing. Moreover, by means of (D.4), it follows that v(n) = 0.

For the sake of exposition, the proof of the lower boundary being inaccessible (i.e., the
lower boundary is never reached) will be provided in the Proof of Proposition 6 — see
Appendix E.

Thus, the issuer’s value function is the solution to (D.6) subject to

v(n) = v′(n)− 1 = v′′(n) = 0.

v′(n) > 1 for n < n.
Overall, we have proven Proposition 2 and 4.

D.3 Part II: Concavity of the Value Function and Optimal Con-
trols — Proof of Propositions 3, 5, 9 and 8

We first characterize the optimal controls, conjecturing concavity. Then, we prove the con-
cavity of the value function, verifying this conjecture.

D.3.1 Optimal Controls

We conjecture and verify that v′′(n) ∈ (−∞, 0) on n ∈ (n, n), with v′′(n) = 0. Consider
n ∈ (n, n). Note that x + n ≥ 0 (which is equivalent to the constraint A = N + Sp ≥ 0).
Thus, the HJB equation (D.6) immediately implies that, in optimum, σp ≥ 0.

If interior, i.e., σp > 0 or x ∈ (0, x), the optimal controls solve the first-order conditions,
which, as easily can be verified, are sufficient for a maximum.

For σp > 0, the derivative in (D.6) with respect to σp implies that

∂v(n)

∂σp
∝ −v′(n)ηx− v′′(n)

(
σ(x+ n)− xσp

)
x.

When σp > 0, then σp = σp(n) solves the first-order condition ∂v(n)
∂σp = 0. Thus, for

γ(n) = −v′′(n)

v′(n)
,

we obtain:

xσp = max

{
0, σ(x+ n)− η

γ(n)

}
,

where we account for the fact that σp does not become negative in optimum.
Suppose that xσp > 0 and insert the expression for xσp into the HJB equation (14) to

obtain:

ρv(n) = max
x≥0

{
v′(n)

[
µn− xλ+ xξ − η(n+ x)σ

]
+

v′(n)η2

2γ(n)

}
. (D.7)
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Thus, when σp > 0, the first-order condition with respect to x becomes

v′(n)
[
− λ− ησ + ξxξ−1

]
= 0.

Using v′(n) ≥ 1, we can solve this FOC for x = x(n) = x where, as in (C.5):

x =

(
ξ

λ+ ησ

) 1
1−ξ

.

Thus, xσp = max
{
0, σ(x+ n)− η

γ(n)

}
and therefore

σp = σp(n) = max

{
0,

σ(x+ n)

x
− η

γ(n)x

}
. (D.8)

It follows that σp(n) = 0, due to v′′(n) = 0. Thus, when σp(n) >> 0, then σn(n) = η
γ(n)

,
which is strictly positive for n > n.

Now, suppose that σp = 0. Then, the first order condition with respect to x in the HJB
equation (D.6) becomes

v′(n)
[
− λ+ ξxξ−1] + v′′(n)σ2(x+ n) = 0 ⇐⇒ ξxξ−1 − λ = γ(n)σ2(x+ n). (D.9)

Optimal x = x(n) therefore is a function of n. As long as v′′(n) > −∞, we have x+ n > 0.
For n = n, we have

x(n) = x∗ =

(
ξ

λ

) 1
1−ξ

. (D.10)

Finally, when σp = σp(n) > 0, then σn(n) = σ(x+ n)− xσp = η
γ(n)

> 0. When σp = 0, then

σn(n) = (x+ n)σ > 0.
Either way, σn(n) > 0 for all n ∈ (n, n].

D.3.2 Concavity of Value Function

Without loss of generality, we can prove the claim for v′′(n) > −∞. Part I implies that
σn(n) > 0 if v′′(n) < 0. Thus, we conjecture that σn(n) > 0 and then prove v′′(n) < 0,
thereby verifying the conjecture.

Rewrite the HJB equation (D.6) in the interior of the state space as

ρv(n) = max
x,σp

{
µn(n)v

′(n) +
v′′(n)σn(n)

2

2

}
.

Assume that v′′(n) is differentiable — the set on which v′′(n) is not differentiable is not
dense. In this case, we can invoke the envelope theorem to differentiate the HJB equation
(14) under the optimal controls with respect to n:

v′′′(n) =
2

σn(n)2

(
(ρ− µ)v′(n)− v′′(n)

[
µn(n) + σσn(n)

])
. (D.11)
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In doing so, we have used that, when σp = 0, then x solves the first order condition (D.9),

so that ∂v(n)
∂x

= 0 and ∂σp(n)
∂n

= 0. On other hand, if σp > 0, then x(n) = x, so that ∂x(n)
∂n

= 0,

and σp solves the first order condition ∂v(n)
∂σp = 0.

Evaluating above expression for v′′′(n) at n = n, we obtain limn↑n v
′′′(n) > 0. As such,

v′′(n) < 0 in a left-neighbourhood of n.
Suppose now to the contrary there exists n < n such that v′′(n) ≥ 0, and define n′ =

sup{n < n : v′′(n) ≥ 0}. Note that, because v(n) is strictly concave in a left-neighborhood
of n, we have n′ < n as well as v′′(n) < 0 on (n′, n) and v′(n′) > 1. By continuity of v′′, it
follows that v′′(n′) = 0. As such, v′′′(n′) > 0. However, this implies that there exists n′′ > n′

with v′′(n′′) > 0, contradicting the definition of n′. As such, the claim follows, and v′′(n) < 0
for n < n, which implies v′(n) > 1 for n < n.

Overall, we have shown v′′(n) < 0 on (n, n).

D.3.3 Dynamics of Controls

We now show that (i) γ(n) decreases with n, (ii) σp(n) decreases with n (strictly so when
σp(n) > 0), and (iii) x(n) increases with n (strictly so when x(n) > x). In order to do so,
we distinguish between σp(n) > 0 and σp(n) = 0.

Case 1: σp = σp(n) > 0. Suppose σp > 0. Then, we have in optimum x = x(n) = x and
the HJB equation (D.7) holds. We then obtain

ρ

(
v(n)

v′(n)

)
=
[
µn− xλ+ xξ − η(n+ x)σ

]
+

η2

2γ(n)
.

Thus, differentiating both sides with respect to n yields:

d

dn

(
ρ

(
v(n)

v′(n)

)
−
[
µn− xλ+ xξ − η(n+ x)σ

])
=

d

dn

(
η2

2γ(n)

)
.

Note that

A(n) :=
d

dn

(
ρ

(
v(n)

v′(n)

)
−
[
µn− xλ+ xξ − η(n+ x)σ

])
= ρ

(
1− v′′(n)v(n)

v′(n)2

)
− µ+ ησ,

while d
dn

(
η2

2γ(n)

)
= −η2γ′(n)

2γ(n)2
. Due to v′′(n) ≤ 0, ρ ≥ µ, and λ > 0, it follows that A(n) > 0.

Due to A(n) = d
dn

(
η2

2γ(n)

)
= −η2γ′(n)

2γ(n)2
, it follows γ(n) decreases with n, i.e., γ′(n) < 0.

Furthermore, calculate

d

dn

(
1

γ(n)

)
= − γ′(n)

γ(n)2
=

2A(n)

η2
≥ 2(ρ− µ+ ησ)

η2
.
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Hence, when σp(n) > 0 — that is, xσp(n) = σ(x+ n)− η
γ(n)

> 0 — we have

d

dn
(σp(n)x) = σ − η

d

dn

(
1

γ(n)

)
≤ σ − 2(ρ− µ+ ησ)

η
= −σ − 2

(
ρ− µ

η

)
< 0,

so that σp(n) decreases with n.
In turn, there exists unique point ñ ∈ (n, n) above which σp(n) = 0 and below which

σp > 0. i.e., σp(n) > 0 for all n < ñ and σp(n) = 0 for all n ≥ ñ.

Case 2: σp = σp(n) = 0. Suppose σp = 0, so x solves the first order condition (D.9), that

is, ∂v(n)
∂x

= 0. Then, the HJB equation implies under the optimal choice of x:

ρ

(
v(n)

v′(n)

)
=

(
µn− xλ+ xξ − σ2γ(n)(x+ n)2

2

)
.

Using the envelope theorem, we can differentiate both sides with respect to n to obtain (after
rearranging):

ρ

(
1− v′′(n)v(n)

v′(n)2

)
− µ = −σ2(x+ n)

(
γ(n) +

γ′(n)(x+ n)

2

)
.

Due to ρ > µ and v′′(n) < 0, we obtain

−σ2(x+ n)

(
γ(n) +

γ′(n)(x+ n)

2

)
> 0, (D.12)

which implies γ′(n) < −2γ(n)
x+n

< 0.
Next, differentiate both sides of the first-order condition for x — that is, (D.9) and

ξx(n)ξ−1 − λ = γ(n)σ2(x(n) + n) — with respect to n to get:

ξ(ξ − 1)x(n)ξ−2x′(n) = σ2
[
γ(n) (x′(n) + 1) + γ′(n) (x(n) + n)

]
.

Suppose that x′(n) ≤ 0. Then, the left-hand-side is non-negative. The right-hand-side
satisfies:

σ2
[
γ(n)(x′(n) + 1) + γ′(n)(x(n) + n))

]
≤ σ2

[
γ(n) + γ′(n)(x(n) + n))

]
< 0,

where we used (D.12). A contradiction. Thus, x′(n) > 0.
Overall, we have proven Proposition 3.

D.3.4 Solving the Price — Proof of Proposition 8

Suppose that price is a function of nt = n only, in that pt = p(nt). Take the optimal controls,
x = x(n) and σp = σp(n), as well as the resulting volatility of n, i.e., σn(n).

Then, by Ito’s Lemma, the volatility of p(n) is p′(n)σn(n). At the same time, the price
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volatility equals σp(n)p(n) by (1). As a result, we obtain

p′(n)
[
(x(n) + n)σ − x(n)σp(n)] = p′(n)σn(n) = p(n)σp(n).

For n > ñ, we have σp(n) = 0, so p′(n) = 0 and p(n) is constant. We normalize p(n) =
p(ñ) = 1.

Next, consider n < ñ, so that x(n) = x and σp(n) = σ(x+n)
x

− η
γ(n)x

> 0. Thus,

d ln p(n)

dn
=

p′(n)

p(n)
=

σp(n)

σn(n)
.

Hence,

p(n) = exp

(
−
∫ ñ

n

σp(ν)

σn(ν)
dν

)
= exp

(
−
∫ ñ

n

γ(ν)σ(x(ν) + ν)− η

ηx(ν)
dν

)
, (D.13)

which is equivalent to (19). This proves Proposition 8.

D.4 Part III — Lower Boundary: Proof of Proposition 5 and 7

The previous part has shown that σp(n) decreases and x(n) increases in n. Note that
σp(n) = 0. Thus, there exists unique

ñ := sup{n ∈ [n, n] : σp(n) > 0}

We now characterize the behavior at the lower boundary n given in (C.4).

Proving Proposition 9 and 5. Note that when (17) holds, then σp(n) = 0 and σp(n) = 0
for all n ∈ (n, n). Then, the instability region is empty, i.e., ñ = n. At n = n, we have
n + x(n) = 0, i.e., the constraint A ≥ 0 binds at n = n. Since x(n) + n increases in n, we
have A > 0 for all n ∈ (n, n). The expression for the price p(n) from (19) implies p(n) = 1
for all n ∈ (n, n)

In contrast, when (17) does not hold — that is, µ − (1 − ξ)(r + κ) > ησ — then (C.7)
holds, determining:

σp(n) = σ

(
ξµ− (1− ξ)λ− ησ

ξ(µ− ησ)

)
= σ

(
µ− (1− ξ)(r + κ)− ησ

ξ(µ− ησ)

)
> 0. (D.14)

In particular, because σp(n) > 0 = σp(n), with σp(n) decreasing in n, we have ñ ∈ (n, n).
Further, σn(n) = 0 then implies x(n) + n > 0 for n = n. Moreover, x(n) + n increases in n,
which implies that A > 0 in the entire state space. Importantly, the expression for the price
in (19) implies p(n) < 1 for n < ñ, and p(n) = 1 for n ≥ ñ.

This proves Proposition 5. Also note that for n ≤ ñ, we have x(n) = x, while, otherwise,
x′(n) > 0 — see Part II. This proves the claim of Proposition 9
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Proving Proposition 7. Next, combining the two cases, we obtain

σp(n) ≤ sup
n∈(n,n)

{σp(n)} = σp(n) =

{
σ
(

µ−(1−ξ)(r+κ)−ησ
ξ(µ−ησ)

)
if µ− (1− ξ)(r + κ) > ησ

0 if µ− (1− ξ)(r + κ) ≤ ησ,

which implies (18), as desired.

Suppose that (17) does not hold, that is, σ ∈
[
0, µ−(1−ξ)(r+κ)

η

]
Then, clearly, σp(n) = 0

for σ = 0 or σ = µ−(1−ξ)(r+κ)
η

. In the interior of this interval, we can calculate

∂2σp(n)

∂σ2
= −2µη(1− ξ)(r + κ)

ξ(µ− ησ)3
< 0.

Thus, σp(n) is inverted U-shaped (or hump-shaped) and thus first increases, and then de-

creases on
[
0, µ−(1−ξ)(r+κ)

η

]
. This proves Proposition 7.

D.5 Part IV: Mapping optimal controls (x, σp) to fee and issuance
(dS, f) — Proof of Corollary 2

We have solved for the optimal controls (x, σp) as functions of n, as well as for the price
p(n) characterized in (19). We also have show that the constraint At ≥ 0 is met under this
choice of controls. Let s = s(n) = S/K the issuer’s scaled issuance strategy. We solve for
the issuance strategy ds = ds(n) and the fee f = f(n) which implement the optimal levels
of x(n) and σp(n). We show that ds and f are Markovian, i.e., they are functions of n only.

Issuance Strategy. Having characterized the price in (D.13) as a function of n, notice
that by Ito’s Lemma:

µp(n)p(n) = p′(n)µn(n) +
p′′(n)σn(n)

2

2
. (D.15)

Thus, p(n), σp(n), and µp(n) are functions of n only. It then follows by market clearing that
s(n) = x(n)/p(n) is a function of n only. For n > ñ, we have p(n) = 1 and x′(n) > 0, so
x(n) = s(n). Then, x′(n) > 0 and s(n) increases with n. For n < ñ, we have x(n) = x (see
(C.5)) and p′(n) > 0, so s′(n) < 0 and s(n) decreases with n.

This proves Corollary 2.

Issuance Dynamics. We characterize the issuance dynamics, i.e., ds = ds(n). For n ∈
(ñ, n), we have σp(n) = 0 and p(n) = 1. Thus, ds(n) = dx(n). Using Ito’s Lemma:

ds(n) =

[
x′(n)µn(n) +

x′′(n)σn(n)
2

2

]
dt+ x′(n)σn(n)dZ.

Because of x′(n) > 0, supply s(n) expands (decreases) upon a positive (negative) shock
dZ > 0 (dZ < 0).
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For n ∈ (n, ñ), we have σp(n) > 0 and x(n) = s(n)p(n) = x. Thus, d(s(n)p(n)) =
d(sp) = 0. Stipulate

ds = µsdt+ σsdZ

and calculate

d(sp) = sdp+ pds+ dsdp = s(n)p(n)
[
µp(n)dt+ σp(n)dZ] + p(n)

[
µsdt+ σsdZ] + p(n)σsσp(n)dt = 0.

Dividing by p(n), we obtain

s(n)
[
µp(n)dt+ σp(n)dZ] +

[
µsdt+ σsdZ] + σsσp(n)dt = 0.

Thus, we get σs = σs(n) = −s(n)σp(n) < 0.
In addition, we solve s(n)µp(n) + µs(n) + σsσp(n) = 0 for

µs(n) = −s(n)µp(n) + s(n)(σp(n))2

Fee. Next, inverting (5), we obtain

µp(n) = r + f(n)− x(n)ξ−1 + ησp(n) ⇐⇒ f(n) = x(n)ξ−1 − ησp(n)− r + µp(n).

This shows that f(n) is a function of n — it is uniquely determined given x(n) and σp(n).
Overall, we have verified that the issuance strategy is Markovian, i.e., a function of n.

We have also verified that there exist fee structure and issuance policies that implement the
desired levels of x = x(n) and σp = σp(n). This validates our approach to consider (x, σp)
instead of (ds, f) as control variables.

Verifying At > 0 on (n, n]. Consider two cases. First, if (17) holds, the n + x(n) = 0,
so the constraint At ≥ 0 binds for n = n. As x(n) increases in n, it follows that At > 0 for
n > n.

Second, if (17) does not hold, then n + x(n) is strictly positive. To see this, either
inspect (C.6) or note that at the lower boundary n, we have 0 < xσp(n), as well as σn(n) =
(n + x)σ − xσp(n) = 0, which implies n + x > 0. Since x(n) increases in n, it follows that
At > 0 for all n ≥ n. Either way, the constraint At ≥ 0 never binds in the interior of the
state space and does not have to be explicitly accounted for in the HJB optimization.

E Proof of Proposition 6

We prove in Parts I and II that a stationary density exists — which requires proving that
n is never reached (i.e., is inaccessible). We also show in Part II that the stationary density
decreases in n over (n, ñ).

We recall that Proposition 6 is proven under (17) not being met, that is, µ− (1− ξ)(r+
κ)−ησ > 0. We can rewrite this condition to ξµ− (1− ξ)λ > ησ — which implies σp(n) > 0
and ñ ∈ (n, n).
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E.1 Part I — Derivation of Feller Condition and KFE

We show that a stationary density exists and is non-degenerate, which boils down to showing
that the lower boundary is not attainable. For this sake, we conjecture that the lower
boundary is indeed not attainable, and verify this claim.

Given our conjecture, a stationary density exists. In the interior of the state space
for n ∈ (n, n) when σn(n) is twice differentiable, the stationary density g(n) satisfies the
Kolmogorov forward (Fokker Planck) equation:

0 = − ∂

∂n

[
µn(n)g(n)] +

1

2

∂2

∂n2

[
σn(n)

2g(n)]. (E.1)

Define

Ĝ(n) := −µn(n)g(n) +
1

2

∂

∂n

[
σn(n)

2g(n)], (E.2)

Due to µn(n) = σn(n) = 0, we have Ĝ(n) = 0.
Next, we can integrate (E.1) from n to n to obtain

0 = Ĝ(n)− Ĝ(n) = Ĝ(n).

This yields:

µn(n)g(n) =
1

2

∂

∂n

[
σn(n)

2g(n)]. (E.3)

The ODE (E.3) satisfies the normalization condition
∫ n

n
g(n)dn = 1.

Define the scaled stationary density ĝ(n) = σn(n)
2g(n), so that

ĝ′(n) = 2µn(n)g(n) = 2ĝ(n)

(
µn(n)

σn(n)2

)
.

That is,
d ln ĝ(n)

dn
=

ĝ′(n)

ĝ(n)
= 2

(
µn(n)

σn(n)2

)
.

The boundary n is absorbing, since µn(n) = σn(n) = 0 — according to Lemma 2.
A non-degenerate stationary density, with the absorbing boundary at n, exists if the

boundary condition ĝ(n) = 0 can be satisfied together with ĝ(n̂) > 0 for n̂ > n; in this case,
the boundary n is never reached or inaccessible. For this to happen, we need that

ln ĝ(n′) = ln ĝ(n̂)− 2

∫ n̂

n′

µn(n)

σn(n)2
dn

tends to −∞, as n′ ↓ n for some n̂ ∈ (n, n); see Brunnermeier and Sannikov (2014) for an
analogous argument in a similar context. A sufficient condition is

lim
n′↓n

∫ n̂

n′

µn(n)

σn(n)2
dn = +∞. (E.4)
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Thus, to indeed show and verify that a stationary density exists, we need to prove (E.4).
In the following two parts, we show that (E.4) is met, which then implies that n is never

reached and a stationary distribution of states exists.

E.2 Part II — Proof of (E.4)

Consider n ∈ (n, n̂) for some n̂ > n. Without loss of generality, pick n̂ < ñ, i.e., n < ñ, so
that

σn(n) =
η

γ(n)

and

σp(n) =
(n+ x)σ

x
− η

γ(n)
.

E.2.1 Auxiliary Result

To begin with, we rewrite the drift of n for n ∈ (n, ñ), i.e., µn(n), as follows:

µn(n) = µn− λx+ xξ − ηxσp(n)

= (µ− ησ)(n− n) + µn− λx+ xξ − ησ(x+ n) +
η2

γ(n)

= (µ− ησ)(n− n) + µn(n) +
η2

γ(n)
≥ (µ− ησ)(n− n), (E.5)

where µn(n) = 0. As (µ− ησ) > 0, to prove (E.4) it suffices to show that∫ n̂

n′

n− n

σn(n)2
dn ∝

∫ n̂

n′

[
(n− n)γ(n)2

]
dn =

∫ n̂

n′

[
n− n

(1/γ(n))2

]
dn (E.6)

tends to ∞, as n′ → n. That is, for n̂ ∈ (n, ñ), we show limn′→n

∫ n̂

n′

[
n−n

(1/γ(n))2

]
dn = +∞.

Next, we show that there exists constant K > 0 such that

1

γ(n)
< K(n− n) (E.7)

for n close to n. Note that (E.7) implies γ(n) > 1
K(n−n)

for all n ∈ (n, n̂) when n̂ is sufficiently
close to n.

Given this, we obtain for n̂ sufficiently close to n and n′ ∈ (n, n̂):

B(n′) :=

∫ n̂

n′

[
n− n

(1/γ(n))2

]
dn ≥

∫ n̂

n′

1

K2(n− n)
=

1

K2

[
ln(n̂− n)]− ln(n′ − n)

]
.

Note that limn′↓n

[
ln(n̂− n)]− ln(n′ − n)

]
= +∞.

Thus, when (E.7) holds, then limn′→n B(n′) = +∞, which implies (E.4). Thus, once
we have proven (E.7) — which we do in the next part — the proof is complete, i.e., the
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stationary density exists and the lower boundary is not attained.

E.2.2 Proof of (E.7)

First, we conduct a Taylor expansion of 1/γ(n) around n′:

1

γ(n)
=

1

γ(n′)
− γ′(n′)

γ(n′)2
· (n− n′) +O((n− n′)2). (E.8)

We then take the limit n′ ↓ n, where limn′↓n
1

γ(n′)
= 0, due to σn(n) =

η
γ(n)

= 0. Doing so,
we obtain:

1

γ(n)
= − lim

n′↓n

(
γ′(n′)

γ(n′)2

)
· (n− n′) +O((n− n)2). (E.9)

Thus, in order to establish (E.7), we need to show γ′(n)
γ(n)2

remains bounded in a right-

neighbourhood of n. Also note that γ′(n)
γ(n)

< 0, since γ′(n) < 0.
Calculate

γ′(n) =
−v′′′(n)v′(n) + (v′′(n))2

(v′(n))2
= γ(n)2 − v′′′(n)

v′(n)
. (E.10)

Notice from (D.11) — which follows from differentiating both sides of the HJB equation
(D.6) with respect to n (assuming differentiability) — that

v′′′(n) =
2

σn(n)2

(
(ρ− µ)v′(n)− v′′(n)[µn(n) + σσn(n)]

)
=

2γ(n)2

η2

{
(ρ− µ)v′(n)− v′′(n)

[(
(µ− ησ)(n− n) +

η2

γ(n)

)
+

ση

γ(n)

]}
.

Hence,
v′′′(n)

v′(n)
=

2γ(n)2

η2

[
ρ− µ+ ησ + η2 + γ(n)(µ− ησ)(n− n)

]
. (E.11)

Using (E.10), we obtain

− γ′(n)

γ(n)2
= −1 +

v′′′(n)

v′(n)(γ(n))2
(E.12)

=
2

η2

[
ρ− µ+ ησ + γ(n) [(µ− ησ)(n− n)]

]
+ 1.

Without loss of generality, we can consider that γ(n) ≤ 1

K̂(n−n)
for K̂ > 0; otherwise, there

exists K ′ such that 1
γ(n)

< K ′(n− n) and the proof is complete.
Under this assumption:

− γ′(n)

γ(n)2
≤ 2

η2

[
ρ− µ+ ησ +

µ− ησ

K̂

]
+ 1,

that is, − γ′(n)
γ(n)2

(or its negative) remains bounded in a right-neighbourhood of n.
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Thus, the Taylor expansion (E.9) then implies that there exists constant K > 0 such that

0 ≤ 1

γ(n)
< K(n− n) +O((n− n)2).

Thus, for n sufficiently close to n, we have 1
γ(n)

< K(n− n), i.e., (E.7) holds and, by means

of the previous findings, we obtain (E.4).

E.3 Part III: Stationary Density is Decreasing on (n, ñ)

We show that the stationary density is decreasing on (n, ñ). To start with, we rewrite (E.3)
as follows:

g(n)
[
µn(n)− σn(n)σ

′
n(n)] =

σn(n)
2g′(n)

2
.

Thus, µn(n) − σn(n)σ
′
n(n) determines the sign of g′(n). We have to show that µn(n) −

σn(n)σ
′
n(n) < 0 for n ∈ (n, ñ).

Note that on (n, ñ), we have σn(n) =
η

γ(n)
so that σ′

n(n) = −ηγ′(n)
γ(n)2

and

σ′
n(n)σn(n) = −η2γ′(n)

γ(n)3
.

Moreover, using (E.5), we obtain for all n ∈ (n, ñ):

µn(n) = (µ− ησ)(n− n) +
η2

γ(n)
.

Using (E.10), we calculate

σn(n)σ
′
n(n) = − η2

γ(n)
+

η2v′′′(n)

v′(n)γ(n)3

Using (E.11), we can calculate:

σn(n)σ
′
n(n) = − η2

γ(n)
+

2

γ(n)

[
ρ− µ+ ησ + η2 + γ(n) [(µ− ησ)(n− n)]

]
=

(
2(ρ− µ+ ησ) + η2

)
γ(n)

+ 2(µ− ησ)(n− n).

Thus,

µn(n)− σ′
n(n)σn(n) = −(µ− ησ)(n− n)− 2(ρ− µ+ ησ)

γ(n)
< 0.

Note that because (17) does not hold, we have µ > ησ. In addition, we have ρ > µ. Thus,
g′(n) < 0 for n ∈ (n, ñ).
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F Extensions, Model Variants, and Other Results

F.1 Capital Requirement and Narrow Banking: Proof of Propo-
sition 10

F.1.1 Capital Requirement

The model variant with capital requirement imposes that nt ≥ nC — without loss of gen-
erality, we assume nC > n (a capital requirement nC < n would yield our baseline and the
capital requirement is irrelevant).

The issuer chooses a strategy such that the capital requirement is met at all times. Since
our model does not have jump shocks, this is feasible, as we argue below. One could micro-
found that the issuer always respects the capital requirement, for instance, by assuming that,
upon violation, the regulator liquidates the issuer (leading to zero payoff for the issuer). Since
imposing the capital requirement limits the strategy space, it is immediate that the capital
requirement reduces the issuer’s ex-ante payoff.

Solution. The solution is as in the baseline, in that the HJB equation (14) or, equivalently,
(D.6) applies. The only change relative to the baseline lies in the boundary conditions. With
capital requirement nt ≥ nC , the boundary conditions become the standard smooth pasting
and super contact conditions for the upper boundary — that is, v′(n) − 1 = v′′(n) = 0. At
the lower boundary, nC , the following boundary condition applies:

lim
n↓nC

γ(n) = +∞, (F.1)

where, as we recall, γ(n) = −v′′(n)
v′(n)

is the issuer’s effective risk-aversion.

As we show, the boundary condition (F.1) ensures that net worth nt never falls below
nC and violates the capital requirement. Intuitively, it reflects that the issuer becomes
prohibitively risk-averse versus violating the capital requirement, for reasons argued above.
A similar type of boundary condition is applies in Ai and Li (2015) or Bolton, Wang, and
Yang (2019).

The optimal controls are characterized in Appendix D, specifically, subsection D.3. We
now prove that the boundary nC is never reached in the interesting cases that the capital
requirement stipulates over-collateralization (i.e., nC ≥ 0) or that (17) does not hold — i.e.,
the baseline features instability and debasement.

Proof that nC is never reached. We show that nC > n is never reached and nt > nC for
all times t when at least one of the two conditions holds: (1) condition (17) does not hold
or (2) nC is close to zero.

In doing so, we assume σ > 0 and that the capital requirement exceeds the lower boundary
from (C.4).

Conjecture σp(n) > 0 in a neighbourhood of nC . It follows from (D.8) and (F.1) that

σp(nC) := lim
n↓nC

σp(n) = σ +
σnC

x
,
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where x is from (C.5).
As nC > n, it follows that σp(nC) > 0, verifying above conjecture. Also, note that the

volatility of dn vanishes as n approaches nC , in that limn↓nC σn(n) = limn↓nC
η

γ(n)
= 0.

The claim follows from showing µn(n
C) = limn↓nC µn(n) > 0. Analogously to (E.5), we

calculate for nC > n:

µn(n
C) = µnC − λx+ xξ − ηxσp(nC) = (µ− ησ)nC + xξ − (λ+ ησ)x.

Clearly, xξ − (λ+ ησ)x > 0. We have µn(n
C) > 0 in the following cases.

First, when nC = 0, it is immediate that µn(n
C) > 0. Second, when (17) does not hold,

then µ > ησ, and we can, analogously to (E.5), rewrite µn(n
C) = (µ− ησ)(nC − n) > 0.

F.1.2 Narrow banking

Our model nests the special case of narrow banking upon setting nC = 0 — that is, the
issuer has positive net worth — and σ = 0 — that is, reserve assets are risk-free. Then,
clearly, σp(n) = 0 for all n ≥ 0 and p(n) = 1.

Solution. The HJB equation (14) then reduces to

ρv(n) = max
x≥0

v′(n)
(
µn− λx+ xξ

)
for all n ≥ 0 where v′(n) ≥ 1. The optimization with respect to x yields

x(n) = x∗ =

(
ξ

λ

) 1
1−ξ

Without risk, there is no need to hold any buffer, so that n = 0, which we formally show
below.

We now prove that n = nC = 0. Suppose to the contrary n > 0. Then, x(n) = x∗ and
v′(n) = 1 and

v(n) = n+
−λx(n) + x(n)ξ − (ρ− µ)n

ρ
.

Due to ρ > µ, it then follows that there exists ε > 0 such that n − ε > nC , x(n − ε) = x∗,
and

v(n− ε) + ε = ε+
v′(n− ε)

ρ

(
µ(n− ε)− λx+ xξ

)
≥ (ρ− µ)ε

ρ
+ v(n),

where we used the HJB equation at n− ε to substitute for v(n− ε) and that v′(n− ε) ≥ 1.
Therefore, v(n−ε)+ε > v(n). Thus, the issuer can achieve strictly higher payout by paying
out ε > 0, contradicting the hypothesis that n is the payout boundary.

Thus, whenever n > 0, the issuer immediately consumes n dollars and continues with
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zero at net worth. At n = 0, the issuer’s value function under narrow banking then reads:

vNarrow =
1

ρ

{(
ξ

λ

) ξ
1−ξ

− λ

(
ξ

λ

) 1
1−ξ

}
=

(1− ξ)

ρ

(
ξ

λ

) ξ
1−ξ

.

For n ≥ 0, the value function then becomes vNarrow + n. The volatility of net worth is zero
and the drift equals µn(0) = ρvNarrow > 0, i.e., under narrow banking, the issuer continuous
consumes according to dy = µn(0)dt. Note that µn(0) = (x∗)ξ − λx∗.

Finally, scaled user welfare under narrow banking becomes (see next Section for details)

wNarrow =
(1− ξ)

ξr̂
(x∗)ξ =

(1− ξ)

ξr̂

(
ξ

λ

) ξ
1−ξ

,

where r̂ is the discount rate applied to calculate user welfare.

F.2 Calculating Welfare

Given the optimal controls (x(n), σp(n)), we can calculate user welfare. User welfare — like
issuer valuation — scales with K, in that Wt = Kw(n) for nt = n. Scaled user welfare can
be written as

w(n) = Et

[∫ ∞

t

e−r̂(s−t)
(
u(xs)− xsfs + (µp

s − r)xs

)
ds
∣∣∣nt = n

]
(F.2)

where we discount at rate r̂ — which is a flexible choice. It can be equal to r, but does not
necessarily have to be. The rate r̂ reflects a “social planner’s” time preference, as opposed
to necessarily the risk-free rate — our numerical analysis uses r̂ = 5%. Note that xs, fs, and
u(xs) — which depends on σp

s — are functions of ns.
Thus, user welfare is expected discounted value of (i) convenience utility u(xs) and (ii)

capital gains (excess returns) (µs
p − r)xs from stablecoins, net of (iii) fees levied, xsfs.

Next, using (5), we get xξ−1
t = r + ft + η|σp

t | − µp
t . Inserting u(xt) =

xξ
t

ξ
− xtη|σp

t |, we
calculate for the flow utility term in round brackets:

u(xt)− xtft + (µp
t − r)xt =

xξ
t

ξ
− η|σp

t | − xtx
ξ−1
t =

(1− ξ)xξ
t

ξ
. (F.3)

Having solved for x(n), σp(n), we obtain µn(n) and σn(n). Then, the integral expression
(F.2) together with (F.3) implies that welfare w(n) satisfies the ODE:

r̂w(n) =
(1− ξ)x(n)ξ

ξ
+ w′(n)µn(n) +

w′′(n)σn(n)
2

2
. (F.4)

This ODE is solved subject to w′(n) = 0, since n reflects at the upper boundary n. Moreover,
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at the lower boundary n, the drift and volatility of n vanish so that

w(n) =
(1− ξ)xξ

ξr̂
,

where x is from (C.5). (This boundary condition holds in the limit n ↓ n).
With capital requirement, i.e., nt ≥ nC > n, the ODE remains unchanged, but the

boundary condition at the lower boundary changes to:

lim
n↓nC

r̂w(n) =
(1− ξ)xξ

ξ
+ lim

n↓nC
w′(n)µn(n).

F.3 Equity Issuance

We sketch the solution with costly equity issuance.
Since raising equity entails only a fixed cost F (though a variable cost component could

easily be introduced) and new equity investors are risk-neutral and competitive (i.e., they
require shares worth of one dollar for each dollar contributed), it is optimal for the issuer to
raise enough equity to restore net worth to the target level. Indeed, when the issuer raises
equity and incurs the fixed cost, each additional dollar raised requires giving up one dollar
of ownership. However, doing so increases the issuer’s valuation by v′(n) ≥ 1 dollars, with
equality only when net worth reaches the target level, n = n. As is standard, the issuer
raises equity when n reaches a lower threshold nE.

The argument to determine this lower boundary follows Bolton, Wang, and Yang (2025).
We consider the scaled fixed cost of equity issuance as f := F

K
. At the equity issuance

boundary nE, the issuer’s continuation payoff becomes

v(n)− (n− nE)− f.

To understand this condition, note that the issuer continues with valuation v(n) post-
issuance, yet must raise (n − nE) + F dollars of equity to bring net worth to n and to
cover the fixed costs.

The issuer optimally delays as much as possible to avoid incurring the fixed cost, i.e., the
issuer raises equity if and only if n reaches nE. Thus, at the equity issuance boundary, the
issuer will be indifferent between issuing equity and continuing, and liquidating, in that:

v(nE) = v(n)− f − (n− nE) = 0.

Using the HJB equation (14) and v′(n)− 1 = v′′(n) = 0, we get

v(n)− n =
(x∗)ξ − λx∗ − (ρ− µ)n

ρ
,

for x(n) = x∗ from (D.10). Thus, we can solve for the equity issuance boundary nE through:

nE = −
(
(x∗)ξ − λx∗ − (ρ− µ)n

ρ
− f

)
.
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We note now that the issuer can either proceed with raising equity at the lower boundary —
in which case the lower boundary coincides with nE — or can adopt the baseline strategy
— in which case there is no equity issuance and the lower boundary equals n.

Solution. The issuer optimally chooses the option that gives itself more “financial leeway.”
In particular, the lower boundary in the state space then becomes

n∗ = min{n, nE},

where n is from (C.4). The analysis goes through as before with this modified lower boundary.
Specifically, the value function satisfies the HJB equation (14). This HJB equation is then
solved subject the boundary conditions

v′(n)− 1 = v′′(n) = v(n∗) = 0.

The controls (x, σp) are determined according to the HJB equation analogous to the baseline
— see Appendix D.

Price with Equity Issuance. Since equity issuance is lumpy and induces a discrete jump
in net worth, implementing the stablecoin price requires some care. We now specify the price
function p(n) satisfying equation (19), given the controls (x, σp).

As in the baseline case, we focus on a price function that satisfies p(n) = 1—that is, the
peg is maintained at the target net worth level. However, when n∗ = nE and the solution
involves equity issuance, we may have limn↓nE σp(n) > 0 and p(nE) = limn↓nE p(n) < 1.
In this case, as n approaches nE, a discontinuous jump in price arises. Absent further
assumptions, this discontinuity creates an arbitrage opportunity as n → nE. To rule out such
arbitrage, we assume that users must surrender a portion of their stablecoin holdings—that
is, their holdings S, or equivalently their scaled holdings s, are reduced. This is analogous to
debt forgiveness in bankruptcy, where creditors relinquish part of their claims to enable the
firm to continue operating. Loosely speaking, in our context, users similarly forgo part of
their claims to facilitate the recapitalization of the issuer and allow it to continue operations,
thereby avoiding liquidation and the complete loss of stablecoin value.

To eliminate arbitrage, we assume that, per unit of stablecoin held, a user retains only
a fraction p(nE). This ensures that the dollar value of one unit of stablecoin remains un-
changed across the equity issuance event, effectively accounting for the “loss.” This adjust-
ment prevents arbitrage and supports the pricing rule in equation (19). We omit further
implementation details for brevity.

F.4 Dynamic Risk Taking: Section 6.2

We now provide the heuristic solution to the model variant with dynamic risk taking from
Section 6.2. We note that Section 6.2 introduces the parameter µ0 — to make clear that
the return drift µ0 from this Section need not coincide with the calibrated value for µ. In
what follows, to ensure analytical comparability to the baseline, we simply write µ = µ0. A
similar logic applies to σ0, where we set in this Appendix σ0 = σ.
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Dynamics of dn. We can rewrite the dynamics of nt given in

dnt = [(µ0 + ωtα)(nt + xt) + xtζt − xtr − xtκ]︸ ︷︷ ︸
µn(nt)

dt+ [(σ0 + ωtσα)(nt + xt)− xtσ
p
t ]︸ ︷︷ ︸

σn(nt)

dZt − dyt,

according to:

dnt =
[
µnt+xξ

t −λxt−ηxt|σp
t |+ωtα(nt+xt)

]
dt+[(σ+ωtσα)(nt+xt)−xtσ

p
t ]dZt−dyt. (F.5)

where ωt ∈ [wL, wH ] for constants wL ≤ wH . Above law of motion defines drift and volatility
of dn, i.e., µn(n) and σn(n). Note that we write µ for µ0.

Lower Boundary n. The same logic as in Lemma 2 applies, albeit with an additional
control ωt. Analogously to Lemma 2 from the baseline, the lower boundary in this model
variant is defined as:

n := inf
{
n ∈ R : max

x∈[0,x],ω∈[wL,wH ],σp≥0
µn(nt) ≥ 0 s.t. σn(nt) = 0

}
. (F.6)

Consider σp(n) > 0. Then, σn(n) = 0 implies xσp = (σ + ωσα)(x+ n) and

µn(n) = µn− λx+ xξ + ω(x+ n)α− η(σ + ωσα)(x+ n)

for x(n) =: x.
Optimizing µn(n) over ω, we get

ω(n) = ω := wL + (wH − wL)I{α ≥ ησα}.

Next, we can optimize over x to obtain:

x =

(
ξ

λ+ ησ − ω(α− ησα)

) 1
1−ξ

Finally, we can solve for n by solving µn(n) under ω = ω and x = x:

n =

(
xξ − λ̂x− ησx

µ̂− ησ

)

where
µ̂ := µ+ ω(α− ησα) and λ̂ := λ− ω(α− ησα).

As in the baseline, we also consider the second case where n+ x(n) = 0.
Overall, we obtain:

n =

−
(

xξ−λ̂x−ησx
µ̂−ησ

)
if µ̂− (1− ξ)(r + κ) > ησ

−
(

1
r+κ

) 1
1−ξ if µ̂− (1− ξ)(r + κ) ≤ ησ

(F.7)
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Expression F.7 illustrates that the lower boundary is determined analogously to the baseline
and risk-taking results in a transformation of the parameters µ and λ (toward µ̂ and λ̂ =
r + κ− µ̂, respectively). In addition, the level of x is determined similarly to the baseline.

HJB Equation. The issuer’s value function satisfies Vt = Kv(nt). Given the law of motion
of net worth in (F.5), the scaled value function v(n) solves on the endogenous state space
(n, n) with dy = 0:

ρv(n) = max
σp,x,ω∈[wL,wH ]

{
v′(n)

(
µn− λx+ xξ − ηx|σp|+ ω(x+ n)α

)
+

v′′(n)

2

(
(σ + ωσα)(n+ x)− xσp

)2}
. (F.8)

The usual smooth pasting and super contact conditions apply at the upper boundary n,
that is, v′(n)− 1 = v′′(n) = 0. One can show that the value function is strictly concave. In
addition, we have v(n) = 0.

We now determine the optimal controls in the interior of the state space. Also recall the
definition of the issuer’s effective risk aversion, i.e., γ(n) = −v′′(n)

v′(n)
.

Optimization with respect to σp(n). As in the baseline, we can solve for optimal σp(n)
via

σp(n) = max

{
0,

(σ + ωσα)(x+ n)

x
− η

γ(n)x

}
.

One can show that when σp(n) > 0, we have ω = ω and x = x.

Optimization with respect to ω. The optimization with respect to ω yields:

ω =


wL if α < σασn(n)γ(n)

ω̂ ∈ [wL, wH ] if α = σασn(n)γ(n)

wH if α > σασn(n)γ(n).

The choice of ω or, equivalently, Ω = ω(x+ n) simplifies as follows.

Note that when α ≥ ησα, setting ω = wH is optimal in any state n, in that ω = wH . To
see this, observe that the issuer could always raise ω(x+ n) by one marginal unit and raise
xσp by σα units. This change leaves, by construction, the volatility σn(n) unchanged, and
raises the drift µn(n) by α− ησα. It is therefore optimal when α ≥ ησα.

Otherwise, when α < ησα, then ω = wL whenever σp(n) > 0, i.e., for n < ñ. To see
this, suppose to the contrary that ω(n) > wL and σp(n) > 0. Then, the issuer could lower
ω(n)(x+ n) by one (marginal) unit and xσp(N) by σα units, whilst leaving volatility σn(n)
unchanged. However, this change raises the drift by ησα − α > 0, and thus is profitable.
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Optimization with respect to x. When σp(n) > 0, then x = x. When σp = 0, the first
order condition with respect to x becomes

−λ+ ξxξ−1 = (σ + ωσα)
(
(σ + ωσα)(x+ n)

)
γ(n).

Price. As in the baseline, the price satisfies p(n) = exp
(
−
∫ ñ

n
σp(n)
σn(n)

dn
)
.

F.5 Demand Shocks — Solution and Proof of Proposition F.1

We extend the model by introducing shocks to the stablecoin demand scaler, Kt = K:

dKt

Kt

= µKdt+ σKdZ
K
t , (F.9)

where µK is a constant, σK ≥ 0, and ZK
t is a standard Brownian motion. The correlation

between the demand shock, dZK
t , and the shock to the issuer’s reserve assets, dZt, is ϕdt —

that is, dZt · dZK
t = ϕdt.

The users take as given the price process:

dpt
pt

= µp
tdt+ σp

t dZt + σp
K,tdZ

K
t , (F.10)

where drift µp
t , and the shock loadings σp

t and σp
K,t are endogenously determined. We define

Σp
t :=

√
(σp

t )
2 + (σp

K,t)
2 + 2ϕσp

t σ
p
K,t, (F.11)

that is, the instantaneous volatility of dpt/pt. Define the scaled stablecoin value as xt =
Xt

Kt
,

analogously to the baseline.
In analogy to (2), the users’ utility from holding stablecoins is given by Ktu(xt), where

u(xt) is defined as follows

u(xt) =
xξ
t

ξ
− xtη|Σp

t |. (F.12)

Going through the same steps as in Appendix B (and replacing σp
t by Σp

t ), the users’ optimal
demand for stablecoin is scaled with Kt, i.e., Xt = Ktxt with

xt =

(
1

r − µp
t + η|Σp

t |+ ft

) 1
1−ξ

. (F.13)

This expression is analogous to the stablecoin demand (5) in the baseline model. Also, recall
that Xt = Stpt by market clearing. Everything else remains as in the baseline.
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F.5.1 Dynamics of nt and Xt

Next, we invert Xt = Kt

(
1

r+ft−µp
t+η|Σp

t |

) 1
1−ξ

to obtain

µp
t =

(
−K1−ξ

t Xξ−1
t + ft + r + η|Σp

t |
)
. (F.14)

That is,

dpt = (r + ft)ptdt− pt

(
Xξ−1

t K1−ξ
t − η|Σp

t |
)
dt+ ptσ

p
t dZt + ptσ

p
K,tdZ

K
t . (F.15)

Next, multiply both sides of (F.15) by St and use Xt = Stpt (market clearing) to obtain

Stdpt = (r + ft)Xtdt−
(
K1−ξ

t Xξ
t − ηXt|Σp

t |
)
dt+Xtσ

p
t dZt +Xtσ

p
K,tdZ

K
t .

Ito’s product rule implies d(Stpt) = dStpt + ptdSt + dStdpt. Therefore, we calculate

dXt = (r+ft)Xtdt−
(
K1−ξ

t Xξ
t − ηXt|Σp

t |
)
dt+Xtσ

p
t dZt+Xtσ

p
K,tdZ

K
t +dSt(pt+dpt). (F.16)

Using the dynamics of reserve assets

dAt = At(µdt+ σdZt) + ftXtdt+ dSt(pt + dpt)− κXtdt− dYt,

we calculate the dynamics of net worth via dNt = dAt − dXt:

dNt =
[
µNt − λXt +Xξ

tK
1−ξ
t − ηXt|Σp

t |
]
dt (F.17)

+
[
σ(Nt +Xt)−Xtσ

p
t ]dZt −Xtσ

p
K,tdZ

K
t − dYt.

Note that one could also write down the law of motion of net worth more directly as ac-
counting identity. Also, recall that λ = r + κ− .

We omit time subscripts in what follows. Next, we calculate the dynamics of scaled liquid
net worth n by combining aforementioned law of motion of N with the law of motion of K
in (F.9). For this sake, calculate using Ito’s Lemma

dn = d

(
N

K

)
=

dN

K
− n

K
dK − 1

K2
< dN, dK > +

2N

2K3
< dK, dK >

As such, using (F.17) and (F.9), as well as dy = dY
K
, we calculate

dn =
[
(µ− µK)n− xλ+ xξ − ηxΣp

]
dt+ σK

[
nσK + xσp

K − ϕ
(
σ(x+ n)− xσp

)]
dt

− [nσK + xσp
K ]dZ

K +
[
σ(n+ x)− xσp

]
dZ − dy. (F.18)

We now denote the volatility on dZ by σn(n) = σ(x + n) − xσp and the volatility on dZK

by σK
n (n) = −(nσK + xσp

K). We denote the drift of dn by µn(n).
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F.5.2 Issuer Problem and Solution

The issuer chooses its issuance (dSt)t≥0, the fee policy (ft)t≥0, and (dYt)t≥0 maximizes

V0 = E
[∫ ∞

0

e−ρtdYt

]
,

subject to (F.17), (F.9), At ≥ 0, and dYt ≥ 0.28

As in the baseline, we consider scaled quantities and the payoff-relevant state (be-
sides scaling) is n = nt. Since (dSt, ft) affects dnt from (F.18) only via (xt, σ

p
t , σ

p
K,t), we

can solve the issuer’s problem by considering a relaxed problem, where the issuer chooses
(xt, σ

p
t , σ

p
K,t, dyt)t≥0. One can then show that this choice can be implemented, analogously

to the arguments from Appendix D.5. See Appendix F.5.6.
In what follows, we restrict attention to strategies that implement σp

t , σ
p
K,t ≥ 0. This

assumption resembles a standard monotonicity assumption in security design and optimal
contracting: The stablecoin price must load positively on the shocks, in that it can never
decrease following positive demand or reserve shocks.29

The following Proposition summarizes the key findings of this model variant.

Proposition F.1 (Solution with Demand Shocks). With demand shocks, the issuer’s value
function solves (F.20) subject to v(n) = v′(n)− 1 = v′′(n) = 0. The following holds:

1. For n > 0, we have σp
K = 0 and σp = σp(n) = max

{
0, σ(x+n)−ϕnσK

x
− η

xγ(n)

}
. Other-

wise, for n < 0, price volatility terms satisfy:

σp = max

{
0,

σ(n+ x)

x

(
1− η

γ(n)π(n)

)}
σp
K = max

{
0, −nσK

x

(
1− η

γ(n)π(n)

)}
,

where γ(n) = −v′′(n)
v′(n)

and π(n) is defined in (F.23).

2. The stablecoin price satisfies

p(n) = exp

(
−
∫ ñ

n

σp(ν)

σn(ν)
dν

)
,

where ñ = inf{n′ ∈ (n, n) : σp(n) = σp
K(n) = 0 for all n ≥ n′}.

28In addition, the regularity condition xt ≤ x applies, but x is assumed to be sufficiently large so that
this constraint never binds. As in the baseline, we omit the constraint At ≥ 0 in the HJB optimization —
one could verify ex-post it does not bind. While we do not provide a formal verification, we do so in our
numerical analysis.

29In principle, negative values of σp
K could be optimal when n > 0 and η is sufficiently small. Although

such cases cannot be ruled out analytically, they appear to be corner or edge cases. Accordingly, we do not
consider them further. Moreover, a negative σp

K would imply that prices decline in response to a positive
demand shock—a counterfactual scenario we do not highlight.
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F.5.3 HJB Equation and Solution Details

We now solve the dynamic optimization and derive the HJB equation. Doing so, we con-
jecture and verify that V (N,K) = v(n)K. To solve for the issuer’s value function, we use
shorthand notation V = V (N,K) and denote partial derivatives by subscripts. We conjec-
ture that in the interior of the endogenous state space, there is no consumption/payout, i.e.,
dy = 0. Then, by dynamic programming, the value function V solves in the interior of the
state space the following HJB equation:

ρV = max
X,σp,σp

K

{
VKKµK +

VKK(σKK)2

2
+ VN

[
µN −Xλ+K1−ξXξ − ηX|Σp|

]
+
VNN

2

([
σ(N +X)−Xσp

]2
+ (Xσp

K)
2 − 2ϕσp

KX
[
σ(N +X)−Xσp

])
(F.19)

+ VNKσKK
(
−Xσp

K + ϕ
[
σ(N +X)−Xσp

])}
.

Next, calculate for V = V (N,K) = Kv(n) the derivatives VK = v(n) − v′(n)n, VNN =
v′′(n)/K, VKK = v′′(n)n2/K, VKN = −v′′(n)n/K. Inserting these relations back in to (F.19)
and simplifying yields in the interior of the state space:

(ρ− µK)v(n) = max
x,σp≥0,σp

K≥0

{
v′(n)

[
(µ− µK)n− λx+ xξ − ηx|Σp|

]
+ v′′(n)

[
(nσK + xσp

K)
2

2
+

(σ(n+ x)− xσp)2

2

]
(F.20)

− v′′(n)ϕ(nσK + xσp
K)(σ(n+ x)− xσp)

}
.

The state space is characterized by an interval (n, n) with endogenous upper and lower bound-
aries. The upper boundary n is a payout boundary and (scaled) consumption/dividends dD
causes n to reflect at n. The upper boundary satisfies the standard smooth pasting and
super contact conditions, i.e.,

v′(n)− 1 = v′′(n) = 0.

The lower boundary is determined analogously to the baseline as follows:

n := inf
{
n ∈ R : max

x∈[0,x],σp≥0
µn(n) ≥ 0 s.t. σn(n) = σK

n (n) = 0
}
,

where µn(n), σn(n), and σK
n (n) are (implicitly) defined in (F.18). We have µn(n) = σn(n) =

σK
n (n) = 0, and thus v(n) = 0 at the lower boundary, analogously to the baseline.
We now turn to analyze the optimal controls and characterize them as functions of n

only.
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F.5.4 Controls

We can restate the optimization in (F.20) by dividing both sides by v′(n) and using γ(n) =
−v′′(n)
v′(n)

. The optimization in (F.20) becomes then equivalent to:

max
x,σp≥0,σp

K≥0

{
(µ− µK)n− xλ+ xξ − xη|Σp|

]
− γ(n)

[
(nσK + xσp

K)
2

2
+

(σ(n+ x)− xσp)2

2
− ϕ(nσK + xσp

K)(σ(n+ x)− xσp)

]}
where Σp is a function of σp and σp

K .
Suppose that σp > 0 and σp

K > 0. Then, they solve the first-order conditions:

xσp = σ(n+ x)− η

γ(n)

(
σp + ϕσp

K

Σp

)
− ϕ(nσK + xσp

K),

xσp
K = −nσK − η

γ(n)

(
σp
K + ϕσp

Σp

)
+ ϕ(σ(n+ x)− xσp).

We can rearrange to obtain:(
x+

η

γ(n)Σp

)
σp = σ(n+ x)− η

(
ϕσp

K

γ(n)Σp

)
− ϕ(nσK + xσp

K)(
x+

η

γ(n)Σp

)
σp
K = −nσK − η

(
ϕσp

γ(n)Σp

)
+ ϕ(σ(n+ x)− xσp)

Thus, we can solve:30

σp =
Σp σ(n+ x)

Σp x+ η
γ(n)

, σp
K = − Σp nσK

Σp x+ η
γ(n)

. (F.21)

It follows that σp
K = 0 whenever n ≥ 0. Under these circumstances, we get Σp = σp and

σp(n) = max

{
0,

σ(x+ n)− ϕnσK

x
− η

γ(n)x

}
(F.22)

Next, we define

π(n) :=
√
σ2(n+ x)2 + n2(σK)2 − 2ϕnσ(n+ x)σK . (F.23)

Inserting (F.11) in (F.21) and using our definition of π(n), as well as after accounting for

30Note that (F.21) suggests that a negative σp
K may be optimal in certain edge cases—particularly when

n > 0 and η is small. However, in this region, the issuer is generally less risk-averse (compared to the n < 0
case), and it is typically optimal to set σp

K = 0, even absent the constraint σp
K ≥ 0. Overall, instances where

σp
K < 0 is optimal are rare and confined to corners of the parameter space. By contrast, choosing a negative

σp is never optimal, so the constraint σp ≥ 0 is effectively non-binding—that is, if σp = 0 is chosen, it would
also be optimal without the constraint.
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σp, σp
K ≥ 0, we obtain for n < 0:

σp = σp(n) = max

{
0,

σ(n+ x)

x

(
1− η

γ(n)π(n)

)}
(F.24)

σp
K = σp

K(n) = max

{
0,

−nσK

x

(
1− η

γ(n)π(n)

)}
. (F.25)

We note that when n < 0, then σp(n) > 0 ⇐⇒ σp
K(n) > 0, i.e., both volatilities are positive

if and only if γ(n)π(n) > η. Also note that σp(n) = 0 implies σp
K(n) = 0.

Accordingly, for n < 0, the standard deviation of price becomes

Σp = max

{
0,

1

x

(
π(n)− η

γ(n)

)}
, (F.26)

while, for n ≥ 0, we have Σp = σp.
Finally, the first-order condition with respect to x becomes

−λ+ ξxξ−1 −
[
σ2(n+ x)− ϕnσKσ

]
min

{
γ(n),

η

π(n)

}
= 0,

where γ(n) > η
π(n)

if and only if σp > 0.
As in the baseline, we again define:

ñ = inf{n′ ∈ (n, n) : σp(n) = σp
K(n) = 0 for all n ≥ n′}

In our analysis, we focus on parameters such that ñ ∈ (n, n), i.e., there exist values of
n ∈ (n, n) such that σp(n) > 0 or σp

K(n) > 0.

F.5.5 Price

We determine the token price as a function of n, i.e., pt = p(nt). When σp(n), σp
K(n) > 0,

the price p(n) solves the following ODEs:

σpp(n) = p′(n)
[
σ(x+ n)− xσp] = p′(n)

(
ησ(x+ n)

γ(n)π(n)

)
(F.27)

σp
Kp(n) = p′(n)

[
− nσK − xσp

K ] = −p′(n)

(
ηnσK

γ(n)π(n)

)
. (F.28)

Note that when σp(n), σp
K(n) > 0, then

σp
K =

(
σ(x+ n)

−nσK

)
σp,

so these two equations in (F.27) are equivalent.
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Suppose σp(n) > 0, so that σp(n) = σ(n+x)
x

(
1− η

γ(n)π(n)

)
, as well as

σn(n) = (n+ x)σ − xσp(n) =
ησ(n+ x)

γ(n)π(n)
.

We then can solve (F.27) subject to p(ñ) = 1 to obtain:

p(n) = exp

(
−
∫ ñ

n

σp(ν)

σn(ν)
dν

)
. (F.29)

as desired.
This expression also applies when σp(n) > 0 = σp

K(n).

F.5.6 Implementing (x, σp, σp
K) via (dS, f)

Having solved for (x, σp, σp
K), as well as the price p(n) as functions for n (see (F.29)), we

determine the optimal (scaled) supply process ds and fee policies f to implement the optimal
controls (x, σp, σp

K). The optimal controls pin down µn(n), σn(n) and σK
n (n) by means of the

law of motion (F.17), that dn = µn(n)dt+ σn(n)dZ + σK
n (n)dZK .

First, note that, given x(n), p(n), the supply process s(n) is uniquely determined via

s(n) = x(n)
p(n)

. Similar to the arguments from Appendix D.5, one could further characterize
the dynamics of ds which follow

ds(n) = µs(n)dt+ σs(n)dZ + σs
K(n)dZ

K .

One could determine the drift and volatility terms — omitted here, since not essential.
Next, calculate by Ito’s Lemma:

µp(n)p(n) = p′(n)µn(n) +
p′′(n)

2

[
(σK

n (n))2 + (σn(n))
2 + 2ϕσK

n (n)σn(n)
]
.

Using (F.13), we obtain

f(n) = x(n)ξ−1 − ηΣp(n)− r + µp(n),

which pins downs the fee process as a function of n.

G Commitment and Continuous Price Process

G.1 Relaxing Long-Term Commitment

While we assume that the issuer commits at time t = 0 to a long-term strategy (St, ft, dYt)
— or equivalently, as we have shown, (xt, σ

p
t , dyt)t≥0 — we argue that it is sufficient to

instead have short-term commitment paired with a restriction on dividend payouts. As
shown in Appendix D—and in particular, Appendix D.5—the optimal controls (xt, σ

p
t )t≥0

can be implemented through an appropriate choice of fees, and issuance (ft, dst)t≥0.
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In essence, to implement the optimal controls (xt, σ
p
t )t≥0, it suffices for the issuer to

commit, at each time t, to strategies over the infinitesimal interval [t, t+dt). Specifically, this
involves: (i) setting issuance as dst = µsdt + σsdZ, (ii) choosing a fee f , and (iii) ensuring
consumption satisfies dy ≤ n − n, where n is defined in (C.4). This local commitment
implements the optimal strategy. In fact, it is equivalent to allowing the issuer to select the
auxiliary controls x(n) and σp(n) for the next instant.

By the dynamic programming underlying the determination of the optimal controls
pinned down by the HJB equation (14), this short-term commitment implements the op-
timal strategy.

In the equilibrium, all quantities and controls are functions of the state variable n. How-
ever, our equilibrium concept — introduced in Section 2 — differs from the standard notion
of a Markov Perfect Equilibrium. In our setting, at time t, the issuer’s control — specifically,
the issuance ds over [t, t+ dt] — depends not only on the current state nt = n, but also on
the realization of the shock dZt, which effectively determines the next state nt+dt. A similar
logic applies to the choice of σp(n): the issuer effectively commits to an issuance strategy
that governs the price change over the next instant. Intuitively, the issuer’s controls are
contingent not only on the current state nt = n, but also on the future state nt+dt — a
feature that, as shown in Jermann and Xiang (2025b), is central to enabling commitment.

In a Markov Perfect Equilibrium, by contrast, the controls—specifically, issuance—must
depend only on the current state n, and not on the realization of the shock, and hence not
on the next-period state.

G.2 Generalized Price Process and Issuance Strategy: Verifying
the Optimality of a Continuous Price Path

In the baseline solution, the issuer’s strategy St — or st/K — and the price process pt are
continuous diffusion processes. To solve for the optimal strategy, we focused on a continuous
price process — which only loads on fundamental shocks dZt — and then determined the
issuance. One might be concerned that the focus on continuous price and issuance processes,
as well as the focus on fundamental uncertainty dZt, are restrictive. Here, we show that the
issuer optimally implements continuous price and issuance, whereby price and issuance only
load on dZt. This Appendix confirms the equilibrium price is continuous and follows (??).

We now allow for a generalized price process, which is akin to allowing for generalized
issuance (as issuance controls price):

dpt
pt

= µp
tdt+ σp

t dZt + dℓt.

Here, dℓt is a general process, which can be deterministic and stochastic. However, the
increments of ℓt and Zt are (without loss of generality) orthogonal — that is, dℓt · dZt = 0.

Importantly, if stochastic, dℓt captures the stochastic price/issuance unrelated to dZt, in
that dℓt is orthogonal to dZt. It satisfies standard regularity conditions (i.e., it is almost surely
finite and square integrable). Since the price process is controlled by issuance, allowing for
general dℓt is akin to allowing for generalized issuance. All other elements remain unchanged.

We solve for the dynamics of the state variable n under these generalized assumptions,
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and write down the HJB equation. Notably, we assume that price fluctuations related to dℓt
do not affect the users’ convenience utility — i.e., they are not “priced.” We then show that,
even under this favorable treatment of price adjustments dℓt, stipulating dℓt = 0 is optimal.
This implies that price process pt and issuance strategy st are continuous diffusion processes
in optimum.

User Optimization and Dynamics of x. Analogously to the baseline, (B.4) holds, in
that:

xt =

 dt

rdt+ ftdt− η|σp
t |dt− Eu

t

[
dpt
pt

]
 1

1−ξ

,

where Eu
t is the time-t expectation under user information set.

Next, rewrite this relationship to obtain

Eu
t

[dpt
pt

]
= µp

tdt+ Eu
t [dℓt] =

(
−xξ−1

t + ft + r + η|σp
t |
)
dt. (G.1)

We note that dℓt might represent a lumpy price change that occurs with an atom of prob-
ability, so Eu

t [dℓt] is not of order dt. We also allow the fee process to be lumpy (to poten-
tially offset dℓt), but, instead of introducing additional notation, we would capture this by
ft ∈ {−∞,∞} where ft = +∞ captures a lump-sum fee and ft = −∞ captures a lump-sum
rebate (transfer to users).

Next, calculate

dpt = ptµ
p
tdt+ ptσ

p
t dZt + ptdℓt

= (r + ft)ptdt− pt

(
xξ−1
t − η|σp

t |
)
dt+ ptσ

p
t dZt + pt(dℓt − Eu

t [dℓt]).

Then, multiply both sides of above by st and use xt = stpt (market clearing) to obtain

stdpt = (r + ft)xtdt−
(
xξ
t − ηxt|σp

t |
)
dt+ xtσ

p
t dZt + xt(dℓt − Eu

t [dℓt]).

Ito’s product rule implies d(stpt) = dstpt + ptdst + dstdpt. Then, we calculate for xt = stpt:

dxt = (r + ft)xtdt−
(
xξ
t − ηxt|σp

t |
)
dt+ xtσ

p
t dZt + xt

(
dℓt − Eu

t [dℓt]
)
+ dst(pt + dpt). (G.2)

Dynamics of n. The reserves follow

dAt = µAtdt− κXtdt+ σAtdZt + ftXtdt+ dSt(pt + dpt)− dYt,

We can calculate for nt = Nt/K = At/K − xt:

dnt =
[
µ(nt+xt)−λxt+xξ

t−ηxt|σp
t |
]
dt+

[
σ(nt+xt)−xtσ

p
t ]dZt−dyt−xt

(
dℓt−Eu

t [dℓt]
)
. (G.3)
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(The net worth could be also derived more directly, but we provide details here, since we are
dealing with a different price process.)

Crucially, the issuer’s commitment to a strategy implies Eu
t = Et, i.e., the issuer’s and

the user’s expectation operators coincide at any point in time.

HJB Equation. We note dℓt enters the issuer’s payoff only via the state variable nt.
When dℓt is deterministic, i.e., Et[dℓt] = dℓt, then the issuer’s commitment immediately

implies dℓt = Eu
t [dℓt]. In this case, dℓt drops out and the law of motion of n is as in the

baseline. It follows that dℓt is payoff-irrelevant, since nt is the only state variable and dℓt
enters the issuer’s payoff only via nt. Then, dℓt is payoff-irrelevant and can be set to zero.

Since dℓt affects the state variable only via its deviation from the mean dℓt −Eu
t [dℓt] and

deterministic dℓt is payoff irrelevant, we can without loss of generality focus on a stochastic
process dℓt that satisfies Et[dℓt] = 0 and dℓt · dZt = 0. Thus, dℓt captures price movements
from randomization by the issuer. We will show that such randomization is sub-optimal,
notably, even if we do not assume additional risk-aversion for the user regarding price fluc-
tuations stemming from such randomization. We focus on dℓt following a Levy process.

By the Levy-Ito decomposition, we can write the process dℓ = dℓt as mean-zero process
according to:

dℓt = σℓdZ
ℓ
t +∆ℓ

t

(
dN ℓ

t − Et[dN
ℓ
t ]
)
, (G.4)

where dN ℓ
t ∈ {0, 1} is a jump process with Et[dN

ℓ
t ] = Λℓ

tdt — the intensity Λℓ
t can potentially

be infinite, capturing lumpy price adjustements with an atom of probability. In addition,
dZℓ

t is a Brownian motion orthogonal to fundamental shocks dZt, i.e., dZ
ℓ
t ·dZt = 0. Without

loss of generality, there is only one jump component.
The HJB equation then satisfies:

ρv(n) = max
σp,x≥0

{
v′(n)

(
µn− λx+ xξ − ηx|σp|

)
+

v′′(n)

2

[
σ(x+ n)− xσp

]2}
(G.5)

max
σℓ

v′′(n)x2σ2
ℓ

2
+ max

∆ℓ,Λℓ≥0
Λℓ
[
v(n− x∆ℓ)− v(n) + v′(n)x∆ℓ

]
.

with upper boundary v, satisfying v′(n) − 1 = v′′(n) = 0. In addition, there is some lower
boundary n with v(n) = 0.

Proving dℓt = 0. We conjecture that the value function is strictly concave, i.e., v′′(n) < 0
for n ∈ (n, n). Given this conjecture, we will show that setting dℓt = 0 is optimal so that
the above HJB equation collapses to (D.6) or, equivalently, (14). Thus, the value function
coincides with the one of the baseline, which, as we have shown in Appendix D, is strictly
concave, verifying our conjecture.

First, note that due to concavity, v′′(n) ≤ 0, we have σℓ = 0 for all n ∈ (n, n).

Suppose Λℓ > 0. The term
[
v(n − x∆ℓ) − v(n) + v′(n)x∆ℓ

]
is zero for ∆ℓ = 0, while it

has derivative with respect to x∆ℓ of U(x∆ℓ) = −v′(n− x∆ℓ) + v′(n). Due to concavity, it

follows that max∆ℓ,Λℓ≥0 Λ
ℓ
[
v(n− x∆ℓ)− v(n) + v′(n)x∆ℓ

]
= 0. Overall, dℓt = 0.
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H Calibration Details

We provide additional details regarding our parameter calibration in Section 4.1.

Calibrating µ and σ. For the parameters µ and σ, we calibrate them based on the
disclosed information about Tether’s reserve asset portfolio. Tether is the largest stablecoin
issuer. Our data is from Tether’s latest financial report as of December 31, 2024.

Tether’s reserves are allocated as follows: 82.3% in cash and cash equivalents (primarily
T-bills), 3.7% in precious metals (primarily gold), 5.5% in Bitcoin, 5.7% secured loans, and
2.77% other investments — where we exclude 0.01% corporate bonds and round to the first
decimal. To choose µ and σ, we obtain the annualized returns of the individual components
over the past two years (relative to the Tether report date on 12/31/2024) and compute a
weighted average of annualized returns and return volatility. We do not model cross-asset
correlations explicitly. Instead, we aggregate volatilities as a simple weighted sum.31

For Bitcoin, annualized returns in 2023 and 2024 were 155%, and 121%, respectively.
Based on these numbers, we assume a conservative return of 100%, which is below the
annualized return in the past two years. We make this assumption since 2024 was an ex-
traordinary year for Bitcoin, also due to the regulatory approval of Bitcoin ETF and the
election of a crypto-friendly administration in the U.S. We directly calculate the annualized
return volatility of Bitcoin over the same time period, which equals about 49%.32 This is
lower than the annualized return volatility in previous years; in comparison, the annualized
return volatility was about 64% for the calendar year 2022 and even higher in Bitcoin’s
earlier days.33

For precious metals, approximated by gold, we calculate an average annual return of
about 19.7% based on the arithmetic average of a 12.69% return in 2023, and 26.66% in
2024, using the gold ETF (ticker: GLD) and data from Yahoo Finance. As for Bitcoin, we
calculate the annualized return volatility of Gold—using the gold ETF (ticker: GLD)—from
01/01/2023 to 12/31/2024. We obtain an annualized return volatility of 14.3%.

For cash and cash equivalents, we take the T-bill ETF (with ticker BIL). For 2023-2024,
we calculate an annualized return of about 5%, and an annualized volatility of 0.27%. For
secured loans, we assume that they are similar in terms of risk and return to relatively short-
term investment-grade corporate bonds, as those contained in the ETF with ticker SLQD.
For SLQD and over 2023-2024, we calculate an annualized return of about 5.4% and an
annualized return volatility of 2.4%. This estimate is in line with the volatility for secured

31This is akin to assuming perfectly positive correlations and therefore provides a conservative upper bound
on portfolio volatility—a stance justified by tail risks and other risks not reflected in realized volatility over
the past two years. As the contribution breakdown below shows, Bitcoin and the Other investments bucket
dominate the portfolio’s volatility, with the remaining assets playing a minor role. Since Other investments
likely contain crypto-assets, their correlation with Bitcoin is plausibly high and positive.

32For an asset, we calculate annualized returns and their standard deviation as follows. First, we calculate
daily percentage returns based on adjusted closing prices from 01/01/2023 to 12/31/2024. Second, we
calculate the standard deviation of daily returns over the same time period. Third, multiply this number
by

√
#Trading Days, where we assume 365 trading days for cryptocurrency and 252 trading days for more

standard assets. The results are similar using log returns or percentage returns.
33For instance, industry reports by Fidelity and Blackrock suggest that Bitcoin exhibited higher volatility

in earlier years, with annualized return volatility often being close to or exceeding 100%.
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loans reported in an industry report by Invesco.
For other investments, we assume that these comprise other cryptocurrencies and altcoins

riskier than Bitcoin currently or comparable to Bitcoin in its early days. We set the return
of other investment to the same level as that for Bitcoin, i.e., 100%, but assume they are
twice as risky and set the volatility to 100% — as we verify, this number coincides with the
annualized return volatility of Solana from 2023 to 2024 which we calculate as 99%. Thus,
we calculate:

µ = 0.823 · 5%︸ ︷︷ ︸
T-Bills

+0.055 · 100%︸ ︷︷ ︸
Bitcoin

+0.037 · 19.7%︸ ︷︷ ︸
Gold

+0.057 · 5.4%︸ ︷︷ ︸
Secured Loans

+0.0277 · 100%︸ ︷︷ ︸
Other

≈ 13.4%,

σ = 0.823 · 0.27%︸ ︷︷ ︸
T-Bills

+0.055 · 49%︸ ︷︷ ︸
Bitcoin

+0.037 · 14.3%︸ ︷︷ ︸
Gold

+0.057 · 2.4%︸ ︷︷ ︸
Secured Loans

+0.0277 · 100%︸ ︷︷ ︸
Other

≈ 6.35%.

Consequently, we set µ = 0.134. For volatility, we round up and set σ = 0.07 accounting
for potential tail risks other risks, which realized volatility over the last few years does not
capture.

USDT convenience yield. As explained in the main text, the convenience yield of USDT
is used to calibrate ξ that governs the users’ demand elasticity (see (5)). Following Ma et al.
(2023), we match the marginal convenience to the lending rate offered on DeFi lending
protocols, specifically Aave (one of the largest protocols). We use Aavescan to retrieve
historical data on USDT lending rates in 2024, which are available from the time of download
(in our case, 02/09/2025) roughly one year back to 02/16/2024. We calculate the average
lending rate (after winsorizing at 2% and 98% levels) in year 2024 (based on the available
datapoints) and obtain lending rate of about 6.4%. Solving (136.6)ξ−1 = 0.064 yields ξ =
44.1%.34 Again, recall that 136.6 is the market cap of USDT in $ billions, as discussed in
Section 4.1.

34The rationale is that in equilibrium, stablecoin users must be indifferent at the margin between holding
the stablecoin for the convenience yield or lending it out on DeFi platforms (e.g., Aave).
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