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1 Introduction
Recent studies show that COVID-19 had positive impacts on air quality in the short

term. Road congestion and air quality improved when production and travel were suspended
because of the lockdown (Dang and Trinh, 2020; Fan et al., 2020; He et al., 2020; Ming et
al., 2020). The pandemic also encourages the popularity of remote work (Bartik et al., 2020;
Dingel and Neiman, 2020), and existing studies have shown that remote work alleviates
traffic congestion and air pollution (Pérez et al., 2004; Giovanis, 2018).

However, the widespread impacts of COVID-19 could invite behavioral changes in travel
patterns that may in turn worsen air quality. For example, during the pandemic, people
become much more cautious about taking public transit, such as buses and subways, because
of the fear of being infected. As a result, many people may shift to private vehicles when
they travel in the city (Abdullah et al., 2020; Bucsky, 2020; Kwok et al., 2020). If such
changes persist over time, road congestion will worsen. This issue is well documented by the
literature—motor vehicle emissions contribute a significant portion of air pollution, especially
in metropolitan areas (Chan and Yao, 2008; Yang et al., 2011). Traffic congestion particularly
exacerbates air pollution because it leads to frequent stops and acceleration (Zhang and
Batterman, 2013). Thus, reducing traffic congestion can have substantial impacts on air
quality and public health (Currie and Walker, 2011). One way to reduce congestion is to
promote public transportation. Studies show that public transportation, compared to private
vehicles, can effectively reduce the volumes of volatile organic compounds and NOx (Shapiro
et al., 2016). If the pandemic indeed led to a shift in how people travel from public transit
to private vehicles, then air quality would worsen in the long run.

In this paper, we investigate the short- and long-term impacts of the COVID-19 pan-
demic on the main pollutant caused by vehicles, nitrogen oxide (NO2), and traffic congestion
in China and link them to changed human travel behavior. China is one of the few countries
that has controlled the nationwide spread of the pandemic since March 2020, which allows
us to use a difference-in-differences (DID) approach to study the dynamic impacts of the
pandemic on air pollution and human travel behavior before and after the pandemic was
contained.

First, we investigate the impact of the COVID-19 pandemic on road congestion and
NO2 concentration in different stages of the development of the pandemic. Consistent with
previous studies, we find that congestion and daytime NO2 concentration dropped by 20.2
percent and 34.2 percent, respectively, during the lockdown period. However, the improve-
ments disappeared when local governments terminated their lockdown policies. Our results
show that compared to the pre-pandemic levels, the city congestion index and daytime NO2
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concentration increased by 5.3 percent and 6.5 percent, respectively, sixteen weeks after the
end of lockdown. Although the pandemic led to short-term improvements, mostly because
of the significant reduction of socioeconomic activities, it worsened air quality in the long
run. The results remain robust under different specifications, measures, and samples.

The long-term increase in road congestion suggests that the COVID-19 pandemic might
have caused some persistent changes in human travel behavior. Indeed, we find evidence
for the shift in the mode of human travel from public transit to private vehicles. The
outbreak of the pandemic raises the relative cost of taking buses and subways because of
the potential risk of infection, which encourages people to rely more on private vehicles for
daily transportation. Once people adapt to that mode of travel, inertia may prevent people
from shifting back. Consistent with this explanation, we obtain three pieces of supporting
evidence. First, the number of public transit passengers in 36 major cities has not recovered
to pre-pandemic levels even six months after reopening, and auction prices of license plates
continues to grow. Second, using daily subway passenger data in eight metropolitan areas,
we find that the volume of subway passengers 16 weeks after reopening was 22.7 percent
lower than the pre-pandemic level, while road congestion rose by 10.3 percent during the
same period. Third, a heterogeneous analysis using the nationwide sample shows that the
rise of daytime NO2 emission only appeared in cities with high densities of public transit
before the pandemic.

Our study makes two contributions. First, we contribute to a growing literature that
explores the effects of COVID-19 policies on air quality. Recent studies have shown that
interventions to contain the spread of COVID-19, such as lockdown, social distancing, and
stay-at-home policies, significantly reduced the concentration of pollutants and improved air
quality in the short run (Dang and Trinh, 2020; Fan et al., 2020; He et al., 2020; Ming et al.,
2020; Otmani et al., 2020; Singh and Chauhan, 2020; Venter et al., 2020; Almond et al., 2021;
Brodeur et al., 2021; Ju et al., 2021; Ropkins and Tate, 2021). The literature also shows
that the improvement was heterogeneous across regions (Kerr et al., 2021). However, those
studies do not address the long-term effects of the pandemic on human behavior and their
consequences on air quality. Finding that the pandemic changed human travel behavior,
we make a significant contribution to this line of literature. Second, our study provides
nuanced insights to the literature on public transportation systems. Public transportation
is considered an effective solution to road congestion and air pollution (Chen and Whalley,
2012; Topalovic et al., 2012; Anderson, 2014; Bel and Holst, 2018; Gendron-Carrier et al.,
2018; Li et al., 2019; Gu et al., 2021). Studies have found that the demand for public
transportation sharply declined during the pandemic (Kim et al., 2017; Abdullah et al.,
2020; Kwok et al., 2020; Liu et al., 2020). It is unclear, though, whether the decline is
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temporary or long-lasting. Our findings suggest that the decline could be long-lasting and,
thus, imposes a great challenge for policymakers to recover the public’s confidence in the
demand for public transit.

We have organized the rest of the paper as follows. Section 2 summarizes the timeline
of the COVID-19 pandemic in China. Section 3 introduces the sample, data, and empirical
strategy used in this paper. Section 4 presents the main findings on traffic congestion and air
pollution. Section 5 studies the shift of travel patterns as one potential mechanism. Section
6 concludes the paper.

2 The Timeline of COVID-19 in China
Figure 1 displays the timeline of the pandemic in China. On January 20, 2020, Dr.

Nanshan Zhong disclosed on national television that the new coronavirus pneumonia was
transmissible between people. On January 23, the Wuhan government mandated a city-wide
lockdown, starting the first public intervention in response to the COVID-19 outbreak in the
world. Subsequently, many other cities in China started lockdown. The central government
also adopted several effective measures to contain the spread of the virus, including increasing
capacity in intensive care units, building temporary hospitals, and setting up safety bubbles
for COVID-19 patients with mild conditions (Chen et al., 2020; Chinazzi et al., 2020; Pan
et al., 2020; Tian et al., 2020).

The outbreak of the pandemic coincided with the 2020 Chinese Spring Festival. The
Spring Festival holiday was supposed to last for one week, from January 24 to January
30, right after Wuhan’s lockdown. Because of the pandemic, the government decided to
extend the holiday breaks and mandate citizens to stay at home. Lockdown mostly took
the form of community close-off. In Chinese cities, most residents live in walled residential
communities, which made lockdown easier. The enforcement of lockdown varies across cities.
The strictest lockdown requires people to stay in their individual communities, and the
government sends daily supplies to the door of each community. The least strict lockdown
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Figure 1: The Timeline of the COVID-19 Pandemic in China
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Figure 2: The Distribution of Lockdown End Dates

allows people to go out but restricts the entry of nonresidents. When the spread of the
virus was seemingly contained, the central government recommended reopening of industrial
production on February 9, 2020. Workers went back to work gradually. On February 19,
the central government advised nationwide reopening. On March 18, the number of new
infections dropped to zero, indicating the end of the nationwide pandemic. By May 13, all
cities were reopened (Figure 2). 1. China’s restrictive quarantine policy effectively isolated
the country from outbreaks in other countries. There were isolated outbreaks in some cities
after March 2020, but the country as a whole has been set free from the pandemic. This
provides a good setting for us to separate the pandemic’s short-term and long-term effects.

3 Data and Methodology

3.1 Data

We use three main data sources. The air quality data, maintained by the China Na-
tional Environmental Monitoring Centre (CNEMC), provides hourly pollutant measures at
the city level. The traffic congestion data is maintained by Gaode Map, a leading web
mapping service provider, and provides daily congestion information. We also collect tem-
perature, humidity, atmospheric pressure, and wind speed information from the US National
Climatic Data Center. All three datasets are constructed at the city-daily level. We use their
location information to merge the three datasets. We also manually collected the lockdown
information across cities and obtained public transportation information before the pandemic

1There was no more lockdown in our data period. There have been scattered lockdowns afterward but
their scale and duration were much smaller than the first wave of lockdown.
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Table 1: Summary Statistics

Variable Obs Mean Std. dev. Min Max

NO2, 24-hourAverage (µg/m3) 44,388 32.58 17.43 3.00 128.00
NO2, Daytime (µg/m3) 44,388 27.75 16.38 2.09 138.45
NO2, Night (µg/m3) 44,388 36.42 19.78 2.54 136.77
Congestion Index 44,388 1.51 0.21 1.00 4.05
Air Temperature 44,388 14.48 10.17 -25.73 34.35
Dew Point Temperature 44,388 7.66 11.81 -35.56 28.85
Sea-level Pressure 44,388 1,017.50 9.76 987.56 1,055.83
Wind Direction 44,388 165.94 66.10 0.00 360.00
Wind Speed 44,388 2.63 1.33 0.00 18.00
Precipitation 44,388 2.47 8.51 0.00 209.10
Public Transit Density 43,292 74.70 90.54 3.41 478.02

and daily subway passenger volumes in eight metropolitans. Table 1 reports the summary
statistics of the variables.

Emission and traffic congestion are seasonal. To control for seasonal fluctuations, we
construct a two-year panel for our study. The main sample includes 44,388 observations and
covers 81 locked-down cities in China between 100 days before and 173 days after the Spring
Festival in 2019 and 2020. The lunar New Year was February 5th in 2019 and January 25th
in 2020, so our dataset contains observations during October 28, 2018–July 28, 2019 (year
2019) and October 17, 2019–July 16, 2020 (year 2020). 1 In this construction, the days of
year 2020 are considered the treatment group and the days of year 2019 are considered the
control group. In our analysis, dates are defined relative to the lunar New Year.

Our main analysis rests on the 81 locked-down cities because they have both air pollution
and congestion data, and we can create a balanced panel. Figure 3 displays the sample
cities. Most of the cities are either located on the eastern coast or the economic centers in
inland provinces. Therefore, the results of congestion should be considered as estimations
for relatively developed and large cities, not the average effects of the entire country. In
Section 4.3, we release this restriction by expanding the sample to all cities that have NO2

observations.
Air Pollution.— We obtain air pollution data from CNEMC, which publishes city-level

real-time air quality data (such as air quality index, NO2, SO2, O3 and particulates) at daily
and hourly levels. The variables are measured as concentration indexes of air pollutants
(µg/m3). In this paper, we mainly focus on NO2, SO2. All fossil fuels, such as coal, oil,
gas, and diesel, generate NO2, SO2 when they are burned at high temperatures. Fire power

1July 16, 2020, is the last date of our data collection.
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Figure 3: Cities in the Main Sample

stations and vehicular exhaust are the two major sources of NO2, SO2 in most Chinese cities.
In 2019, vehicular exhaust contributed 51.4 percent of NO2 emission in China. 1 When the
use of fire power is controlled for, NO2 concentration is mostly related to people’s travel
patterns. In Section 4.3, we study the changes in other pollutants. We drop cities with
more than 100 missing values in NO2 to minimize the problem of missing values. For the
remaining cities, we fill in the missing values by using the value of the nearest day before.

Figure 4(a) hows the daily 24-hour average concentration of NO2 in 2019 and 2020. The
dashed line represents NO2 concentration in 2019. As expected, emission declined in warmer
months. The solid line represents NO2 concentration in 2020. Before the outbreak, emission
was quite similar to 2019 but plummeted immediately after the outbreak. It reached the
bottom around February 9, 2020, when the national work resumption order was announced,
and then quickly rebounded to the 2019 level. We found no systematic gaps for the two
years. Figure 4(b) presents the comparison for the daytime period (8 AM–7 PM). Although
daytime NO2 followed a similar pattern to the 24-hour average, it reached a level slightly
higher than the 2019 level 120 days after the Spring Festival.

City Congestion and Delay Index. – The key traffic congestion measure is the congestion
and delay index (CDI), which is constructed by Gaode Map using the traffic information
collected by the company’s satellite data. According to the 2020 Gaode Chinese Major City
Transport Report, 2 the CDI is defined as the ratio between the actual flow time in a certain

1See Ministry of Ecology and Environment of China, “Annual Report of Ecology
and Environment Statistics of China (2019)” (in Chinese), accessed on August 11, 2020,
https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202108/t20210827_861012.shtml.

2See Gaode Map, “2020 Gaode Chinese Major City Transport Report” (in Chinese), accessed on February
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length of time and the flow time without congestion for that length of time. The latter is a
historical average. Gaode only publishes daily CDI. A higher value of CDI indicates heavier
average traffic in a day. The measure covers 100 cities in China and is widely used as a
congestion measure in the literature (Yan et al., 2020). We match the congestion index with
pollution data, and finally, we include 81 cities in our sample.

Figure 4(c) and 4(d) display the trends of CDI on weekdays and weekends in 2019 and
2020. The dashed line is for 2019, and the solid line is for 2020. Like NO2, the two years were
quite identical before the outbreak of the pandemic. CDI plummeted immediately after the
outbreak in 2020 and reached the bottom also on February 9, 2020. However, CDI bounced
back more strongly than NO2, and 120 days after the Spring Festival, it exceeded the 2019
level on the same day, indicating that enduring changes might have happened in people’s
travel patterns.

Lockdown Period.— China maintains a dynamic lockdown policy tailored to the local
situation. Local governments are responsible for implementing their lockdown policies. As
such, the lockdown period in our analysis varies from city to city. We assign the date of the
Wuhan lockdown (January 23, 2020, or December 29, 2019, in the Chinese lunar calendar) as
the beginning of the lockdown policy for all cities. Most cities implemented primary control
policies, such as travel restrictions, closing public places, and community close-off, right
after the announcement of Wuhan’s lockdown. By late January, all provinces had activated
the first-degree public health emergency responses. After activating first-degree responses,
municipal governments are formally authorized by the provincial government to implement
strict disease control policies, including large-scale lockdowns.1

We searched on government websites and local news reports to determine the end of
lockdown in each city. As a general rule, we chose the date when a city government announced
stopping community seal-off as the end of the city’s lockdown. We do not distinguish the
severity of community seal-off. If that date is unavailable, we use the date when the city
government decided to start the “precise control policy,” which usually means the lockdown
policy would only exist in communities with confirmed cases. If that date is still not available,
we then use the end of the province’s first-level responses as the end date of a city’s lockdown.
As shown in Figure 2, most cities ended lockdown before April although some did not until
May. In Section 4.3, we explore alternative definitions of the lockdown period.

Control Variables.— We consider a series of meteorological control variables that affect
air quality and traffic congestion. For example, rains may change people’s choices about
transportation methods and affect air quality as well. To relieve this concern, we collect

13, 2022, https://report.amap.com/share.do?id=a187527876d07ac50177142eba987ce0.
1See http://www.gov.cn/yjgl/2006-02/26/content_211654.htm.
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data from the US National Climatic Data Center for site-level daily weather conditions. We
match each city to the closest site according to the distance from the city center to the site.
If no site appears within 100 km from the city center, we exclude the city from our sample.
For each city, we generate six daily weather variables: temperature, humidity, precipitation,
sea-level pressure, wind speed, and wind direction. Similar to NO2 concentration, we drop
cities with more than 100 missing values in any weather variable. For the remaining cities,
we fill in the missing values by using the value of the nearest day before.

3.2 The Empirical Strategy

Following He et al. (2020) and Almond et al. (2021),we apply the DID model to examine
the impact of COVID-19 on air quality and human mobility. The unit of observation in our
analysis is the city-day observation and the baseline model is specified as follows:

lnYcdt = γ0 +
3∑

i=0

βiCOV IDt × Stageicd +
3∑

i=0

θiStageicd + γ1Xcdt + δct + ζd + ϵcdt (1)

The dependent variable, Ycdt, refers to congestion measures or air quality in city c in
the Chinese lunar calendar day d of year t. COV IDt indicates the treatment group (year
2020). That is, it is a binary variable that equals 1 if day d was in 2020, the year of the
pandemic, and 0 if day d was in 2019. In the regression, the sample window ranges from 100
days before the Spring Festival to 173 days after the festival in 2019 and 2020.

The pre-treatment period contains days before the lunar calendar day December 29
(Wuhan’s lockdown date in 2020). Instead of studying the average treatment effect of
COVID-19, we study its dynamic effects. Thus, we divide the treatment period into four
stages according to the development of the pandemic. Stage0cd refers to the city-specific
lockdown period in city c,— that is, the lunar calendar days from the lunar calendar day
December 29 to the end of city c’s lockdown. Different cities had different termination dates.
The following days are divided by an 8-week interval. Days covered by Stage1cd include the
initial period when workers came back to work and when industrial activities resumed right
after the COVID-19 pandemic. Subsequent stages are conveniently arranged to follow the
rhythm of this initial stage. The coefficients βi’s allow us to observe the dynamic impacts of
COVID-19. Specifically, β0 measures the immediate lockdown effect, β1 measures the short-
term aftermath effect during the initial opening stage, and β2 and β3 measure the long-term
aftermath effects when economic and social activities came back to normal.

Xcdt includes a set of time-varying city-level characteristics, including weather conditions
(daily temperature, humidity, sea-level pressure, wind speed, and wind direction) and holiday
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fixed effects.1. We also control for the lunar day fixed effect (ζd). In addition, we control the
city-year fixed effect (δct), which allows us to conduct our comparison within the city. It is
by far the most stringent comparison that we can reach. The standard errors are clustered
by city.

To make sure that the coefficients βi’s estimated from Equation 1 are not caused by the
trends existing before the pandemic, we estimate the following event-study specification:

lnYcdt = γ0 +
n∑

i=−4,i ̸=−1

βiCOV IDt × Ticd +
n∑

i=−4,i ̸=−1

Ticd + γ1Xcdt + δct + ζd + ϵcdt (2)

Here, Ticd indicates periods. It is defined differently before and after the lunar calendar
day December 29. It equals 1 if date d is within i month before lunar calendar day December
29, and 0 otherwise. The omitted period is the month before the lunar calendar day December
29. The constant γ0, associated with this month, captures the base difference between 2019
and 2020. For days after December 29, T0cd is defined as the same as Stage0cd in Equation
1. Ticd(i ≥ 1) refers to the ith week after the lockdown period. The set of coefficients βi’s
(i < 0) capture the pre-pandemic time trend of the differences between 2019 and 2020. If
the coefficients are not different from zero, we then conclude that the effects of COVID-19
estimated from Equation 1 are not caused by pre-existing trends.

4 NO2 Emission and Traffic Congestion
As pointed out in the introduction, the literature well documents the link between traffic

congestion and pollution. We will not repeat this link. In this section, we study how NO2

emission and traffic congestion perform over different periods of the pandemic, based on
the specifications in Equations 1 and 2 . In the next subsection, we will explore the causes
for the changes in traffic congestion by studying the pandemic’s impacts on people’s travel
behavior.

4.1 NO2 Emission

We estimate Equation 1 using both the full sample and the sample of weekdays only
and report the results in Table 2. Columns (1)–(3) present the results of the full sample,
and Columns (4)–(6) present the results of the weekday sample. For each sample, we exam-
ine three measures of NO2 concentration in log transformation: 24-hour average, daytime

1The main holidays covered by our data are the Qingming Festival, Labor Day, and Dragon Boat Festival.
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Table 2: The Results for NO2

Outcome Log NO2
Full Sample Weekdays Only

24 hour Day Night 24 hour Day Night
(1) (2) (3) (4) (5) (6)

Lockdown
-0.350*** -0.342*** -0.355*** -0.306*** -0.283*** -0.304***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Weeks 1–8 -0.003 0.028 -0.024 -0.037 0.014 -0.057*
(0.907) (0.194) (0.300) (0.098) (0.541) (0.022)

Weeks 9–16 0.053** 0.060** 0.039* 0.019 0.059** 0.002
(0.004) (0.002) (0.047) (0.304) (0.003) (0.942)

Weeks >16
0.010 0.065* -0.034 -0.008 0.045 -0.043
(0.745) (0.046) (0.297) (0.825) (0.193) (0.257)

Observations 44,388 44,388 44,388 31,671 31,671 31,671
R2 0.679 0.669 0.641 0.687 0.676 0.649

Note: p-values are reported in parentheses. Standard errors are clustered at the city level.
Control variables include daily temperature, humidity, sea-level pressure, wind speed, wind
direction, city-year fixed effects, and lunar calendar date fixed effects. Day: 8:00-19:00.
Night: 0:00–8:00 and 19:00–24:00. Lockdown: lockdown period. * p < 0.05, ** p < 0.01,
*** p < 0.001.

average, and nighttime average, respectively.
The results in Column (1) suggest that lockdown helps reduce NO2 by 35 percent in the

full sample. This result is consistent with the existing literature on the short-term impacts
of COVID-19 on pollutants in China (Fan et al., 2020; He et al., 2020; Ming et al., 2020;
Almond et al., 2021). After reopening, however, the impact fades away in weeks 1–8, and
NO2 emission even slightly exceeds the corresponding 2019 level during the second eight
weeks, although this gap is abated in the next eight weeks.

Because coal-fired power stations also produce NO2, those results are subject to the
qualification that the output of coal-fired power stations is accounted for when we associate
NO2 emission with traffic congestion. It is possible that the rise in coal-fired power caused
the change in NO2. To exclude this possibility, we make the following analysis.

First, we adopt a simple approach to make a comparison between daytime and nighttime
NO2. emission. Power engines usually do not stop during the night because of the high turn-
on cost. As such, there should be no significant differences between daytime and nighttime
emissions if emissions were mainly created by coal-fired power stations. However, traffic
is usually not severe during the night, so there should be a significant difference between
daytime and nighttime emission if emissions were mainly created by traffic. Columns (2)
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and (3) present the results of daytime and nighttime NO2 emission, respectively. NO2.
emission declines in both daytime and nighttime, and the magnitudes are comparable during
lockdown. However, daytime emission begins to increase ever since the start of reopening,
but nighttime emission has stayed the same as in 2019. Those results show that the increase
of NO2. emission in the post-lockdown period cannot be fully explained by coal-fired power
growth.

Second, we calculate the city-level coal-fired power capacity by exploiting a comprehen-
sive coal plant dataset from the Global Coal Plant Tracker of Global Energy Monitor. As
shown in Table A1, cities with a larger coal-fired power capacity tend to have higher NO2

emission after the pandemic. However, when we control for the interaction term between
power capacity and lunar calendar date, the coefficient of “Weeks >16” is still significantly
positive for daytime NO2.

Finally, statistical data shows that the growth rate of thermal power was not very high
in 2020 (Figure 5). The only peak appeared in May, which is consistent with our regression
results that NO2 rebounds to a higher level during weeks 8–16. After that time, the growth
of thermal power was limited and is unlikely to explain the rise of NO2 after week 16.

Figure 6(a)-6(c) present the dynamic effects of the pandemic on NO2, estimated from
Equation 2 on the full sample. There is no pre-trend in any of the three averages. The
post-lockdown effects present consistent but finer pictures than the DID results.

The lockdown effects estimated by the full sample are preserved when we study the
weekday sample, but the effects for reopening are weaker. We find no significant coefficients
for the 24-hour average emission, and the positive effect for daytime emission in the first eight
weeks turns insignificant. In addition, we find that nighttime emission continues to decline
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in the first eight weeks. Therefore, the results of the whole sample are largely contributed
by the changes happening on weekends. This conclusion reinforces our hypothesis that the
pandemic has changed people’s travel patterns. During weekdays, people may opt for private
transportation because of the pressure to rush to the workplace. During weekends, people
do not have this pressure and the effects are more likely to reflect people’s changes in travel
patterns.
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(d) CDI

Figure 6: The Dynamic Impacts on Congestion and Pollution
Note: The coefficient estimates are obtained by estimating Equation (2). Vertical bands represent +(-)1.96
times the standard error of each point estimate. Standard errors are clustered at the city level. Daytime:
8:00–19:00h. Night: 0:00–8:00 and 19:00–24:00. The end of the lockdown period is collected from government
websites and local news.

4.2 Traffic Congestion

Table 3 presents the results for traffic congestion. Again, we estimate Equation 1 using
both the full sample and the weekday sample. The dependent variable is log-CDI. Column (1)
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Table 3: The Results for Road Congestion

Outcome Log Congestion Index
Full Sample Weekdays Only

(1) (2)

Lockdown
-0.202*** -0.214***
(0.000) (0.000)

Weeks 1–8 -0.076*** -0.081***
(0.000) (0.000)

Weeks 9–16 0.020** 0.014*
(0.002) (0.048)

Weeks >16 0.053*** 0.050***
(0.000) (0.000)

Observations 44,388 31,671
R2 0.685 0.778

Note: p-values are reported in parentheses. Standard errors are clustered at the city level.
Control variables include daily temperature, humidity, sea-level pressure, wind speed, wind
direction, city-year fixed effects, and lunar calendar date fixed effects. Day: 8:00-19:00. Night:
0:00–8:00 and 19:00–24:00. Lockdown: lockdown period. * p < 0.05, ** p < 0.01, *** p <
0.001.

presents the results of the full sample. Compared to the pre-pandemic days, CDI decreases
significantly by 20.2 percent during the lockdown period, and it continues to decrease by 7.6
percent in the first eight weeks after the termination of lockdown. However, road congestion
begins to exceed the pre-pandemic level entering the second eight weeks after the end of
lockdown. CDI increases by 2.0 percent in the second eight weeks after reopening and by
5.3 percent since the third eight weeks after reopening. The effects are significant at the 1
percent significance level. The results are robust when weekdays are studied (see Column
(2)). According to the results for weekdays, on average, if people spent 1 hour on their
daily commute in 2019, they would save about 10 minutes every day during the lockdown
and 4 minutes within the first eight weeks after reopening, but they would spend an extra 3
minutes after that.

Figure 6(d) demonstrates the dynamic effects of COVID-19 on CDI by estimating Equa-
tion 2. The constant γ0 is 0.47. The gap between 2019 and 2020 during the omitted period
(–4 to –1 week) is –0.07 and is significant at the 0.001 level. The numbers shown in the figure
are relative to this gap. The coefficients before the pandemic are close to zero, which suggests
that there is no pre-treatment trend. Consistent with Table 3, the daily congestion index
decreases significantly during the lockdown period, then gradually bounces back, recovers
to the pre-pandemic level in the medium term, and finally exceeds the pre-pandemic level
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in the long term. Overall, the results suggest that traffic congestion worsened in the long
run, despite the temporary reduction during the lockdown period. The results are consistent
with the pattern of changes in NO2 emission when the capacity of coal-fired power plants is
controlled for.

4.3 Robustness Checks

4.3.1 Expanding the Sample

In the aforementioned analysis, we have limited our analysis to cities without missing
values in air pollution and CDI observations. Because the sample cities are mostly located
in economically developed regions, there is a concern that our results are biased. For ex-
ample, underdeveloped regions tend to have fewer power plants, factories, and vehicles, so
the pandemic’s impacts on travel behavior and air pollution are weaker. While we do not
have nationwide CDI data, we can, however, expand the analysis on NO2 to all cities with
available air pollution data. As shown in Figure A1 and Table A2, the full sample includes
259 cities (78.5 percent of all the prefecture-level cities) and 141,932 city-day observations
after excluding cities with too many missing values (as discussed in Section 3). Table A3
replicates the analysis on NO2 by using the nationwide sample. Our baseline results are
largely preserved.

4.3.2 An Alternative Definition of the Lockdown Period

In the previous analysis, the ending date of the lockdown, collected from government
announcements and local news, was city-specific and varied from February to May 2020
(Figure 2). One potential problem with that definition is that the dates might be imprecise
because of the limitation of the available information. For example, some cities regularly clear
announcement archives on their government websites, and we must rely on other indirect
policies, such as the end of their province’s first-level responses, to infer the date. As a result,
the assigned end dates could be different from the actual dates.

An alternative approach is to set a uniform ending date for all the cities. One of the
choices is the date of the last reopening among the sample cities. But that choice may
overstretch the lockdown in many cities because a few cities did not reopen until mid-May
2020 when new cases of infection of the initial wave of the pandemic had vanished long ago
in the country. Instead, we chose March 18, 2020, as the uniform date for lockdown because
on this day new confirmed cases were cleared. Figure A2 replicates the dynamic effects
presented by Figure 6. As before, we observe a significant reduction in both congestion and
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NO2 in the lockdown period and increased congestion and daily NO2 emission around the
16th week of reopening.

4.3.3 Impacts on Other Air Quality Measures

Do our results for NO2 hold for other air quality measures? Unlike NO2, which is mainly
emitted by mobile vehicles, other pollutants, such as PM 2.5, SO2, and CO, are generated
by multiple sources. As a result, the impacts of the pandemic may be ambiguous (Almond et
al., 2021; Ropkins and Tate, 2021). We study two indicators: Air Quality Index (AQI) and
PM 2.5 density. Table A4. presents the results. Consistent with Almond et al. (2021) and He
et al. (2020), we do find short-term improvements during the lockdown period, although their
magnitudes and significance are much smaller than NO2’s. The short-term improvement of
PM 2.5 disappears in the weekday subsample, though. In the longer term, the improvement
is either unstable or nonexistent. Overall, our estimation finds short-term impacts but shaky
long-term impacts for other pollutants. This finding can be contrasted with our early finding
for NO2. Resumed economic activities do not increase pollution after reopening, and more
severe traffic congestion mainly causes rising NO2 emission.

4.3.4 Remote Work

The pandemic has raised the popularity of remote working (Bartik et al., 2020; Brynjolf-
sson et al., n.d.; Dingel and Neiman, 2020). Recent studies show that remote working helps
mitigate the impacts of the pandemic, especially on the labor market (Béland et al., 2020;
Kalenkoski and Pabilonia, 2020). The literature shows that the spread of remote businesses
improves air quality and alleviates traffic congestion (Pérez et al., 2004; Giovanis, 2018).
Here we conduct a heterogeneous analysis and provide some preliminary evidence for the
possible impacts of remote working on our baseline results. results.

Remote working is closely linked to the use of the internet. As a result, cities with better
and wider internet penetration are expected to offer more remote working opportunities. We
collect data for the internet penetration rate from the China Internet Network Information
Center and measure the rate at the province level. We use the median rate of 2018 to
classify cities into high and low groups. Table A5 presents the heterogeneous results for the
two groups. The results are broadly consistent with our expectations. The reduction of NO2

during lockdown is found to be more pronounced in the high-penetration group (Panel A)
than in the low-penetration group (Panel B), and the increase after reopening is weaker in
the former group than in the latter group. In cities with high internet penetration, lockdown
encouraged more people to work from home, and this newly formed habit lasted after the
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economy was reopened. In contrast, people in cities with low internet penetration stayed at
home during lockdown more because of the government’s restrictive policy and were more
likely to go back to the workplace after reopening.

5 Travel Behavior
In this section, we explore a possible channel for worsening congestion after reopen-

ing: the shift in travel behavior. During the lockdown, two factors affected people’s travel
patterns. One is the government’s restrictive policy, and the other is people’s own fear of
infection. Both factors lead to an overall reduction in travel—public transit and private ve-
hicles alike. The second factor creates an additional structural effect that shifts people from
public transit to private vehicles. Taking public transportation implies close-range contact
with other people, thus drastically increasing a person’s risk of infection. This concern would
prompt people to opt for private vehicles. There are people who use their vehicles mainly
for leisure and choose public transportation for their daily commute. The fear of infection,
however, may lead those people to use their vehicles to commute between their home and
workplace. It is noticeable that the fear is both real and psychological. The latter arises
because the government’s lockdown policy sends a strong message that the virus is pervasive
and strongly contagious.

The first factor disappears when lockdown is lifted, but the second factor still exists as
long as the virus is not eradicated. More important, the change from public transportation
to private vehicles may persist because of the existence of actual and psychological costs of
behavior adjustment. During the lockdown, the fear of infection is strong enough to over-
come the adjustment costs associated with the change from public transportation to private
vehicles. After reopening, the fear of infection declines, partly because of the relaxation of
the government’s restrictive policy and partly because of the drastic decline of new infection
cases. Now the adjustment costs associated with reversing transit dominate and more private
vehicles remain on the road than before.

Existing research does find that people tend to avoid public transportation and increase
private vehicle usage during the outbreak of epidemics (Sadique et al., 2007; Abdullah et al.,
2020; Kwok et al., 2020). However, there are no empirical studies showing whether the shift
is temporary or persistent. In the next subsections, we use three sources of data to provide
evidence for the persistence of the impact: administrative data, subway passenger flows in
large cities, and heterogeneous results for NO2 by the pre-pandemic density of public transit.
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Figure 7: Monthly Public Transportation Volumes (2019–2020)
Source: Ministry of Transport of the People’s Republic of China. Unit: 10,000 Persons

5.1 Administrative Data

Since 2019, the Ministry of Transport of the People’s Republic of China has published
monthly public transit volumes in 36 provincial cities and province capitals. Figure 7 shows
the aggregate trend and allows us to observe the change of passenger flows before and after
the pandemic. Passenger flows remained almost constant in 2019, except around the Spring
Festival holiday in February. The outbreak of COVID-19 hit the public transportation
system seriously. In February 2020, the number of passengers was reduced by more than 80
percent. It did not return to the pre-COVID level even in September, six months after the
end of the nationwide pandemic.

China registered 2.4 percent year-on-year GDP growth in 2020. The drop in passenger
volumes for public transportation after reopening did not fall in line with this growth. One
explanation is that people have opted for private vehicles, which was reflected by rising
auction prices of license plates in major cities. Many Chinese cities set up an auction system
for license plates of private vehicles to control congestion. Auction prices reflect the local
demand for private vehicles. Figure 8 shows the monthly auction prices between October
2019 and December 2021 in Shanghai and Guangzhou, two megacities that implement the
auction policy.1 In Shanghai, the auction price immediately increased after the outbreak
of the pandemic and continued to rise until April 2021. Since then, the price dropped, but
remained higher than the level of October 2019 until the end of 2021. In Guangzhou, the
auction price experienced two spikes of growth since the outbreak of the pandemic, and like
in Shanghai, the price remained higher than the level of October 2019 until the end of 2021.
While the price increases during lockdown can be explained by people’s fear of infection
caused by public transportation, the long-lasting higher prices after reopening were more

1Unfortunately, only those two cities disclosed the auction prices.
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(a) Shanghai (b) Guangzhou

Figure 8: Auction Prices of License Plates in Two Megacities
Source: Shanghai Municipal Transportation Commission, Guangzhou Vehicle Regulation and Management
Office. Unit: Yuan.

likely to be associated with people’s changing habits to drive private vehicles for work and
leisure.

5.2 Subway Passenger Flows

Next, we study the change in daily subway passenger flows. We obtain daily subway
passenger flow data in eight major cities from Wind: Chongqing, Shanghai, Guangzhou,
Nanning, Wuhan, Xi’an, Suzhou, and Zhengzhou. Except for Nanning, all the other cities
are megacities with a population of more than 10 million people. For those megacities,
we estimate Equation 1 for the congestion index and subway passenger volumes.1 Table 4
displays the results, and Figure 9 visualizes the patterns. Columns (1) and (2) of Table
4 report the results. Similar to Figure 7, subway volumes dramatically dropped in 2020.
Our results suggest that the volume drops by 87 percent during the lockdown period. It
does not recover even after reopening. In the third eight-week period after the end of
lockdown, subway volumes are still 22.7 percent lower than the pre-COVID level. The gaps
are significant at the 0.1 percent level, even if there are only eight cities in the sample. On the
contrary, the congestion index gradually rebounds and finally settles at a level 10.3 percent
higher than the pre-COVID level. The results remain robust for weekdays (see Columns (3)
and (4) in Table 4). The results are also robust under alternative definitions of lockdown
(Figure A3). The divergent results for the congestion index and subway passenger volumes
after reopening suggests that there is a long-term shift from public transit to private vehicles.

1We do not control for sea-level pressure here because of the missing value problem.
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Table 4: The Substitution between Public Transportation and Private Vehicles

Full Sample Weekdays
Congestion Subway Congestion Subway

(1) (2) (3) (4)

Lockdown -0.226*** -2.118*** -0.226*** -1.965***
(0.000) (0.000) (0.000) (0.000)

Post1 (week 1-8) -0.052 -0.940*** -0.024 -0.910***
(0.055) (0.000) (0.335) (0.000)

Post2 (week 9-16) 0.064** -0.407*** 0.066* -0.455***
(0.002) (0.000) (0.010) (0.000)

Post3 (week >16) 0.103*** -0.227** 0.097** -0.258***
(0.000) (0.003) (0.002) (0.000)

Observations 4,384 4,287 3,128 3,062
R2 0.663 0.950 0.784 0.965

Note: p-values are reported in parentheses. Standard errors are clustered at the city level.
Control variables include daily temperature, humidity, wind speed, wind direction, city-year
fixed effects, and lunar calendar date fixed effects. Lockdown: lockdown period. * p < 0.05,
** p < 0.01, *** p < 0.001.
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Figure 9: The Shift of Travel Patterns
Note: The coefficient estimates are obtained by estimating Equation (2). Vertical bands represent +(-)1.96
times the standard error of each point estimate. Standard errors are clustered at the city level. The end of
lockdown period is collected from government websites and local news.
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5.3 Heterogeneous results for NO2

Finally, we study the heterogeneous results for NO2 in cities with different levels of
pre-pandemic density of public transportation. It is reasonable to believe that the share of
people shifting from public transit to private vehicles should be about the same across cities.
Then in cities where people initially relied more on public transit, there would be more
people shifting to private vehicles. To conduct our study, we expand our sample to all cities
with available air pollution data, as in Section 4.3, to allow for more variations in the level of
public transportation. We define the public transportation density as the public transport
passenger volume divided by city population. The passenger volume and population are
year-level data collected from city yearbooks. We divide the sample cities into two groups
by the median of public transportation density in 2018. Table 5 presents the results of NO2

for the two subgroups. The V-shaped dynamic is initially similar in the two subgroups but
diverges after week 16. The estimate for NO2 daytime concentration is positive and large in
the high-density group (Panel A), but it is close to zero in the low-density group (Panel B).
Because NO2 concentration is directly linked to the number of vehicles, the heterogeneous
effects found here are consistent with the idea that a higher density of public transit leads
to a higher level of substitution between private vehicles and public transit.

5.4 Shift from Rush Hours to Slack Hours

The congestion index is constructed as a daily average. The distribution of traffic in
rush hours and slack hours can affect the index. If that is the case, our results for the
substitution between private and public transit must be qualified. In this subsection, we
first study whether lockdown has changed that distribution and then discuss whether the
change, if any, is sufficient to explain the increase of congestion after reopening.

We do not have hourly CDI data, so we study hourly NO2 data. Rush hours are defined
as 8–10 AM and 5–7 PM in a day and slack hours are defined as 11 AM–4 PM in a day. The
daily average of NO2 concentration during the rush or slack hours in a city is the dependent
variable. Table 6 reports the results for the two daytime periods. NO2 concentration does
not increase significantly in rush hours after reopening but increases significantly in slack
hours. This suggests that people shifted their day trips from rush hours to slack hours after
reopening. One explanation is that people want to avoid large crowds in parking lots or
other transit points. Another explanation is that companies and government agencies have
allowed employees to have more flexible working hours, a habitual policy inherited from the
lockdown.

Whether the shift from rush hours to slack hours can explain the increase in the daily
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Table 5: Heterogeneous Effects for NO2 by Public Transit Density

Outcome Log NO2
Full Sample Weekdays Only

24h Day Night 24h Day Night
(1) (2) (3) (4) (5) (6)

Panel A. High Public Transit Density

Lockdown
-0.306*** -0.297*** -0.310*** -0.282*** -0.257*** -0.280***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Weeks 1–8 0.026 0.072*** 0.001 0.002 0.065*** -0.020
(0.162) (0.000) (0.963) (0.925) (0.001) (0.348)

Weeks 9–16 0.082*** 0.100*** 0.069*** 0.049** 0.084*** 0.042*
(0.000) (0.000) (0.000) (0.004) (0.000) (0.017)

Weeks >16
0.047 0.116*** 0.001 0.035 0.096** 0.006
(0.074) (0.000) (0.962) (0.232) (0.001) (0.863)

Observations 61,376 61,376 61,376 43,792 43,792 43,792
R2 0.678 0.664 0.641 0.687 0.671 0.650

Panel B. Low Public Transit Density

Lockdown
-0.349*** -0.319*** -0.370*** -0.304*** -0.261*** -0.321***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Weeks 1–8 0.013 0.047* -0.015 -0.010 0.040* -0.037
(0.458) (0.020) (0.457) (0.569) (0.045) (0.071)

Weeks 9–16 0.044* 0.055* 0.024 0.016 0.052* -0.007
(0.029) (0.016) (0.229) (0.425) (0.024) (0.733)

Weeks >16
-0.027 0.008 -0.063* -0.017 0.019 -0.050
(0.314) (0.799) (0.020) (0.560) (0.530) (0.094)

Observations 65,212 65,212 65,212 46,529 46,529 46,529
R2 0.676 0.657 0.641 0.683 0.664 0.647

Note: p-values are reported in parentheses. Standard errors are clustered at the city level.
Control variables include daily temperature, humidity, sea-level pressure, wind speed, wind
direction, city-year fixed effects, and lunar calendar date fixed effects. Public Transit Den-
sity: public transit passenger volume divided by city population in 2018. The cutoff is
the median public transit density. Day: 8:00-19:00. Night: 0:00–8:00 and 19:00–24:00.
Lockdown: lockdown period. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table 6: The Impacts on NO2, Rush Hours versus Slack Hours

Outcome Log NO2
Full Sample Weekdays Only

Daytime Rush Hours Slack Hours Daytime Rush Hours Slack Hours
(1) (2) (3) (4) (5) (6)

Lockdown
-0.342*** -0.356*** -0.327*** -0.283*** -0.307*** -0.261***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Weeks 1–8 0.028 0.000 0.048* 0.014 -0.028 0.043
(0.194) (0.992) (0.036) (0.541) (0.178) (0.086)

Weeks 9–16 0.060** 0.036* 0.076*** 0.059** 0.023 0.084***
(0.002) (0.044) (0.000) (0.003) (0.212) (0.000)

Weeks >16
0.065* 0.015 0.091* 0.045 -0.008 0.082*
(0.046) (0.618) (0.010) (0.193) (0.806) (0.028)

Observations 44,388 44,388 44,388 31,671 31,671 31,671
R2 0.669 0.671 0.641 0.676 0.681 0.647

Note: p-values are reported in parentheses. Standard errors are clustered at the city level. Control
variables include daily temperature, humidity, sea-level pressure, wind speed, wind direction, city-
year fixed effects, and lunar calendar date fixed effects. Day: 8:00-19:00. Rush Hours: 8:00-10:00 and
17:00-19:00. Slack Hours: 10:00-17:00. Lockdown: lockdown period. * p < 0.05, ** p < 0.01, *** p
< 0.001.

average congestion depends on whether the shift has increased the total amount of travel
time in a day. If the volume of the shift is in a range such that the travel time (congestion)
during rush hours declines but travel time (congestion) during slack hours does not increase,
then the amount of travel time (congestion) in a day should be reduced. For the shift to
explain the rise of average congestion in a day, travel time (congestion) during slack hours
must have increased sufficiently. As discussed in Table 3, the daily congestion index rises by
5 percent on average. Suppose the rise in daily congestion is merely driven by the shift of
travel time. Since slack hours only last for 7 hours, less than a third of the day, congestion
during slack hours should rise by at least 15 percent. This prediction, however, conflicts with
the real case. Let’s look at Xi’an, the megacity that suffered the most severe congestion in
the third quarter of 2020, as an example.1. Although congestion during slack hours is severely
worsened in Xi’an, the rise in the congestion index is still less than 15 percent compared to
the third quarter of 2019—approximately from 1.5 to 1.7. Besides, the rush-hour congestion
index also keeps going up, contrary to the prediction that the congestion during rush hours
would be relieved. Therefore, the shift of travel time alone is not sufficient to explain the
patterns in congestion.

1See Gaode Map, “Traffic Analysis Report of Major Cities in China, 2020Q3” (in Chinese),
https://report.amap.com/download_city.do
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6 Conclusion
The COVID-19 pandemic is reshaping human behavior across the world. In this study,

we first investigate its impacts on air pollution and road congestion in Chinese cities. We
find that the pandemic has generated opposite effects during and after the lockdown period.
In the short run, the public reduced its mobility in response to the pandemic and government
lockdown policies, which led to a temporary but dramatic drop in travel and NO2 emission.
However, road congestion and NO2 concentration worsened after society reopened. We find
evidence that changed human travel behavior created this contrast. In a response to the
risk of being infected, people switched their modes of travel from public transit to private
vehicles during the lockdown, and this switch has persisted after society reopened.

Our study suggests that the COVID-19 pandemic is far more than a temporary shock.
Its direct impacts may fade out as the pandemic ends, but the changes in human behavior
can persist and continue to affect everyday life. Our study has found that the pandemic has
changed people’s travel patterns, most likely by changing people’s perception of the chance
of being infected, and this change persists after the nationwide pandemic is being controlled.
The switch to private vehicles poses a new challenge to public transportation and emission
reduction. It is a new issue for researchers and policymakers to figure out how to recover
people’s confidence in and their demand for public transit after the pandemic.
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Figure A2: The Dynamic Effects (Alternative Definition of Lockdown)
Note: The coefficient estimates are obtained by estimating Equation (2) . Vertical bands represent +(-)1.96
times the standard error of each point estimate. Standard errors are clustered at the city level. Daytime:8:00–
19:00. Night: 0:00–8:00 and 19:00–24:00. The end of lockdown period is unified to March 19.
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(b) Subway Passenger Flow

Figure A3: The Shift of Travel Patterns (Alternative Definition of Lockdown)
Note: The coefficient estimates are obtained by estimating Equation (2). Vertical bands represent +(-)1.96
times the standard error of each point estimate. Standard errors are clustered at the city level. The end of
lockdown period is unified to March 19.
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Table A1: Controlling Coal-Fired Power Capacity

Outcome Log NO2
Full Sample Weekdays Only

24h Day Night 24h Day Night
(1) (2) (3) (4) (5) (6)

Panel A. Subsample: High Coal-Fired Power Capacity

Lockdown
-0.350*** -0.324*** -0.360*** -0.302*** -0.266*** -0.306***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Weeks 1–8 -0.011 0.027 -0.041 -0.061 -0.008 -0.091*
(0.758) (0.447) (0.277) (0.092) (0.821) (0.022)

Weeks 9–16 0.071** 0.080** 0.051 0.033 0.072* 0.008
(0.009) (0.003) (0.082) (0.252) (0.012) (0.805)

Weeks >16
0.047 0.103* -0.002 0.027 0.073 -0.009
(0.307) (0.033) (0.976) (0.605) (0.184) (0.878)

Observations 20,276 20,276 20,276 14,467 14,467 14,467
R2 0.626 0.628 0.588 0.636 0.635 0.599

Panel B. Subsample: Low Coal-Fired Power Capacity

Lockdown
-0.373*** -0.382*** -0.372*** -0.333*** -0.325*** -0.328***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Weeks 1–8 -0.013 0.005 -0.026 -0.031 0.012 -0.041
(0.659) (0.872) (0.436) (0.338) (0.707) (0.262)

Weeks 9–16 0.032 0.038 0.024 -0.001 0.040 -0.014
(0.216) (0.185) (0.399) (0.970) (0.167) (0.637)

Weeks >16
-0.014 0.034 -0.054 -0.031 0.018 -0.063
(0.727) (0.469) (0.206) (0.492) (0.691) (0.221)

Observations 21,372 21,372 21,372 15,249 15,249 15,249
R2 0.692 0.678 0.652 0.700 0.687 0.660

Panel C. Full Sample: Controlling for Volumn-Date Variables

Lockdown
-0.348*** -0.341*** -0.353*** -0.304*** -0.282*** -0.303***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Weeks 1–8 0.000 0.031 -0.021 -0.034 0.016 -0.053*
(0.989) (0.170) (0.378) (0.143) (0.477) (0.036)

Weeks 9–16 0.054** 0.062** 0.041* 0.021 0.061** 0.003
(0.003) (0.001) (0.038) (0.268) (0.002) (0.872)

Weeks >16
0.012 0.067* -0.032 -0.006 0.047 -0.041
(0.702) (0.041) (0.324) (0.863) (0.179) (0.277)

Observations 44,388 44,388 44,388 31,671 31,671 31,671
R2 0.682 0.672 0.644 0.690 0.679 0.652

Note: p-values are reported in parentheses. Standard errors are clustered at the city level.
Control variables include daily temperature, humidity, sea-level pressure, wind speed, wind
direction, city-year fixed effects, and lunar calendar date fixed effects. Day: 8:00-19:00.
Night: 0:00–8:00 and 19:00–24:00. Lockdown: lockdown period. * p < 0.05, ** p < 0.01,
*** p < 0.001.
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Table A2: Summary Statistics (Nationwide)

Variable Obs Mean Std. dev. Min Max
NO2, 24h Average (µg/m3) 141,932 27.42 15.63 1.00 128.00
NO2, Daytime (µg/m3) 141,932 23.34 14.46 1.00 138.45
NO2, Night (µg/m3) 141,932 30.69 17.95 1.00 159.62
Air Temperature 141,932 12.97 11.18 -37.12 40.06
Dew Point Temperature 141,932 5.63 12.66 -41.12 28.85
Sea-level Pressure 141,932 1,017.38 10.19 975.68 1,057.01
Wind Direction 141,932 173.81 66.57 0.00 360.00
Wind Speed 141,932 2.43 1.23 0.00 18.00
Precipitation 141,932 2.41 8.61 0.00 364.80
Public Transit Density 126,588 43.89 61.46 0.36 478.02

Table A3: The Impacts on NO2 (Extended Sample)

Outcome Log NO2
Full Sample Weekdays Only

24h Day Night 24h Day Night
(1) (2) (3) (4) (5) (6)

Lockdown
-0.335*** -0.314*** -0.349*** -0.304*** -0.269*** -0.314***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Weeks 1–8 -0.001 0.040** -0.029 -0.024 0.034* -0.049**
(0.956) (0.005) (0.051) (0.092) (0.020) (0.001)

Weeks 9–16 0.045*** 0.058*** 0.030* 0.016 0.048** 0.002
(0.001) (0.000) (0.029) (0.252) (0.002) (0.894)

Weeks >16
-0.000 0.046* -0.040* 0.002 0.042 -0.027
(0.987) (0.026) (0.042) (0.929) (0.056) (0.223)

Observations 141,932 141,932 141,932 101,269 101,269 101,269
R2 0.685 0.663 0.651 0.691 0.669 0.658

Note: p-values are reported in parentheses. Standard errors are clustered at the city level.
Control variables include daily temperature, humidity, sea-level pressure, wind speed, wind
direction, city-year fixed effects, and lunar calendar date fixed effects. Day: 8:00-19:00.
Night: 0:00–8:00 and 19:00–24:00. Lockdown: lockdown period. * p < 0.05, ** p < 0.01,
*** p < 0.001.
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Table A4: The Impacts on Other Air Quality Measurements

Outcome Log PM 2.5 Log AQI
Full Sample Weekdays Only Full Weekdays

24h Day Night 24h Day Night 24h
(1) (2) (3) (4) (5) (6) (7) (8)

Lockdown
-0.066* -0.066* -0.062* -0.008 0.001 0.005 -0.101*** -0.095***
(0.017) (0.014) (0.023) (0.787) (0.979) (0.885) (0.000) (0.001)

Weeks 1–8 0.048 0.063* 0.040 0.013 0.050 0.004 -0.054* -0.090**
(0.109) (0.047) (0.165) (0.717) (0.176) (0.907) (0.024) (0.001)

Weeks 9–16 0.046 0.057 0.032 0.005 0.032 -0.000 0.012 -0.026
(0.111) (0.069) (0.242) (0.871) (0.351) (0.996) (0.605) (0.326)

Weeks >16
-0.077* -0.073 -0.103** -0.118** -0.097* -0.148*** -0.029 -0.051
(0.047) (0.060) (0.010) (0.006) (0.025) (0.001) (0.377) (0.144)

Observations 44,388 44,388 44,388 31,671 31,671 31,671 44,388 31,671
R2 0.553 0.501 0.550 0.565 0.509 0.563 0.519 0.531

Note: p-values are reported in parentheses. Standard errors are clustered at the city level.
Control variables include daily temperature, humidity, sea-level pressure, wind speed, wind
direction, city-year fixed effects, and lunar calendar date fixed effects. Day: 8:00-19:00. Night:
0:00–8:00 and 19:00–24:00. Lockdown: lockdown period. * p < 0.05, ** p < 0.01, *** p <
0.001.
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Table A5: Heterogeneous Effects for NO2 by Provincial Internet Penetration

Outcome Log NO2
Full Sample Weekdays Only

24h Day Night 24h Day Night
(1) (2) (3) (4) (5) (6)

Panel A. High Internet Penetration Rate

Lockdown
-0.367*** -0.363*** -0.374*** -0.326*** -0.302*** -0.332***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Weeks 1–8 0.011 0.032 -0.010 -0.007 0.038* -0.027
(0.522) (0.075) (0.564) (0.690) (0.037) (0.152)

Weeks 9–16 0.061*** 0.060*** 0.052** 0.023 0.046** 0.011
(0.000) (0.001) (0.002) (0.157) (0.010) (0.508)

Weeks >16
-0.010 0.018 -0.043 -0.014 0.017 -0.042
(0.710) (0.531) (0.110) (0.624) (0.569) (0.169)

Observations 75,624 75,624 75,624 53,958 53,958 53,958
R2 0.687 0.664 0.654 0.695 0.673 0.663

Panel B. Low Internet Penetration Rate

Lockdown
-0.287*** -0.249*** -0.308*** -0.263*** -0.217*** -0.275***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Weeks 1–8 0.006 0.064** -0.023 -0.019 0.047* -0.042
(0.785) (0.007) (0.322) (0.402) (0.048) (0.075)

Weeks 9–16 0.044 0.062* 0.031 0.024 0.056* 0.017
(0.052) (0.015) (0.169) (0.327) (0.041) (0.465)

Weeks >16
0.024 0.086** -0.016 0.034 0.079* 0.011
(0.386) (0.005) (0.563) (0.249) (0.017) (0.707)

Observations 66,308 66,308 66,308 47,311 47,311 47,311
R2 0.703 0.680 0.671 0.710 0.687 0.679

Note: p-values are reported in parentheses. Standard errors are clustered at the city level.
Control variables include daily temperature, humidity, sea-level pressure, wind speed, wind
direction, city-year fixed effects, and lunar calendar date fixed effects. Province Internet
Penetration Rates are collected from the China Internet Network Information Center. The
cutoff is the median of Internet Penetration Rate. Day: 8:00-19:00. Night: 0:00–8:00 and
19:00–24:00. Lockdown: lockdown period. * p < 0.05, ** p < 0.01, *** p < 0.001.
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