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in which the individual time series are modelled by semi-nonparametric GARCH and
the joint distributions of the multivariate standardized innovations are characterized
by parametric copulas with nonparametric marginal distributions. The models extend
those of Chen and Fan (2006) to allow for semi-nonparametric conditional means and
volatilities, which are estimated via the method of sieves such as splines. The fitted
residuals are then used to estimate the copula parameters and the marginal densities
of the standardized innovations jointly via the sieve maximum likelihood (SML). We
show that, even using nonparametrically filtered data, both our SML and the two-step
copula estimator of Chen and Fan (2006) are still root-n consistent and asymptotically
normal, and the asymptotic variances of both estimators do not depend on the
nonparametric filtering errors. Even more surprisingly, our SML copula estimator using
the filtered data achieves the full semiparametric efficiency bound as if the
standardized innovations were directly observed. These nice properties lead to simple
and more accurate estimation of Value-at-Risk (VaR) for multivariate financial data
with flexible dynamics, contemporaneous tail dependence and asymmetric
distributions of innovations. Monte Carlo studies demonstrate that our SML
estimators of the copula parameters and the marginal distributions of the
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1 Introduction

Copula-based multivariate dynamic models have been widely used to model nonlinear dependence
and financial risks among observed and/or latent series; see, e.g., Patton| (2006, 2013), Cherubini
et al. (2012), Zhao and Zhang (2018)) and the references therein. In this paper, we consider esti-
mation of semi-nonparametric dynamic filtered copula models, in which the dynamics of individual
series are modelled as semi-nonparametric GARCH and the joint distribution of the standardized
innovations of the multivariate series are characterized by parametric copulas with nonparametric
marginal distributions. These models are very flexible, allowing for leverage effects, asymmetric and
fat-tailed individual series, nonlinear and tail dependence among latent shocks to different financial
series. They are useful in estimating and forecasting portfolio VaRs and risk managements.

There are two parts of unknown finite- and infinite-dimensional parameters associated with this
class of models: (i) the semi-nonparametric conditional means and volatilities (semi-nonparametric
GARCH) of individual observed time series; and (ii) the semi-nonparametric joint distributions,
which consists of the copula parameters and the nonparametric marginal distributions, of the latent
standardized innovations. Here the parametric copulas capture the contemporaneous dependence
among the individual elements of the standardized innovations. Chen| (2013) first proposed this
class of models as an extension of Chen and Fan (2006) from parametric dynamic conditional means

and volatilities of individual observed time series to a semi-nonparametric GARCH in part (i).



This extension is important to capture the shapes of the “news impact curve” nonparametrically for
individual financial series and lessen dynamic misspecification due to wrongly specified parametric
functional forms of conditional means and volatilities.

In this paper, we treat semi-nonparametric functions in part (i) of the model as nuisance pa-
rameters, and focus on estimation of the copula parameters and the marginal distributions of the
standardized innovations in part (ii). This is because there already exist many consistent estimators
for various semi-nonparametric conditional means and volatilities using univariate time series data,
such as estimators based on kernel, local polynomial regression, penalization and sieves (e.g., Fan
and Yao (2003),|Gao| (2007), |Linton and Mammen (2005), Chen and Shen|(1998)), Chen et al.| (2014)),
Meister and Kreif| (2016)). For the sake of concreteness, we apply sieve estimation of the condi-
tional mean and volatility functions in the paper. See, e.g., |Yang (2006), |Engle and Rangel (2008),
Liu and Yang (2016) for spline GARCH estimation. We shall focus on two kinds of estimation
procedures for parameters in part (ii) of the general model.

The first estimation procedure was already proposed and empirically implemented in [Chen
(2013): Stage 1, for each observed time series, estimate the semi-nonparametric conditional mean
and volatility via the sieve quasi maximum likelihood (QML) assuming standard normal standard-
ized innovations. Stage 2, estimate the marginal distributions of the standardized innovations via
the rescaled empirical marginal distributions using the fitted residuals from Stage 1; and then es-
timate the copula parameters via the pseudo maximum likelihood (pseudo-ML) of the parametric
copula density evaluated at the rescaled empirical marginal distributions of the fitted residuals from
Stage 1. In this paper we refer to this separate estimation of marginal distributions and copula pa-
rameters as the semiparametric two-step procedure. (Chen| (2013)) conjectured (at the end of section
5) that the asymptotic variance of the semiparametric two-step copula estimator using the sieve
QML fitted residuals is the same as that of the copula estimator in Chen and Fan| (2006) using para-
metric fitted residuals. In this paper, we show that the conjecture is indeed correct. Precisely, even
using nonparametric conditional mean and GARCH fitted residuals, the semiparametric two-step

copula estimator is still root-n consistent and asymptotically normal, with its asymptotic variance



being the same as that in |Genest et al| (1995)) using directly observed standardized innovationsﬂ

In the paper we propose another estimation procedure: Stage 1, for each observed time se-
ries, estimate the semi-nonparametric conditional mean and volatility via the method of sieves;
Stage 2, estimate the nonparametric marginal densities and the copula parameters jointly via the
sieve maximum likelihood (SML) using the fitted residuals from Stage 1. We show that, even us-
ing nonparametrically filtered data, our joint SML copula estimator is still root-n consistent and
asymptotically normal, with its asymptotic variance being the same as that in |Chen et al. (2006)
using directly observed standardized innovations. Perhaps more surprisingly, our joint SML copula
estimator using the filtered data is shown to achieve the full semiparametric efficiency bound as if
the standardized innovations were directly observed.

For observed standardized innovations, the semiparametric two-step estimators of the marginals
and the copula parameters in |Chen| (2013) and the joint SML estimators in our paper become those
in |Genest et al.| (1995) and |Chen et al.| (2006]) respectively. The estimator of (Genest et al.| (1995)) is
widely used but generally inefficient: The empirical marginal distributions are obviously inefficient
for the marginal distributions unless the copula is independent; The two-step copula estimator is not
efficient either unless the copula is independent or Gaussian (see, e.g., Klaassen and Wellner| (1997))).
Chen et al.| (2006) has established that the joint SML estimators of the marginal distributions and the
copula parameters are both efficient for semiparametric copula models with i.i.d. data. In this paper,
although our joint SML copula estimator is shown to be efficient for the full semi-nonparametric
dynamic model, it is unclear whether our joint SML estimator of the marginal distributions of the
standardized innovations might achieve its semiparametric efficiency bound. Nevertheless, since our
joint SML estimator of marginal distributions borrows information from other components of the
innovations, it should be more efficient than that of |Chen| (2013). These nice theoretical properties
lead to simple and more accurate estimation of VaRs for multivariate financial data with flexible

dynamics, contemporaneous tail dependence and asymmetric distributions of innovations.

n a concurrent and independent work, [Neumeyer et al.| (2019) also extends the result of |(Chen and Fan| (2006)

from parametric fitted residuals to the locally polynomial regression estimated nonparametric ARCH in Stage 1.



Monte Carlo studies demonstrate that our joint SML estimators of the copula parameters and
the marginal distributions of the unobserved standardized innovations do have smaller variances
(and smaller mean squared errors) compared to those of the semiparametric two-step estimators in
finite samples (n = 500). For large samples (n = 8000), both estimators for the copula parameters
perform well, while our joint SML estimators for marginal distributions are still more efficient than
the empirical marginal distributions using nonparametric fitted residuals.

As a real data application, we apply the multivariate semi-nonparametric GARCH filtered Stu-
dent’s t-copula model to model dependence among five popular financial assets. The spline-GARCH
estimates exhibit the well-known “news impact curve” (or leverage effects) in each asset. We esti-
mate the copula parameters and the marginal distributions of the innovations using spline-GARCH
fitted residuals. The joint SML and the semiparametric two-step methods produce similar esti-
mates for copula parameters, although the joint SML gives slightly larger log-likelihood values for
the copula parts. The estimated models are then used to estimate VaRs for the portfolios consisting
of five assets and of paired assets. The full-sample backtesting and out-of-sample Diebold-Mariano
test suggest that the VaR forecasts from the joint SML are more accurate than those from the
semiparametric two-step estimates.

The rest of the paper is organized as follows: Section [2] presents the general model and the
two estimation procedures. Section [3| establishes the asymptotic properties of the joint SML esti-
mator using the semi-nonparametric GARCH filtered residuals. Section [4] presents the asymptotic
properties of the semiparametric two-step estimator using the semi-nonparametric GARCH filtered
residuals. Section [f] provides simulation studies and Section [6] presents an empirical application.
Section [7] briefly concludes. All technical proofs and additional simulation tables are gathered into
the Appendices. In this paper, we use “i)”, “A”, and “~~” to denote convergence in probability,

convergence in distribution, and weak convergence, respectively.



2 The Model and Estimation Procedures

In this section we formally introduce the model and several estimation procedures.

2.1 Multivariate Semi-nonparametric Dynamic Filtered Copula Models

Let {Y; = (Y14, ,Yit) T}/, be the observations of a k x 1 vector-valued time series. Let F'~1
denote the available information up to time ¢ — 1, which includes all the lagged Y;_, for r > 1
and other random vectors observable at time ¢t — 1. We assume that {Y;};"; is generated from the

semi-nonparametric dynamic (in particular, GARCH) filtered copula model:

Yie=poj (F'71) + o0, (F71) &, forj=1,..,k, (1)

po; (F©1) = B[y |F 1] = 1o, 00, (F'=1) = /Var Y| Ft-1 = o6 forj=1,..k,

Fo(&i,- &) = C (Foa(&ye), - For(&rye); Oo) (2)

where the standardized multivariate innovations {& = ({14, , &) : t > 1} are assumed to be
independent of F!~! and are identically and independently distributed. We assume that the joint
distribution Fy(-) of & follows a semiparametric copula model , in which its copula function
is known up to the unknown true finite dimensional parameter §y € © and the true marginal
distributions (and pdfs) Fy ; (and fo;), 7 =1,--- , k, are unspecified.

We note that Model (I)-(2) is slightly different from typical multivariate GARCH modelsE] as
it implies a constant conditional correlation matrix with Corr [Y}‘ﬂg,}/[’t’ﬁil] = E[£;+&14] as the
(4,1)— element, for j,I = 1,...,k, and the contemporaneous dependence of & = (€14, , k)T 18
specified semi-nonparametrically in . Unlike typical multivariate GARCH models, implies
that tail dependence among &; depends on copulas only and is free of behaviors of marginal densities.

We use the following assumption to formally summarize this class of models.
Assumption 1. (i) The strictly stationary observations {Y; : t > 1} are B-mizing with 3(t) < Bot~¢
for some g >0 and ( =v—2>2, and E (\Yj,t|4) < oo forj=1,--- k. {Y:i} satisfies Model —

[2), where the unknown true dynamic parameter ko (-) = [poa (+), - s pok (), 001 (), o0k (+)]T

2See, e.g., [Bollerslev et al.| (1988), [Engle and Kroner| (1995), |[Hafner and Preminger| (2009) and others.



are semi-nonparametrically specified; (i) {& :t > 1} are independent of F'=' and are a random
sample from the distribution Fo(&y1,--- &) satisfying Model . Foj; 1 E; — [0,1] is the unknown
true absolutely continuous marginal distribution function of §;4 for j = 1,..., k. The functional form
of the copula C (u1,--- ,uk;60p) = F()(F(;l1 (uy),--- ,Fo_kl(uk)) is known up to the finite dimensional

parameter Oy € ©.

2.2 Estimation

There are two sets of unknown semi-nonparametric parameters associated with Model (I))-(2): (i)
The true conditional mean functions and volatility functions ko = [po,1,- -+ , Hoks 00,1, »T0k] 5
and (ii) the true copula parameters and the marginal distributions of innovations ag = (67, Fo1, -+ , Fox)"

or ag = (07, fo1, - » fox)" with fo; being the density of Fy; for j =1,.... k.

Let k(:) = (1 (-) - s (-)y01(-), -+, 0% ()T be any semi-nonparametric dynamic parameter,
and denote k! = (,u’i, v kot ,O’Z)T as the realized values at F'~!, which is F*~!-measurable.
Let a = (67, f1,---, fx)" be any parameter of the innovation processes. Then the log likelihood of

Y; conditional on F~1 and (k, a) is

Yy — Yo, — ut
l(a,k,Y:) =logp (Vs ‘ftil sa, k) =logc [Fl <1t0tM1> yoo s Fr <kt0tuk> ;0]
1 k
k t k
Y',t_,u‘
+Zlogfj <] o J) - Zlogaj, (3)
Jj=1 J j=1

where F} is the corresponding cdf of f;, for j =1,--- k.

If (ko,0) were parametrically specified, then the parameters could be estimated simultane-
ously by maximizing the full log (conditional) likelihood of {¥;};";: > 01 («,k,Y;). For semi-
nonparametric model —, however, it is much easier to estimate kg and «g sequentially. In the
first stage, we can estimate kg via by any nonparametric methods for the conditional mean
and conditional variance functions. See Appendix B for sieve quasi-maximum likelihood (QML)
estimation and sieve least squares estimation of xg. Also see the spline-GARCH regressions in
Liu and Yang (2016), the local polynomial estimation of nonparametric ARCH in |[Neumeyer et al.

(2019), the kernel estimation of semi-nonparametric ARCH in Linton and Mammen| (2005), the



nonparametric method in Meister and Kreif| (2016). Let & = (f1,--- , fik, 01, - ,0%)" denote a

semi-nonparametric consistent estimator of kg, and

~ Y+ — 1t
fj7t:j’,\7t] forjg=1---k andt=1,---,n
9j
denote the semi-nonparametric GARCH filtered residuals. In the second stage, we could estimate
aq using the filtered residuals. We consider two kinds of estimation methods for g in this paper:

the joint SML estimation of g using filtered residuals in Section [2.2.1} and the semiparametric

two-step estimation of g in Section [2.2.2]

2.2.1 Joint SML Estimation for o

SML Estimation using Semi-nonparametric GARCH Filtered Residuals
Plugging {Ej,t, 1<j<k 1<t n} (or equivalently %) into the full log likelihood 7 we obtain

(up to a constant term)ﬂ :

k
LR, Yy) =loge [P (€)oo B (§r) 18] + D 1o f5 () - ()
j=1

Averaging Eq. over Y; results in the estimated likelihood %Z?Zl l(a,R,Y;) for . We propose
Qsmi as the SML estimator of ag = (6], fo.1, -+, fo)" using filtered residuals :

_ ~ = ~ T 1< .

Qsml = (esml’ fl,sml7 T fk:,sml) = arg mamaEAnE Zl (aa K, Y;f) : (5>

t=1

The sieve space A,, is used to approximate the infinite dimensional parameter space A defined in
Assumption See Section (3| for more details about A,,. We note that a,,; does not impose the
restriction that é},t has zero mean and unit variance, which is more robust to the estimation error
and model misspecification. Section [3| will study the theoretical properties of ay,,; thoroughly.
Infeasible SML Estimation using True Innovations

For comparison, we introduce the infeasible SML estimation of ay assuming that the true innovations

t _ ot
3With abuse of notation, we denote I(a,k,Y;) = loge [Fl (Y“if“l) s By (Yk”'t ”’“) ;9} +
91 %k

P,
Zle log f; <Y";,: ] >7 except for the full model .
J




{&}}, were observed (or equivalently xo were known). In this case, [ (a, ko, Y;) (defined in Eq.(3))
is the exact log likelihood of & and « (up to a constant term) :
k
l (Oé, Ko, Y%) =1 (a7§t> = IOgC [Fl (gl,t) y 7F]€ (gk,t) 79] + Z lOg f] (f],t) . (6)
j=1

Denote G4y, as the infeasible SML estimator of «yq :

n
. -~ ~ ~ T 1
Asml = (glml’ fLsmla T 7fk,sml) = arg max — Zl (a> Ko, Y;f) . (7)
acAn N
t=1
Since Qg will be compared to this infeasible estimator in terms of asymptotic variances, Qg 1S

implemented without imposing that & has zero mean and unit variance. We note that i, is the

SML estimator of ap proposed in [Chen et al.| (2006) assuming i.i.d. data {&} ;.

2.2.2 Semiparametric Two-step Estimation for ag

Two-step Estimation using Semi-nonparametric GARCH Filtered Residuals

(Step 1) The unknown marginal Fp ; is estimated by the rescaled empirical distribution function,
n

1 ~ .
Fjas(z5) = mzﬂ{ﬁj,t < Zj}, forj=1,---k, (8)
t=1

where {Et = <§17t, e ,Ek,t)T , 1<t < n} are semi-nonparametric GARCH filtered residual

series from Stage 1. The notation I stands for the indicator function. For j = 1,.-- ,k and
t=1,---,n, denote the transformed series as
~ ~ o~ 1 «— ~ ~ ~ ~ ~ T
Uja 1= Fjas(§e) = =7 21 (fj,s < §j,t> , and Uy = (Ul,t, a 7Uk,t> - (9)
s=1

Note that {ﬁt, 1<t n} are rescaled rank statistics and take values from {%—H’ ceey nL_H}

(Step 2) {ﬁt, 1<t< n} are used to estimate the copula parameter by maximizing the pseudo likeli-
hood

~ 1 <& ~ ~
0o = argmax — 1rZ;logc (Ul,t, o Ut 9) ) (10)



Section 4| will study the theoretical properties of 523 and ﬁjﬂs (x) for any fixed x € =;.
Infeasible Two-step Estimation using True Innovations
For comparison, we also consider the infeasible two-step estimation procedure assuming that the

true innovations {&:};. ; were observed. Step 1, compute the rescaled rank statistics of {&},—; as

n

- 1 S N
Oio 1= —5 > 10 < &), O = (Tt Ops) s forj =1, sk and t =1, ,n. (1)
s=1

Step 2: {(/}t, 1<t< n} are used to estimate 6y € © by maximizing the pseudo likelihood

025 = arg meaéc - Zlogc (U1 ‘- ,ﬁk,ﬁ 9) . (12)

We note that {/9\25 is the rank based estimator proposed in |Genest et al.| (1995) assuming i.i.d. data

{&iimr-

3 Asymptotic Properties of 6,y

N ~ o~ ~ T

In this section, we first derive the asymptotic properties of Qg = <0lml, fisml s fk,sml) (de-

fined in Eq.). And then we establish the asymptotic normality and the semiparametric efficiency
~ T

of Ogny. Let U = (Uﬁt,~-- ,U,St) = (Foq1 (&), - For (&), for t = 1,---,n. Denote

c(UP,00) = c[Foa (&) -+ For (Ekt) 5 00)-

3.1 Asymptotic Properties of o,
3.1.1 Convergence Rate of ag,,

Assumption 2. (i) 0y € int (©), where © is a compact subset of R%, and c(u;0) > 0 for all
€ (0,1)%, 0 € © ; (ii) for j = 1,--- |k, fo; € Fj, where either F; = {f; = exp(g) : g €
APi (Z)) fexp z))dz =1, [2?exp(g(z))dz < oo} or F; = {fj = g*> > 0: g € NP9 (5;), [ ¢*(x)dx =
1, [ 2%g*(z)dx < oo}, p; > 1; (iii) ag = (05, fo1,- -, for)T is the unique maximizer of E [l (v, ko, Y1)]

over A =0 x szl]:

10



Let [p;] > 0 be the largest integer such that [p;] < pj. A real-valued function g on Z; is
said to be pj-smooth if it is [p;] times continuously differentiable on Z;, and its [p;]th derivative
satisfies a Holder condition with exponent p; — [p;] € (0,1]. We denote A7 (Z;) as the class of
all real-valued functions on Z; which are p;-smooth, and it is called a Holder space. Therefore,
Assumption [2 (ii) imposes smoothness condition on the unknown marginal densities. p; > 1 implies
that Vf; € F; is continuously differentiable. Assumption [2| (iii) is the identification condition. The
infinite dimensional parameter space A is approximated by the sieve space A, = O x H?:l fj,
Let N (6p) = {6 € ©: |0 — 6o|| < €} be a local neighborhood of y, for some positive constant € > 0.
Assumption 3. For j,m = 1,---  k: (i) the second-order partial derivative % erists and
is continuous in N (6p) and u € [0,1]¥; (ii) the second-order partial derivative % exists
and is continuous in N (6p) and {u € [0,1]¥ : 0 < u; < 1}; (iii) the second-order partial derivative

% exists and is continuous in N (6p) and {u € [0,1]% : 0 < u; <1, 0 < up, < 1}.

Denote V as the linear span of A—{ap}. Under Assumption for any v = (vg, V1, Uk)T ev,

dl(ap+T7v,Kk0,Y:)

we have that [ (o + Tv, ko, Y3) is continuously differentiable in small 7 € [0,1] : e

=0 N

W[v] = mogg;{f 90) g —l—Z] 1 {W fg” vj(x)dx + Uj(f“)) } Define the Fisher inner

product and norm on the space V as

<o T>=E [(‘% (20, fi0, ¥2) m) (az (20, o, ) m)] P =<vv>, Vo, TeV. (13)

oaT oaT

The closure of V under || - || is V = {v = (v}, v1,- ,vp)" € R% x H§:1 Vi) < oo} with

V.= du e a2 B (L&) ) _ vi&e) \* _
Vi= { s EAT(E) B <f0,j(€j,t)> -0 F <f0,j(§j,t)> - } 49

Denote B = H§:1 M, x H§:1 H; (see Appendix |Bffor details) as the dynamic parameter space for

K, and B, = H?:l M, X H§:1 H;n C B as the associated sieve space. Assume kg € B, satisfying

koj = (po4,005)" = argmin  E[V(k;,Y;s)], forj=1,---k, (15)
,U«jEMj,O'jEHj

m=1

4]-‘jm = {fjn(x) = [ZKTL amAm ( } f fin(x)de = 1} if sieves are used to approximate square root density, or
Fin = {fj’n(fl‘) = exp [Zfz’;l AmAm (ac)] S Fin(z)de = 1} if sieves are used to approximate log density. See|Chen

(2007) for details on sieve spaces.

11



where ¥ could be any criterion function in Stage 1, e.g. the sieve QML criterion. Let K € B,, be any
semi-nonparametric estimator of kg using the sample analogs of Eq.. Denote W as the linear

span of B — {kg}.
Assumption 4. ||k — kol = Op (6p.n) = 0p (n—1/4)_

The norm ||| on W (defined in Eq.(B.3)) is based on the criterion function Eq.(15). This
class of norms are usually weaker than the sup or Lo norm on an infinitely dimensional parameter
space. For a parametric estimator %, the convergence rate is well known to be n=1/2. For a semi-
nonparametric estimator, under the weak norm ||-||, Assumption [4|is mild. There exist many results
on the convergence rates of the kernel estimates, the local polynomial estimates, the spline estimates;
see e.g., Buhlmann and McNeil (2002)), Linton and Mammen (2005), |Liu and Yang| (2016)), Meister
and Kreif| (2016)), [Neumeyer et al.| (2019). Also see Appendix and for detailed illustrations

of a fully nonparametric dynamic model and a semi-nonparametric GARCH model, respectively.

Lemma 1. Suppose Qg satisfies (z) Under Assumptions @ @ and Assumptz’ons

stated in the Appendiz, we have
Gt = o]l = Op (Ban) = 0p (n™2/4).

LemmalI]only provides a loose bound for the convergence rate, which is enough for the derivation

of our main theorems. For a sharper rate, it involves more tedious calculations and proofs.

3.1.2 Asymptotic Normality of p (sm)

Let p be a smooth functional on 4 and satisfy Assumption (iii). For any v € V, we denote

ag(ao‘f) [v] = lim; 0 w. There exists a Riesz representer v* € V, such that
9p(00) Op(c0) | Roadll
« Q T
PO ) =< v,0* > Yo eV; [l = H” = sup e (16)
daT daTt veV:||v||>0 HUH

12



To establish the asymptotic normality of p (asm;), we introduce the following correction term to

capture the estimation error :

N 0?1 * R — ko), Y
Vil (ao, ko) [*, & — ko] = VnEx (a0 + 10", ko + 72 (R = o), 1) = (17)
87—187—2 T71=0 T72=0
8210gc(Ut ,00) vk v; (gj t)fO](fj t)— v; (5] t)foj(fj t)
B ou; 007 V9 605 (&) + fo](iyt) ViEx ( MOJ)
dlog c(U2,00) ko 9%loge(U26 70,5
) +OEERRL L (€50) + Sy g S v (@) fo (€5) ]
82 log c(U9,60) *1(&j,6)fo,5(€ ,) ”U‘(E',t)f,'(ﬁ',t)
; B s fo5 (€4) €0 + 20 ;O’](gji) PG
B dlog c(UP,00) 9 log c(UP,0 m,
FEGEE (€50) €+ Ty Tt S v @) fo g (€50) &
ot—of .
X\/’TlEX <— ]crt 0’]>
0.

where the operator Ex is defined in Eq., K—ro= (1 — o1, " » 1k — [0k> 01 — 00,1, "+ , Ok —
00,k)7, and the evaluated values of the semi-nonparametric dynamic parameters at F =1 are abbre-
viated to the associated parameters with a superscript ¢. See Appendix [C.I] for detailed derivation
of Eq.. In Eq., the first term in the braces equals the product of a nonrandom multiplier
(determined by v*) and the random term /nEx (%), which characterizes the effect caused
by estimating the conditional mean function. Similarly the second term in the braces quantifies the
effect caused by estimating the volatility function. Eq. is sensible only if for j = 1,--- , k, the

random terms

o (ﬁﬁ'a—tuf),j> _ JREx (ﬁj (F7) — po, (J:t_l)> _ \/ﬁ/ A (iU;Of 10 () i

0.5 00,5 (.Ft_l) (x)
ot — gt . O 1) — g (FtL gj(x)—o
VnEx (J%OJ) :ﬁEX< ] (PJO)(fﬂ)(F )> _f/ . 00, Oij( r(ayia, (19
J J

are well defined, where poﬂ is the true (unknown) density of F:=1. Eq. emphasizes that Eyx
denotes expectation, treating any plug-in estimator (e.g. jz; (-) and 0 (-)) as deterministic. Ex will
coincide with the standard expectation, when no plug-in estimator is involved. Note that « could
include both the finite dimensional parameter and the infinite dimensional parameter. See Appendix

for an illustration where Eq. is explicitly expressed in a semi-nonparametric setup.

5The dimension and the support of z, and po depend on the model setup of the dynamic parameter, e.g. which

past information is included for constructing the conditional mean and variance functions.
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Assumption 5. (i) For j = 1,---,k, /nEx ( Mf”) = ﬁZ?d( %w ) + op (1),
3]

ViEx (
representers ; (ii) — = > i1 Sp(a) (@0, Ko, Yi)++/nT (o, ko) [v*, & — ko) 2N (0, Asyvar [p (Qsmi)]),

) \F Yoy ( %w )—l—op (1), where wy, and wy are the associated Riesz

where Asyvar [p (Gsm1)] is given in Eq.(L19).

¥ (defined in Eq.([15)) is the criterion function used for estimation in Stage 1. Assumption [f]i) is
a standard result in the semi-nonparametric literature, since the operator Ex is a smooth functional
of f1; and ;. We justify Assumption (1) in Appendix for a fully nonparametric dynamic
model, and in Appendix [B:2] for a semi-nonparametric GARCH model, respectively. According
to Eq.(17] fl“ ap, ko) [v*, K — ko] is a weighted sum of the random terms /nEx (%) and
Vn EX(

by the smooth functional p of interest). Thus Assumption (ii) is implied by the triangle array

) for j =1,--- , k, where the nonrandom weights are determined by v* (equivalently

CLT.

Theorem 1. Under Assumptions [}, [3, [3, [{} [3 and Assumptions[C.1], [C.3, [C-3, [C-]] stated in the
Appendiz, we have \/1 [p (Fsmt) — p (a0)] > N (0, Asyvar [p (@sm)]), where

Asyvar [p (Ggmi)] = lim Var |n=1/? Z Sp(a) (@0, Ko, Yz) + v/nl (ap, ko) [V, K — Ko | - (19)

Sp(a) (0, Ko, ) is defined in Remark v* is the Riesz representer of p(ag) defined in Eq., and

I (ao, ko) [v*, K — ko) is defined in Eq.(17).

Remark 1. When {§;} were observed (or £ were known to be kg), Sy(q) (@0, Ko, Y7) is the efficient
influence functionﬁ for p (), then Var [Sp(a) (v, Ko, Yt)] is the asymptotically minimum variance
(Fisher’s lower bound) for p (ap) in Model ([6). Furthermore, p (Gsp) is semiparametrically efficient

with asymptotic variance Var [S

(o) (@0, K0, Y7)] (see Theorem 1 of (Chen et al. (2006)).

Remark 2. The correction term can also be interpreted as

8Sp(a) (Oéo, Ko+ T (/Iﬁ\) — HQ) ,th)
or 7=0 .

T (Ck(), /io) [U*, R — /ﬁ:o] = EX (20)

5See the definitions of efficient influence functions and score functions in|Bickel and Kwon| (2001) and the references

therein.
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In general, I' (ap, ko) [v*, Kk — ko] # 0, thus Asyvar [p (asmi)] # Asyvar [p (Qsmi)]. Therefore, asymp-
totically valid standard error for p(ag) requires a correction.

Note that S, (@, ko, Y1) = %v* (see the proof of Theorem |1 or the proof of Theorem

1 in (Chen et al. (2006)). Also note that /nI (ap, ko) [v*, K — Ko] is a linear combination of the
random terms defined in Eq.7 where the nonrandom weights are determined by v*. However, in
general, there is no closed-form solution for v*, thus we first need a consistent estimator of it. In

the following, we suggest a procedure to evaluate Asyvar [p (Gsmi)] :

(Step 1) Following Section 3.3.1. of (Chen et al. (2014), we can estimate v* by v} (the sieve Riesz

representer). They provide closed form expressions for v}, and Wv}. See [Chen et al.

(2014)) for more details.

(Step 2) There are 2k nonrandom weights in Eq.(17). For example,

1’2 1(>g(3 11079 * ’Usfl(é.', )} ,'(5', ) U*‘((E', ).}17'(6', )
E 6uj(39% 0*) U9 ?O,j (£J7t) LSRR fJQTj(Ej,Jt) 2 100
dlogc 110,9 * 92 logc UO,O m ’
o . O)Uj (éj,t) }:mk =1 8ol ; o) f¢ ! v (:L‘)d‘/L‘fOJ (éj,t)

Ou;; Oum Ou; —00 ~m

can be consistently estimated by replacing the population mean with the sample analog. And
the unknown true values could be replaced by v from (Step 1) and our SML estimates. The

other 2k — 1 weights can be estimated similarly.

(Step 3) The random terms defined in Eq. can be expressed explicitly. See Lemmas

in Appendix [B for detailed descriptions.

(Step 4) Then Asyvar [p (asmi)] can be evaluated by taking into account the possible autocorrelations
in Eq.. Replace the population moments and the unknown true values with the sample

analogs and our SML estimates when it is needed.

3.2 /n Normality of Ot

In practice, the copula parameter 6 is often of primary interest. Thus we will unfold Eqs.
and in this section when p(a) = AT6, for any fixed A € R% with 0 < [|A|| < oo. Let
0 - <617 T 79d9)T'
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For comparison, we first present the semiparametric efficient information of 8y in the infeasible

model @ (ko is known), with &’s marginal distributions completely unspecified. Let
1 1
£5([0,1]) = {b € A% ([0,1]) : / b(v)dv = 0, / b2 (v)dv < oo},
0 0
Denote B* = [b}] € {£3 ([, 1])}k><d9, j=1,--- kandl=1,---  dp. (21)

B* is a k by dy matrix, each element of which belongs to ﬁg ([0,1]). For I = 1,---,dp, each

[th column of B*, i.e. bl = (b’il, e ,b;l)T solves the following infinite-dimensional optimization
problem :
2
0l U ,0 01 U ,0
it [ Loz (U200) 5~ [go) / by + by (0,)
(b1 bi)€{£3(0.) ! =1 0
(22)

The efficient score of 8y in the infeasible model @ can be expressed in terms of B*ﬂ

dlogc (UL, 0 F [dloge (U?,00) (U7 .
5 <U?’0‘0’“0>:WZ[W/OJ T+ 67T (0

j=1

;o (23)

where 07 is the jth row of B*. Then the semiparametric Fisher information bound for 6 is equal
to Z, (0p) = E (Sgo (Uto, oy, mo) Se, (Uto, g, Iio)T). The efficient influence function for p(ag) = ATy
is Sxrg (@0, Ko, Yz) = v, Sp, (Uto, ag, /ﬁ}()), with v = Z, (00)71 . Thus the asymptotically minimum
variance for p(ag) = AT6y is ATZ, (90)71 A, which is achieved by )\Tgsml (Proposition 1 of |Chen et al.
(2006)). In the following theorem, we show that Asyvar [)\Tgsml} = Asyvar [)\Té\sml] — a remarkable

property.
Assumption 6. ¢ (U,?, 90) satisfies Assumption 3’ in|Chen et al.| (2000).

Under Assumption @ Z. (6p) is finite and positive definite. It is a restatement of Assumption

(iii) when p(a) = AT6.

Theorem 2. Under Assumptions[1], [3, [3 [4 [3 [0 and Assumptions[C-1)() (%), stated

in the Appendiz, we have f{ sl — 90] PN (O,I* (90)_1).

"There exists a one-to-one mapping between the Riesz representer v* of p(a) = AT6 and B*. See page 1233 in

Chen et al.| (2006 or Eq.(C.4) for details.
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Theorem [2| shows gsml and ésml are asymptotically equivalent, in terms of the asymptotic vari-
ance. This property facilitates the statistical inference of the copula parameter, since no correction

term needs to be computed. According to Theorem [I} we have

Asyvar [)\ Gsml} =, lim Var

n—oo

n 0 -
n123 g (UP. a0, m0) + ViiEx [8&)0 (U, o, gj_—k T (R ﬁo))] ] o
t=1 =0

Therefore, essentially we show in the proof of Theorem [2] that

VnEx [ (24)

0S5, (Uto, ap, ko + 7 (K — Ho))]
=0.
or :0

Intuitively, the efficient score function Sp, (UP, Qag, /{0) should be asymptotically orthogonal to (some

version of) any marginal information, thus invariant to the local perturbation around the true kq.

Remark 3. Estimation of Z, (6p)
Procedure 1: Due to Theorem [2, the asymptotic variance of gsml can be consistently estimated
using Proposition 2 of Chen et al.| (2006), without any correction. Essentially, one needs to replace
the population moments and the unknown true values in Eqs. and with the sample analogs
and the estimated values.

Let £, be the sieve space used to approximate £J, for example the spline sieve, the polyno-
mial sieve or the trigonometric sieve. Then Z, (6y) = F [Sgo (U,?,ozo, /4,0) So, (ULp, ag, /{O)T] can be

consistently estimated by

n k = .
~ 1 dlog c(Uy, Qsml 0log c(Uy, Osimi) /U],t,\ . o
Qp = — b (v)dv+b;.(Ujy)
n tZ:; 69 ]z; au] 0 b 5 J
8logc Ut sml i 310g0 Ut sml) Uj't/\ T T 77 !
omt) _ § n / B wde 5T Tl ] Y. @)
j=1 J 0
whereﬁ;f,,isthejthrowofé*—[ ] 1,--- kandl=1,--- ,dg. Forl=1,--- dg, cach
[th column of E*, ie. /l;*l = (/b\{,l, .- 3 ) is estimated by
2
n k U
-~ 1 1 1 it _
by = argmin — Z Ol CaUgt’ o) Z [8 = caUt’ Oom) / ] bji(v)dv +bj(Ujy) ;
(b1,1,+ b, ) ELE s ! j=1 U 0




where Uj; = ﬁj,sml (Ej,t); ﬁ]’sml f fwml v)dv, Esml(') is the sieve MLE of the unknown
density fo; using filtered residuals (defined in Eq.), forj=1,--- k.

Procedure 2 : One could also apply (Step 1) and (Step 4) of Remark [2] to estimate Z, ().

Remark 4. In general, the semiparametric Fisher information bound Z, (6p) has no closed form
solution, except for the Gaussian copula. For the bivariate Gaussian copula with correlation 6,
the semiparametric information lower bound is (1 — 9%)2 (the lowest asymptotic variance) (see, e.g.
Klaassen and Wellner| (1997)). For the multivariate Gaussian copula model, the information bound
is obtained in Hoff et al.| (2014)) and depends only on the copula parameter (Theorem 4.1. of Hoff
et al| (2014)). The above results are consistent with Eq.(23)) : the semiparametric information

bound for the copula parameter is free of the true unknown marginal CDF Fj ;’s

3.3 Asymptotic Efficiency of gsml in the Full Model

Theorem [2] and Remark [4] motivate us to investigate the semiparametric Fisher information bound
for 6y in the full model . We further address the semiparametric efficiency of 5sml.

Denote A" = {a eA: [afj(x)dr =0, [22fj(z)dx =1, j=1,- ,k} and V" as the linear span
of A"—{ap}. A" imposes the restriction that the candidate density has zero mean and unity variance,
otherwise we could not identify ko and fo ;’s separately. Let V7 be the closure of V" under the Fisher
norm ([13)). It is easy to see that V" = {v = (v}, v1,- ,v5) T € R% x H;?ZAT;: llv]| < oo} with

_ _ i (€5 _
T = {vj eV;: E <W> =0, form = 1,2} , where V is defined in Eq.(14). (26)
fo.3 (&)
Under Assumptions(ii) and Yo = (Ug, V1, ,vk)T eViandw = (Wy1, Wk, Wol, > Wok) €

W, we have that [ (ag + Tv, ko + Tw, Y) is continuously differentiable in small 7 € [0,1] :

dl (ap + 70, k0 + 7w, Y) | Ol (a, ko, Y2) Il (v, ko, V)
dr —0 N oaT ]+ OKT o]
k )
dlog c(UY, 6y) {8logc(Ut0,60) /5“ v (&5.t) }
=2t g + —_— vi(x)dr + >
07 ’ ; Ouy —o0 i) fo,5(&j.t)
k ! t t
dlog c(UP, 0p) fo;’(fj,t)] —Wy, —&j, Wy ~Ws
+ —F—Jo,(§ : =+ + : 27
jz; |: auj 0]( ]t) fO,j(gj,t) 0-67]' O_O ]z; 0_6 ( )
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Assumption 7. For j =1, .k, (1) limy o, fo (Ft(w) (1+ [Fy}(w)]) = 0, and

i (p1 14|t — 0 (i) E f6.5&5t) 2 ) B 10,5 (&5,6)&5,8 2 )
imy—1- foj (Fo (u) + |Fo (w)|) = 0; (ii) Wen) <o (iii) ey ) <o

2
(iv) 0 < E(al(agff’n)[v] + 81(0‘3’“0’”)[10}) < oo for (vT,wT) # 0, v € V' and w € W; (v)

KT

dp(y|]—'t’1;o¢0+‘rv,ﬁ0+7w)
dr

dzp(y|}'t*1;ao+‘rv,no+rw)
dr?

fsupTE[O,log(logn)5n] dy < 00 and f SUPr¢(0,log(log n)dy] dy <

oo almost surely for v € V' and w € W, where p (y\]jfl; «, K,) is the conditional density of Yy given

F=1 (defined in Eq.(3)) and &, = max {gam, 5h,n}-

Assumption [7| (i) requires fo j(z) and zfy j(x) converge to zero at both tails, which is mild
(see, e.g. Assumption (F) in Neumeyer et al| (2019)). Assumption [7] (ii) (iii) are conditions for
location and scale models to be locally asymptotically normal (LAN) at the true parameter (see, e.g.
Examples 4.1, 4.3, 4.4 in Hallin and Werker| (2003)) and the references therein). Assumption (7 (ii)

fo J(fj t) ) ‘ f(/)?j(fj,t)éj,t
(iii) also imply that ’E <7(£J " < ooand |[E NGO

inequality. Assumption I v) is a mild condition to assure the interchange of differentiation and

< 00 according to Cauchy—Schwarz

integration.

Lemma 2. Under Assumptions[1}, [3 [3 [7, we have for any v € V" and w € W,

(i) E |:<8l(040,f€07Yt) [v] + Ol(a,k0,Y%) [wD (81(&9,&0,% 7] + Al(ap,k0,Ys) [~]>] =0forv eV, weW and

JaT OKT oaT T OkT

oaT

2
spect to FI=1; (iii) E <8l ag,0, Y1) [v] + 8l(ag;§°’n) [w]) =—-F <—( U 10, Yi) ) [(vT,wT)T, (UT,fwT)T]>.

oaT aT,kT)TI(aT kT

all s < t; (ii) {M[v] + W[w], 1 <t <mny¢ is amartingale difference sequence with re-

The second-order directional derivative in Lemma (iii) is defined in Eq.(C.2). Lemmasugges‘cs

we can define the Fisher norm on the space V' x W as following :

8la7’€,y 8la7l{'7Y ?
7w = (PO L0 ) (28)

which coincides with the norm defined in Eq.(13) on V" x {0}. It is easy to see that the closure of
__ wt 2 t 2
Wunderthisnor:WFC{w E( i”) < 00, E(j”) <oo,j:1,~-,/~c}.
90,5 0,5

8The specific form of Wr depends on both the model setup of the dynamic parameter and the norm .
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Theorem 3. Under Assumptions @ @ @ @ furthermore, if the probability family {Py . : o €

A" k€ B} for {Yi,1 <t <mn} is locally asymptotically normal at (co, ko) and

W Wi 2 , i
Wi e T Cgs g = o (CujrCoj) €ERZ, forj=1,--- ks CWp, (29)

then (i) the semiparametric Fisher information matriz for 0y in the full model (Eq) equals

Z. (0o); (ii) Osmi satisfying conditions in Theorem@ 1s semiparametrically efficient in the full model.

Theorem (ii) states that gsml is as efficient as the one-step full likelihood estimator of the
copula parameter, which is computationally intractable. In other words, we can obtain an efficient

estimator of 6y without additional computational burden.

4 Semiparametric Two-step Estimation for Residual Copulas

4.1 Asymptotic Normality of ﬁj,zs

For j =1,--- ,k, we consider the estimation of }?}725(9:) for some fixed z € Z; C R, where ﬁj725(~)

is defined in Eq..

Assumption 8. nV/2 S, (160 < ah — By () o (x) Vi (Ef52) g (o) v (%
N (0,V)25(z)), where Vjag(x) is given in Eq.(30).

Under Assumption ( Assumption I 8| is implied by the triangle array CLT and similar to

Assumption ( i). vVnEx ( tu(” ) and y/nEx (o % ) have been illustrated in Lemmas , B.2
0,5

OJ
and [B.3

Theorem 4. Under Assumptions(i)(ii)(iii}, @(ii}, H(Z},H we have \/n (ﬁjygs(a}) — Foj (x)) 2,
N (0,Vj24(x)), where

. n2 T (g < 2} — Fog (2))
Vjos(z) = lgm Var st
| o ) VB (P ) 4 fo (o) v (T
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4.2 Asymptotic Normality of 525

To establish the asymptotic property of 525, we first present the theoretical result for the empirical
copula process of the semi-nonparametric GARCH filtered residuals in Lemma [3]

Denote Cy(:) = C(+;600) as the unknown true copula function. Let U = (Uy,---,Ug)T be a
k-dimensional random vector, and let u = (uy,--- ,ux)T € [0, l]k be a k-dimensional nonrandom

vector. Denote (U < uy, -+ ,Ur < wuyg) as (U < u). Define the following empirical copula processes:

Co(u) = \}ﬁ zn: {11 (ﬁt < u) - C’o(u)}, Co(u) = \/15 zn: {]1 (ﬁt < u) - C’o(u)} . forue[0,1]F,
t=1 t=1

where {(7,5, 1<t< n} and {ﬁt, 1<t< n} are defined in Eqs.@ and , respectively. We also

introduce an auxiliary empirical process:
1 n
Cpl(u) = — Z {I(UY <u) = Co(u)}, forue 0, 1%, and C, ~ C, (31)
VS
where C is a C-Kiefer process. It is a well-known result, see, e.g. Bickel and Wichura; (1971)).

Lemma 3. Under Assumption[]] and Assumptions[B.3, [B.3, [C-3, [C-4, [C.7 stated in the Appendix,

we have C,, ~ C and C, ~ C, where C(u) = C(u) — Z?:l agigu)(?j(uj), for u € [0,1]%. C is

defined in Eq.(31) and C;(u;) =C(1,---,1,u;,1,---,1).

Remark 5. Under the conditions in Lemma [3] the empirical copula process of the filtered data

behaves as if the semi-nonparametric GARCH model were known:

sup_ |Ea(u) = Ca)| = 0p(1). (32)

u€l0,1]%

Neumeyer et al.| (2019) (Theorem 1) establishes a similar result when the temporal dependence is

prefiltered using nonparametric ARCH models and the local polynomial estimation.

Assumption 9. (i) Assumption @ (1); (ii) 6y is the unique mazimizer of E [logc (UP;0)] over

©; (iii) fori,j =1,--- ,dy, alo%gg“;e) and 82;)%%%;9) are all well-defined and continuous in N (6p)
(defined in Assumption @ and u € [0,1]%, and of uniformly bounded Hardy-Kraus variation (see

Definition A.1. of |Berghaus et al| (2017)); (iv) there exists a function J(u) such that for each
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0 € N(eo), max;=q,... k MaAX;=1,... dy

%‘ < J(u), and E(J(UP)) < oo; (v) the matriz
function T () = E (—%) is continuous in N (6p) and the matriz To =T (6y) is positively

definite.

Theorem 5. Suppose that the assumptions of Lemma @ and Assumption @ hold. Then, both 525

(defined in Eq.(10)) and Bos (defined in Eq.(12))) are consistent estimators of 6. Furthermore,

vn (523 — 90> N (Odg7 Fglzorgl), and \/n (525 — 525) = op(1), where

dlog c(UY, 6y) y / 02 log c(u; 6p)
So = CRTL LS 1(Usy < uy) — ;] a2 20 gy,
o=Var 50 + 2 Jucronr I(Ujs < uj) — ] 00, dC(u; 6p)

When semi-nonparametric GARCH filtered residuals are used, Theorem |5 shows that 523 and

525 are asymptotically equivalent, which is a nontrivial extension to |Chen and Fan| (2006)).

Remark 6. Under Theorem |5, the estimation of the asymptotic variance of 525 could be simplified.
A consistent estimator is defined in Proposition 3.2. of |Chen and Fan (2006) (Page 133-134), and

also in Eqgs.(45)-(49) of |[Patton| (2013). We thus omit the details.

5 Simulation Studies

To investigate the finite sample performance and the asymptotic properties of our joint SML esti-
mates of the copula parameter and the marginals using filtered residuals, we conduct an extensive
simulation study.

Data generating process (DGP). A time series sample {(Y7 ¢, Y2¢)}}; is generated as follows:
0 .
Yje =04t &ip, 05y =my (Z o0 (Vsmi; 77@4)) forj=1,2 (33)
i=1
Fo(§1t,€2.0) = C (Foa(8), Foa(a); 00) s Elée] =0, Var[§e] =1 forj=1,2  (34)

where v (y;7) = y>+1y°1(y<q) and m;(x) = Bo ;2 +wo;(1+70,58in(2/5))/(1-ag) for j = 1,2. The
true parameter values in (33)), (wo,j, 0,5, 80,5, 0,55 70,5); J = 1,2, are set to be (0.1, 0.85,0.05,0.05,0.1).

In the first submitted version we considered another DGP by setting 7o ; = 0, i.e., the function m;(z)
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becomes linear (in x) and the time series in follows the standard GJR-GARCH model. The
semiparametric GARCH (33)) is similar to the simulation design in [Liu and Yang (2016)E| For the
semiparametric bivariate distribution Fy(&1,&2) of the standardized innovations in , we consider
two types of marginal distributions and four types of copula functions. The unknown marginals
Foj,7 = 1,2 are set to be: standard normal (N(0,1)), standardized ¢(v) (std-t(v)) with the de-
gree of freedom v = 10,7,5. The parametric copula functions C(-;6p) are: Gaussian copula (zero
tail dependence), Student’s t-copula (symmetric tail dependence), Gumbel copula (upper tail de-
pendence), and Clayton copula (lower tail dependence). See Appendix |A| for expressions of these
copulas and [Nelsen| (2006]) for their properties.

Computing estimators. We estimate the semi-nonparametric GARCH (33 part following
the procedure of |Liu and Yang| (2016]), in which the unknown link function m() is approximated
by a spline sieve. We shall report simulation results for two types of estimators of (Fp 1, Fp2,00) in
: the joint sieve ML (SML) and the semiparametric two-step (2Step). For the joint sieve ML,
we have tried the polynomial sieve ({mg }kK:"O) to approximate the logarithm of f;, and the 4th order
cardinal B-spline sieve to approximate the square root of f; (see|Chen et al. (2006]) for a detailed
description). In our simulation studies, the first choice of sieves works slightly better. The number
of sieve terms K, can be chosen according to AIC. Ideally we should choose K, according to AIC
for each Monte Carlo replication. To save computational time, we choose K, for the first Monte

Carlo experiment, and then fix this choice for the following experiments.

5.1 Simulation Results

For both large sample (n = 8000) and finite sample (n = 500) comparisons, we include four
estimators of (Fp, 1, Fo,2,6p): (1) the infeasible joint sieve ML estimates using true innovations (True-

SML); (2) the infeasible two-step estimates using true innovations (True-2Step); (3) the feasible

90ther values of GJR-GARCH parameters and other GARCH families were also tried as simulation DGPs, and
some were reported in the first submitted version. The simulation results using different semi-nonparametric GARCH
models share very similar patterns in terms of estimation of (Fo 1, Fo,2,60) for , and are no longer reported here

due to the lack of space.
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joint sieve ML estimates using the spline-GARCH fitted residuals (Resid-SML); and (4) the feasible
two-step estimates using the spline-GARCH fitted residuals (Resid-2Step).

We report the large sample (n = 8000) properties of various estimators of (Fp 1, Fo2,6p) based
on 2000 Monte Carlo replications, and the finite sample (n = 500) performances based on 500
Monte Carlo replications. For each estimator of (£ 1, Fp,2,0p), we compute and report their Monte
Carlo sample mean (Mean), sample variance (Var), and sample mean square error (MSE). For the
unknown marginal Fj ; we estimate its values at the 1/3 quantile (¢1) and 2/3 quantile (¢2). Namely,
we report l?’j(ql), ﬁj (g2) for j =1,2. To keep the flow of the main text, we postpone all the tables
summarizing simulation results to Appendix [A] See Tables[AT]- [A7§|for the large sample results for
Gaussian, Student’s t-, Clayton and Gumbel copula models with unknown marginals; and Tables
[A29)- [A712) for the finite sample results.

We observe the following simulation patterns from Tables - on large sample (n = 8000)
results. (a) For copula parameter estimation, the large sample variances and MSEs of the True-SML
(resp. True-2Step) are very close to those of the Resid-SML (resp. Resid-2Step) estimates. (b) For
copula parameter estimation, the large sample variances and MSEs of the Resid-SML (resp. True-
SML) are slightly smaller than or close to those of the Resid-2Step (resp. True-2Step) estimates.
(c) For marginal cdf estimation, the large sample variances and MSEs of the joint SML (True-SML,
Resid-SML) estimates are smaller than those of the empirical cdfs (True-2Step, Resid-2Step) in all
the models, including the semiparametric Gaussian copula model.

We also observe the following simulation patterns from Tables - on finite sample
(n = 500) results. (d) For copula parameter estimation, the finite sample variances and MSEs of
the True-SML (resp. True-2Step) are smaller than those of the Resid-SML (resp. Resid-2Step)
estimates. (e) For copula parameter estimation, the finite sample variances and MSEs of the Resid-
SML are smaller than those of the Resid-2Step estimates, except that all the estimates are about the
same for Gaussian copula parameter. (f) For marginal cdf estimation, the finite sample variances
and MSEs of the joint SML (True-SML, Resid-SML) estimates are much smaller than those of the

empirical cdfs (True-2Step, Resid-2Step) in all the models.
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The simulation results are all consistent with our theoretical conclusions. In particular, findings
(a) and (d) are consistent with our theories that the asymptotic variances of the joint SML and
the two-step estimators of the copula parameters are invariant to the semi-nonparametric dynamic
filtering. Findings (b) and (e) are consistent with our theory that the joint SML estimates of the
copula parameters using fitted residuals are still semiparametrically efficient. Interestingly, while the
semiparametric two-step copula estimators are inefficient except for the Gaussian copula parameter,
the efficiency loss of the two-step copula estimator is mild in large samples for copula models with
little asymmetric tail dependence. Findings (c) and (f) show that, when the two series are dependent
(through copulas), the information of the dependence structure improves the efficiency in estimating
the marginal distributions (also see |Chen et al.| (2006)).

When calculating VaRs in real applications, it is important to have more efficient and accurate
estimation of both the copula parameters and the marginal distributions. The simulation findings

encourage the use of the joint sieve MLE in calculating VaRs in Section [6]

6 An Empirical Application

In this section, we apply our multivariate semi-nonparametric GARCH-filtered copula model to
investigate dependence among the daily returns of five popular asset classes: S&P500 Stock Index
(S&P500), Nasdaql00 Stock Index (NAS100), Barclays U.S. Corporate High Yield Bond Index
(HYB), Barclays Capital U.S. MBS Index (MBS), and S&P GSCI commodity index (GSCI). Our
dataset spans an 11-year period from January 2007 to December 2017, a total of T' = 2476 trading
days. We use the S&P500 to represent the whole stock market in the U.S., the NAS100 to represent
technology stocks, the HYB to represent credit assets, the MBS to represent investment-grade
mortgage-backed assets, and the GSCI to represent commodity assets.

The return equations for the S&P500 and other assets are specified respectively as

S&P500: Y1 =c1 +p1Yie—1 +o01:&1 (35)

Others : Y = ¢ + p;Yji—1 + BjY1,4—1 + 05:&, for j =2,3,4,5. (36)
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In the first submitted version we applied the semiparametric GARCH model of Liu and Yang
(2016) for the volatility part. Our theoretical results hold for general semi-nonparametric GARCH
filtering in the first stage. For robustness check, here we follow Example 2.3 of |Chen| (2013) and

specify semi-nonparametric volatility as
0]2775 =w; + 9]'0]2775_1 -+ hj(dj’t_lfjﬂg_l), for j =1,2,3,4,5,

where E(;4) = 0 and E(fit) = 1. The news impact functions h; (-) and the marginal distribution
of §;; are unspecified. (&1¢, 824,834, Eat, §5¢)/ are independent across time and the joint distribution
is modelled by a semiparametric copula model.

Semi-nonparametric GARCH filtration. Following |Chen| (2013]), we first estimate each
set of univariate conditional mean and GARCH parameters via spline quasi-maximum likelihood
(QMLE), where each unknown h; (-) is approximated via cubic B-spline sieves excluding a constant
term We then obtain filtered residuals {Ejt} for each time series.

The summary statistics of the raw returns and standardized semi-nonparametric GARCH filtered
residuals are presented in Table [T} After filtering, the standardized series are less fat-tailed and
autocorrelated. It is clear that the residual series all follow non-Gaussian distributions with negative
skewness and leptokurtosis. The S&P500 is positively correlated with NAS100, HYB, and GSCI
across the whole sample, but it has a substantial negative sample correlation (-0.213) with MBS.
This negative correlation is mostly driven by interest rates because low interest rates are associated
with high stock returns and low mortgage returns.

The semi-nonparametric GARCH estimates exhibit the well-known “news impact curve” (or
leverage effects) in each asset. For illustration, we plot the news impact curves of the S&P500
estimated from the spline-GARCH and the standard linear GARCH (1,1) model in Figure|l] Obvi-
ously, the spline-GARCH predicts more volatility for negative return shocks and less volatility for
positive return shocks than standard GARCH (1,1).

Estimation of multivariate copula parameters. We examine the dependence among the

1071 the empirical analysis, we use five B-splines basis functions.
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Table 1: Summary Statistics of Raw Returns and Semi-nonparametric GARCH Filtered Residuals

Panel A: Summary Statistics of Raw Returns

N Mean Std Skew Kurt Min Q1 Median Q3 Max AR1

S&P500 | 2746  0.020 1.270 -0.432 13.781  -9.474  -0.402 0.057 0.554 10.420 -0.129
NAS100 | 2746  0.044 1.345 -0.425 10.191 -11.122 -0.470 0.098 0.674 10.364 -0.092
HYB 2746 0.026  0.334 -1.811 29.932  -4.847 -0.071 0.047 0.145  2.744 0.441
MBS 2746 0.013 0.194  0.206 9.906 -1.324  -0.074 0.014 0.108 1.694 0.024
GSCI 2746 -0.031 1.499 -0.321 6.505 -8.653  -0.758 0.012 0.757  7.214  -0.049

Panel B: Correlation Matrix of Raw Returns

S&P500 NAS100 HYB MBS GSCI

S&P500 1 0.930 0.330 -0.213  0.390

NAS100 0.930 1 0.289 -0.217  0.324

HYB 0.330 0.289 1 0.051 0.308

MBS -0.213 -0.217 0.051 1 -0.124
GSCI 0.390 0.324 0.308 -0.124 1

Panel C: Summary Statistics of Standardized SemiGARCH Filtered Residuals

N Mean Std Skew Kurt Min Q1 Median Q3 Max ARI1

S&P500 | 2745  0.007  0.994 -0.684 5.326 -6.549 -0.503 0.075 0.617 3.701 0.046
NAS100 | 2745 0.002 0.992 -0.601 4.805 -5.625 -0.499 0.073 0.597 4.204 0.015
HYB 2745 0.018 0.989 -0.263 5.073 -4.760 -0.525 0.055 0.596 5.513 0.020
MBS 2745 -0.021 1.001 -0.216 5.128 -6.015 -0.608 0.012 0.616 6.309 0.025
GSCI 2745 0.006 1.001 -0.308 4.331 -5.877 -0.579 0.030 0.656  3.931 0.018

Panel D: Correlation Matrix of Standardized SemiGARCH Filtered Residuals

S&P500 NAS100 HYB MBS GSCI

S&P500 1 0.901 0.447  -0.249  0.327
NAS100 0.901 1 0.378 -0.221  0.253
HYB 0.447 0.378 1 -0.008  0.294
MBS -0.249 -0.221 -0.008 1 -0.145

GSCI 0.327 0.253 0.294  -0.145 1
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five assets with multivariate Student’s t-copula by applying the two-step and joint SML estimation
methods to the spline-GARCH filtered standardized residuals.

We present estimates and standard errors of the 5-dimension Student’s t-copula parameters and
log-likelihood values for the copula part in Table[2] Several findings can be obtained from the table.
First, parameter estimates from the joint SML and two-step methods are very close. Second, the
joint SML method gives higher log-likelihood value for the copula part, which suggests a better
fit to the dependence in the real data. Third, the estimated correlation coefficients of Student’s
t-copula are close to the sample correlations of spline-GARCH filtered standardized residuals, while
the estimated tail dependence is small. Hence we suspect that Gaussian copula could also be used
for the 5 assets during this sample period. E

Full-sample VaR estimation. To further compare the estimates from the two methods, we
consider the Value-at-Risk estimation of investment portfolios. We examine five portfolios. The
first portfolio consists of above five assets with equal weights. The remaining four portfolios consist
of two assets with equal weights: the S&P500 and each from HYB, MBS or GSCI. The portfolios
are rebalanced on a daily basis to keep equal weights as designed.

We define (1 — ) VaR; to be the a conditional quantile of the portfolio’s return at time ¢ based
on information set at time t — 1. We calculate the estimate of VaR; by plugging the estimated
parameters into the model and simulating the whole conditional distribution of the return for
each day. We first use the estimated parameters from the Student’s t-copula in Table and
simulate many draws of u; = (uyy,...,us) from the estimated copula. Next we obtain the draws
of ¢ = (€1¢,...,€5¢) = (Fl_l(ul,t),...,F5_1(U5’t)), where Fj, j = 1,...,5, are estimated marginal
distributions. Then we can easily obtain simulated returns by using the return equations defined
in and . The return of the equal-weighted portfolios can be obtained by taking average of

the individual asset returns. The o quantile of the simulated portfolios returns is the (1 —a) VaR;.

YWe also estimate bivariate mixture of Student’s t-copula and Clayton copula for four pairs of assets: the S&P500
and each of the other four assets. The estimation results show that bivariate Student’s t-copula fits well for this data

set. The estimated bivariate correlations are very close to the correlation matrix estimated from multivariate copula.
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Table 2: Parameter Estimation for Five-asset Student’s t-copula

2Step Method

S&P500 NAS100 HYB MBS  GSCI
S&P500 1 0.899 0414  -0277  0.332
(0.001)  (0.021) (0.040)  (0.025)

NAS100 0.899 1 0.351 -0.242 0.256
Correlation (0.001) (0.024)  (0.038)  (0.028)
Matrix HYB 0.414 0.351 1 -0.014 0.282
(0.021)  (0.024) (0.029)  (0.025)
MBS -0.277 -0.242 -0.014 1 -0.160
(0.040)  (0.038)  (0.029) (0.028)

GSCI 0.332 0.256 0.282 -0.160 1

(0.025)  (0.028)  (0.025)  (0.028)

1/v 0.096
(0.008)
logC 2945.46

SML Method

S&P500 NASI100 HYB MBS  GSCI
S&P500 1 0.903 0418  -0.277  0.333
(0.003)  (0.016) (0.017)  (0.017)

NAS100 0.903 1 0.357 -0.242 0.259
Correlation (0.003) (0.018)  (0.019) (0.018)
Matrix HYB 0.418 0.357 1 -0.014 0.284
(0.016)  (0.018) (0.020)  (0.019)
MBS -0.277 -0.242 -0.014 1 -0.159
(0.017)  (0.019)  (0.020) (0.020)

GSCI 0.333 0.259 0.284 -0.159 1

(0.017)  (0.018)  (0.019)  (0.020)

1/v 0.097
(0.009)
logC 3000.38
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Obviously, the VaR estimates depend on the parameters of both the marginal distributions and the
copula function. For each portfolio, the two 95% VaR; series estimated from two-step and joint
SML methods are very close, with the estimates from the two-step being slightly lower. The plots
of VaR series from the two methods for the five-asset portfolio are presented in Figure 1.

Backtesting of full-sample VaR estimates. To evaluate the accuracy of VaR estimates
in the full sample, we conduct backtesting using two popular statistical tests. The first is the
proportion of failures (POF) test proposed by Kupiec| (1995). It is a likelihood ratio test to assess
if the observed proportion of failures (realized return lower than VaR) in the sample is consistent
with the VaR confidence level, with the null hypothesis Hy : Pr(r; < VaR;) = 1 — a. The second
test is the conditional coverage (CC) test proposed by [Christoffersen| (1998]), which is a likelihood
ratio test to assess both the proportion of failures and the independence of failures over consecutive
time periods, with the null hypothesis Hy : Pr(r; < VaRy|I;—1) =1 — a. In Panel A of Table |3} we
present the observed POF and the p-values of the two tests for 99% and 95% VaR estimates from
the two-step and joint SML methods. We find that the observed POF are on average more consist
to the specified VaR confidence levels for the joint SML method. The p-values from the two tests
suggest that both of the two VaR estimates are reasonably good for most cases and it is more likely
to reject the null hypothesis for VaR estimates from the two-step method, compared with the joint
SML method.

Predictive accuracy of out-of-sample VaR forecasts. We compare the predictive accuracy
of out-of-sample VaR forecasts by using the two-step and joint SML methods. First, we set the
window size to be 500 and obtain the rolling-window VaR forecasts on a daily basis. Then we
perform the Diebold-Mariano (DM) test of Diebold and Mariano| (1995) to compare the predictive
accuracy using the asymmetric loss function based on the error terms e; = r; — VaR; to evaluate
VaR forecasts with the (1 — «) confidence level, Ly(e;) = (o — 1(es < 0))er, which is the quantile
loss function. The difference of the two loss function from the two VaR estimates is defined as
dt = Lo(et,1) — La(et2), for j = 1,2 representing 2Step and SML. The null hypothesis of the test is

that the two sequences of VaR forecasts from the two-step and joint SML are equally good in terms
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Table 3: Evaluation of Full-sample and Out-of-sample VaR

Panel A: Backtesting of Full-sample VaR Estimates

99% VaR
2Step SML
POF(%) p_ POF p CC POF(%) p_ POF p_ CC
SP500-NAS 0.656 0.053 0.137 0.984 0.933 0.762
SP500-HYB 0.692 0.086 0.202 0.729 0.134 0.280
SP500-MBS 0.729 0.134 0.280 0.729 0.134 0.280
SP500-GSCI 0.875 0.500 0.645 0.984 0.933 0.762
Five-asset 0.692 0.086 0.202 1.203 0.301 0.392
95% VaR
2Step SML
POF(%) p_POF p_ CC POF(%) p_POF p_ CC
SP500-NAS 4.045 0.018 0.024 4.519 0.240 0.096
SP500-HYB 4.446 0.175 0.319 4.373 0.124 0.166
SP500-MBS 4.337 0.103 0.230 4.373 0.124 0.260
SP500-GSCI 4.592 0.320 0.436 4.446 0.175 0.319
Five-asset 4.300 0.085 0.133 5.029 0.944 0.717

Panel B: Diebold-Mariano Test of Out-of-sample VaR Forecasts

99% VaR
POF _2Step(%) POF_SML(%) DM _stat p_value
SP500-NAS 0.802 0.891 1.579 0.114
SP500-HYB 0.535 0.624 3.115 0.002
SP500-MBS 0.713 0.713 1.757 0.079
SP500-GSCI 0.846 1.069 0.721 0.471
95% VaR
POF_2Step(%) POF_SML(%) DM stat p_value
SP500-NAS 3.608 3.920 1.972 0.049
SP500-HYB 3.786 4.009 2.972 0.003
SP500-MBS 4.098 4.098 1.380 0.168
SP500-GSCI 4.187 4.365 0.799 0.424
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of the defined loss function, that is, Hy : E[d;] = 0. The DM statistic is calculated as the sample
average of d; divided by its standard error. A positive DM statistic suggests that the VaR forecasts
from the joint SML method are superior.

Due to the computational burden of rolling window estimation, we only conduct the out-of-
sample test for the four pairs of bivariate portfolios. In Panel B of Table[3] we present the observed
POF and DM test statistics and the corresponding p-values. The table reveals that the VaR forecasts
from the joint SML provide better POF, and the DM statistics also favor VaR forecasts from the

joint SML method.

7 Conclusion

The class of semiparametric copula-based multivariate dynamic models proposed in |[Chen and Fan
(2006) has gained popularity in financial econometrics due to its flexible modelling of multivariate
nonlinear risks. In this paper, we first extend their models to allow for semi-nonparametric condi-
tional means and volatilities, and show that their semiparametric two-step estimators of residual
copula parameters are still root-n asymptotically normal with the asymptotic variances unaffected
by the nonparametric filtering. In addition, we propose a new joint sieve maximum likelihood
method using filtered residuals, and show that this procedure leads to semiparametric efficient
estimation of the residual copula parameters, whose asymptotic variances do not depend on the
nonparametric filtering either. This remarkable property greatly simplifies the accurate inference
on residual copula parameters. Our theoretical results are consistent with the findings in the Monte
Carlo studies.

Given the nice asymptotic properties of the two types of residual copula estimators discovered in
this paper, one could easily extend the pseudo-likelihood ratio copula model selection tests developed
in (Chen and Fan (2006) from parametric dynamic models to semi-nonparametric dynamic models.

The details are not presented here due to the length of the paper.
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Appendix

This appendix contains three parts. Part [A] presents all the tables for the simulation study, as well
as robustness checks for the empirical findings using semi-nonparametric GARCH filtering of [Liu
and Yang| (2016|) in the first stage. Part [B| provides sufficient conditions for Assumptions |4 and
(i) in semi-nonparametric dynamic models. Part |C|contains additional assumptions and proofs for

theoretical results in Sections [l and [l

A Monte Carlo Results and Robustness Checks

We first recall the expressions and basic properties of the four copula distribution functions used in

our Monte Carlo studies.
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The bivariate Gaussian copula function with correlation 8 = p is:

<I>71(u1) @71(112) 1 $2+ 2_2 T
R N B R PR
—00 —00 27 -

V1=p 2(1 - p?)
where ®(-) is CDF of the standard normal distribution. The Gaussian copula has no tail dependence.

The bivariate Student’s t-copula function, for 6 = (v, p)’, |p| <1, v € (1,] is

C(U1, Uu9; 9) = ty,p(Q(Vy u1)7 Q(Va u2))

v+2
1 Qvu1) rQv,u2) 2 2_9 T2
_ / / {HM} dydz.
27‘(’\/1—/)2 —00 —oo V(l_p)

where t, (-, -) is the bivariate Student’s t-distribution with mean zeros, the correlation matrix has
the off-diagonal element p, and degrees of freedom v; Q(v,-) is the quantile function of a univari-

ate Student’s t-distribution with mean zero, and degrees of freedom v. The Student’s t-copula has

Kendall’s tau 7 = 2 arcsin p, and symmetric tail dependence: A\, = Ay = 2t,41(—+/(v + 1)(1 — p) /(1 + p)).
The Student’s t-copula becomes the Gaussian copula in the limit when v — oo.
The bivariate Clayton copula function is
~1/8

C(ul,u2;9):[ul_9+u2_9—1 , 0<0 < .

The Clayton copula has Kendall’s tau 7 = %, and lower tail dependence coefficient A\;, = 271/, but
no upper tail dependence. The Clayton copula becomes the independence copula Cr(uy, u2) = ujus
in the limit when 6 — 0.

The bivariate Gumbel copula function is
C(u1,ug;0) = exp(—[(=Inu1)? + (—Inup)?]'?), 1<6 < 0.

The Gumbel copula has Kendall’'s tau 7 = 1— %, and upper tail dependence coefficient Ay = 2—21/9,
but no lower tail dependence. The Gumbel copula becomes the independence copula in the limit
when 6 — 1.

Tables - present large sample (n = 8000) simulation results for two kinds of estimation

methods for copula parameters and marginal cdfs of semiparametric residual copula models with
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Table A.1: Gaussian copula with unknown margins: Estimation of copula parameters. n = 8000,

MC= 2000. Reported Var and MSE are the true values multiplied by 1000.

True-2Step | Resid-2Step | True-SML | Resid-SML

p=0.7 Mean 0.7003 0.6999 0.7000 0.6996
Fo1 = Fp2=N(0,1) | Var 0.0342 0.0344 0.0342 0.0343
MSE 0.0343 0.0344 0.0342 0.0345

p=0.9 Mean 0.9000 0.8996 0.8999 0.8996
Fo1 = Fp2=N(0,1) | Var 0.0047 0.0047 0.0047 0.0047
MSE 0.0047 0.0049 0.0047 0.0049

p=0.7 Mean 0.7003 0.6997 0.7007 0.7001
Fo,1 = Fo2 =std-t(5) | Var 0.0342 0.0343 0.0359 0.0359
MSE 0.0343 0.0343 0.0363 0.0359

p=20.9 Mean 0.9000 0.8995 0.9003 0.8998
Fo1 = Fo2 = std-t(5) | Var 0.0047 0.0047 0.0053 0.0053
MSE 0.0047 0.0050 0.0054 0.0053

Gaussian, Student’s t-, Clayton and Gumbel copulas respectively. Tables - present finite
sample (n = 500) simulation results for the two kinds of estimation methods for semiparametric
residual copula models with Student’s t-, Clayton and Gumbel copulas respectively. In Table
and Table we present empirical results with Semi-nonparametric GARCH Filtering of [Liu and
Yang| (2016) in the first stage as a robustness check. The empirical results are very close to the ones

reported in the main text already.
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Table A.3: Student’s t-copula with unknown margins: Estimation of copula parameters. n = 8000,

MC= 2000. Reported Var and MSE of p are the true values multiplied by 1000.

True-2Step Resid-2Step True-SML Resid-SML
P v p v p v P v
(p,v)=(0.7,5) Mean | 0.7000 5.0005 | 0.6997 5.0281 | 0.6999 5.0325 | 0.6996 5.0495
Fo1=Fy2=  Var 0.0467 0.1398 | 0.0467 0.1423 | 0.0465 0.1327 | 0.0465 0.1343
N(0,1) MSE | 0.0467 0.1398 | 0.0468 0.1431 | 0.0465 0.1337 | 0.0467 0.1368
(p,v) = (0.7,5) Mean | 0.7000 5.0005 | 0.6996 5.0258 | 0.7000 5.0327 | 0.6996 5.0523
Fop=Foo=  Var 0.0467 0.1398 | 0.0467 0.1422 | 0.0467 0.1398 | 0.0469 0.1425
std-t(10) MSE | 0.0467 0.1398 | 0.0468 0.1429 | 0.0467 0.1409 | 0.0470 0.1452
(p,v) = (0.7,5) Mean | 0.7000 5.0005 | 0.6996 5.0251 | 0.7002 5.0486 | 0.6999 5.0684
Fo1=Foo=  Var 0.0467 0.1398 | 0.0468 0.1428 | 0.0469 0.1431 | 0.0474 0.1449
std-¢(7) MSE | 0.0467 0.1398 | 0.0469 0.1434 | 0.0470 0.1455 | 0.0474 0.1496
(p,v) = (0.9,5) Mean | 0.8999 5.0167 | 0.8996 5.0651 | 0.8999 5.0339 | 0.8996 5.0715
Fo1=Foo=  Var 0.0067 0.1465 | 0.0068 0.1510 | 0.0067 0.1355 | 0.0067 0.1394
N(0,1) MSE | 0.0068 0.1468 | 0.0069 0.1552 | 0.0067 0.1366 | 0.0068 0.1446
(p,v)=(0.9,5) Mean | 0.8999 5.0167 | 0.8996 5.0566 | 0.9000 5.0353 | 0.8997 5.0604
Fyp=Fy2=  Var 0.0067 0.1465 | 0.0068 0.1508 | 0.0067 0.1439 | 0.0068 0.1477
std-¢(10) MSE | 0.0068 0.1468 | 0.0069 0.1541 | 0.0067 0.1451 | 0.0069 0.1513
(p,v)=(0.9,5) Mean | 0.8999 5.0167 | 0.8996 5.0528 | 0.9001 5.0588 | 0.8998 5.0799
Fop=Foo=  Var 0.0067 0.1465 | 0.0068 0.1505 | 0.0069 0.1511 | 0.0069 0.1499
std-(7) MSE | 0.0068 0.1468 | 0.0070 0.1533 | 0.0069 0.1545 | 0.0070 0.1563
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Table A.5: Clayton copula with unknown margins: Estimation of copula parameters. n = 8000,

MC= 2000. Reported Var and MSE are the true values multiplied by 1000.

True-2Step | Resid-2Step | True-SML | Resid-SML

0=1 Mean 1.0014 0.9993 1.0037 1.0017
Foq1=Fp2=N(0,1) | Var 0.0008 0.0008 0.0007 0.0007
MSE 0.0008 0.0008 0.0007 0.0007

0=3 Mean 2.9997 2.9834 3.0117 2.9952
Fo1=Fp2=N(0,1) | Var 0.0035 0.0035 0.0032 0.0032
MSE 0.0035 0.0037 0.0033 0.0032

=5 Mean 4.9961 4.9499 5.0201 4.9740
Fo1 = Fp2=N(0,1) | Var 0.0078 0.0080 0.0075 0.0077
MSE 0.0078 0.0105 0.0079 0.0084

=1 Mean 1.0014 0.9988 1.0018 0.9994
Fo1 = Fp2 =std-t(5) | Var 0.0008 0.0008 0.0007 0.0007
MSE 0.0008 0.0008 0.0007 0.0007

0=3 Mean 2.9997 2.9789 3.0125 2.9938
Fo1 = Fo =std-t(5) | Var 0.0035 0.0035 0.0031 0.0033
MSE 0.0035 0.0040 0.0032 0.0034

0=5 Mean 4.9961 4.9340 5.0251 4.9703
Fo1 = Fo2 = std-t(5) | Var 0.0078 0.0088 0.0073 0.0086
MSE 0.0078 0.0132 0.0079 0.0095
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Table A.7: Gumbel copula with unknown margins: Estimation of copula parameters. n = 8000,

MC= 2000. Reported Var and MSE are the true values multiplied by 1000.

True-2Step | Resid-2Step | True-SML | Resid-SML

0=25 Mean 2.5005 2.4963 2.4969 2.4933
Fo,1 = Fo2 = N(0,1) Var 0.00091 0.00091 0.00087 0.00087
MSE 0.00091 0.00092 0.00088 0.00092

0=5 Mean 4.9973 4.9732 4.9926 4.9736
Fo,1 = Fo2 = N(0,1) Var 0.0041 0.0041 0.0040 0.0040
MSE 0.0041 0.0048 0.0040 0.0047

0 =25 Mean 2.5005 2.4947 2.5059 2.5004
Fo,1 = Fo2 = std-t(5) | Var 0.00091 0.00090 0.00092 0.00094
MSE 0.00091 0.00093 0.00095 0.00094

0=5 Mean 4.9973 4.9642 5.0185 4.9907
Fo,1 = Fo,2 = std-t(5) | Var 0.0041 0.0041 0.0046 0.0053
MSE 0.0041 0.0054 0.0049 0.0054
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Table A.13: Parameter Estimation for Five-asset Student’s t-copula with SemiGARCH Filtering

of [Liu and Yang (2016])

2Step Method

S&P500 NAS100 HYB MBS  GSCI
S&P500 1 0.901 0415  -0279  0.332
(0.001)  (0.021) (0.040)  (0.025)

NAS100 0.901 1 0.350 -0.242 0.254
Correlation (0.001) (0.024)  (0.038)  (0.028)
Matrix HYB 0.415 0.350 1 -0.017 0.279
(0.021)  (0.024) (0.029)  (0.025)
MBS -0.279 -0.242 -0.017 1 -0.158
(0.040)  (0.038)  (0.029) (0.028)

GSCI 0.332 0.254 0.279 -0.158 1

(0.025)  (0.028)  (0.025)  (0.028)

1/v 0.0945
(0.0083)
logC 2972.54

SML Method

S&P500 NASI100 HYB MBS  GSCI
S&P500 1 0.904 0421  -0.279  0.338
(0.003)  (0.016) (0.017)  (0.017)

NAS100 0.904 1 0.355 -0.241 0.260
Correlation (0.003) (0.018)  (0.019) (0.018)
Matrix HYB 0.421 0.355 1 -0.016 0.285
(0.016)  (0.018) (0.020)  (0.019)
MBS -0.279 -0.241 -0.016 1 -0.158
(0.017)  (0.019)  (0.020) (0.020)

GSCI 0.338 0.260 0.285 -0.158 1

(0.017)  (0.018)  (0.019)  (0.020)

1/v 0.0940
(0.0085)
logC 3039.20
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Table A.14: Evaluation of Full sample and Out-of-sample Value-at-Risk Forecasts with Semi-

GARCH Filtering of Liu and Yang (2016)

Panel A: Backtesting of Full-sample Value-at-Risk Forecasts

99% VaR
2Step SML
POF(%) p_ POF p_ CC POF(%) p_ POF p_ CC
S&P500-NAS 0.692 0.087 0.202 0.802 0.280 0.217
S&P500-HYB 0.692 0.087 0.202 0.765 0.198 0.371
S&P500-MBS 0.875 0.500 0.645 0.838 0.381 0.561
S&P500-GSCI 0.911 0.635 0.710 0.911 0.635 0.710
Five-asset 0.620 0.031 0.088 1.020 0.915 0.745
95% VaR
2Step SML
POF(%) p_ POF p_ CC POF(%) p_ POF p_ CC
S&P500-NAS 4.118 0.029 0.033 4.555 0.278 0.241
S&P500-HYB 4.300 0.085 0.133 4.264 0.070 0.117
S&P500-MBS 3.571 0.000 0.001 3.608 0.000 0.002
S&P500-GSCI 4.082 0.023 0.054 4.227 0.057 0.102
Five-asset 4.300 0.085 0.133 5.029 0.944 0.717

Panel B: D-M Test of Out-of-sample Value-at-Risk Forecasts

99% VaR

POF_2Step(%) POF_Sieve(%) DM _stat p-value

S&P500-NAS 0.67 0.76 2.98 0.00

S&P500-HYB 0.67 0.76 1.79 0.07

S&P500-MBS 0.62 0.71 2.94 0.00

S&P500-GSCI 0.71 0.80 1.04 0.30
95% VaR

POF_2Step(%) POF_Sieve(%) DM _stat p-value

S&P500-NAS 3.56 4.05 1.05 0.29
S&P500-HYB 3.38 3.56 1.69 0.09
S&P500-MBS 3.65 3.61 1.26 0.21
S&P500-GSCI 4.36 4.45 2.36 0.02
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B Semi-nonparametric GARCH Models : Asymptotic Results

In this part, we justify Assumption |4|in Eqs. and . We verify Assumption (1) in Lemma
B:I]when & is fully nonparametric, and in Lemmas[B.2] [B:3|when « is semi-nonparametric. Different
semi-nonparametric GARCH models might restrict their choices of B and B, to certain classes (see,
e.g. Linton and Mammen| (2005)), [Yang (2006)). We emphasize the fact that our main theorems
do not rely on the specific form of the GARCH filters, as long as the dynamic model is correctly

specified and Assumptions (1) are satisfied. For a concrete example, see Appendix

B.1 Justification of Assumption [5|(i) when « is Nonparametric

Assume ko = (p0,1 (+) -+ pro (-) ;001 (1), o0k ()T € Band & = (i1 (), -+, fk (-) ;01 ()
-, 0k ()T € By. Foreach j =1,--- , k, let W; , x W; ; be the linear span of M; x H; —{10,;,00,;}

and suppose

2

1 (Ve —pf

(MOjaUOj): argmin F |- Ltu] —|—10g0t- . (B.l)
’ 7 ,qu./\/lj,UjE'Hj 2 Uj J

We estimate p; and o; using the sample analogs of Eq.(B.1]).

Yj,e—pub

2
Denote ¥ (1,05, Yj:) = 3 (T) +log 054. We note that W (uj, 04, Yj,) is twice continuously
J

differentiable in M;xH; if Vo (-) € H,; is strictly positive on the support. V (wy j, We ;) , (Wp,j, Wo,j) €

8\P(Nj’gj7)/3,t)

W, xW; 5, the first-order and second-order directional derivatives of ¥ are 0ot (Wpj, w,,’j)T =

ot apt N2 Gt wt t ot
X Vs (Y)W Ve, PWonVin) (0 - T (G5, G -)T]zwwww+3
o U' ’ 8(#]7‘7]) (pj,05) fog> 0] Y 0; a']

wt Wt . Y —ut wt .wt —pt\ wt o wt
—Zd _%d 4 9 (Jit’ e =i 42 # “wiYei  We define the norm and the inner product

J j J J

(induced by the criterion functlon) on W, , x Wj, :

E

~ ~ 82\1] (MO, B O-O, B Y‘,t)
(s W) By T3, ( 290, ¥

w i wa DT AT .T)
a(,U,J,O'])Ta(/,LJ,O']) [( w7 U'J) 7( M, Uv])]
t o~ t ~t
e B o
70,5 90, 90,5 90,5

t o\ 2 t \2
2 w J wo,'
[(wpjs wo )5 = E (Ui”> +2E (t j) : (B.2)

90,5
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Define the norm for w = (wy, 1, , Wy k, Wo1,  + , Wep) € W as :
k
2
holl? = 3 a0 (B.3)
=1

Let Wj,uv ij and W be the closures of W, Wj o, and W under the Fisher norms.

t
We are interested in two linear functionals: (i) pj . (uj,05) = E (#), V(pj,05) € Mj x

UO,]
i
ot .
defined by Eq.(B.2)); (i) pjs (1j,05) = E (ﬁ), V(kj,05) € My x Hj. wy, = (0,200,5)7 is the
»J

unique Riesz representer of p;,, under the norm defined by Eq.(B.2). In the following lemma, we

H;. It is easy to see w = (09;,0)" is the unique Riesz representer of p;, under the norm

verify Assumption[5{i) for v/n (p; (11, 55) — pjpu (1o, 00,5)) and /1 (.o (115, 55) = pio (1o, 00,5));
which are used to establish the main theorems of this paper.
Lete, =0 (n_l/ 2). Denote II,, (-) as the projection of any infinitely dimensional space (e.g., M,
H,;) to its sieve space (e.g., Mjn, Hjn). Denote Ny, n = {(15,05) € MjnxHjn 2 || (1j — poj, 05 — 00)" |5 <
O (log(logn)dpn)} and No, = {0 € Hjn : (15,05) € Ni;n}. Let K5 = (fij,0;)7. For kj € Ny, n,
we consider local alternative values r; % €,1I, <w* ) and k; £ €11, (w;j). Define pn(g) =

Hj
%Z?:ﬂg (Y, F©71) = Exg (Vg F&U)].
Assumption B.1. (i) (uo,;,00,) is the unique minimizer of Eq.(B.1)) over M;jxH; C A% (support (F'~1)),

4
v; > 3 (i) E |:<O’6,j) ] < oo, F [ ;{t} < 00 and inf o9 ; > 0; (iii) Vo; € Ny, n is strictly positive

J— _ t N\ 2
on the support ; (iv) K; satisfies Assumption ' (v) Wi, x W, C {(wuj,wsy) : E (l:ff”) <
0.5
w

2 — —
j) < oo}; (vi) ooy € Wiy, 00 € W, o, and there exist I}, (0 ;) € W7, 117 (005) €

t

g,

t i
ot .

07‘7 ]7;”'

oo,E(

n Hﬁ(aoﬂj)t—aé’j 2 . _1/2 H;‘L(O-Oyj)t_o—é,]' 2 _ —1/2 . 33 ;
W2, such that E (| ——35—>1 | =o(n~ /%) and E | 35— | =o(n~"/%); (vii) uniformly

J’J 07J O,j
over kj € Ny, n andw* € {wy, ,wy }, E{¥ (kj £ exIly (w*),Yje) — W (ko,5, Yje) — ¥ (K5, Vi) + U (Ko,5, Yje)} =
2 11kj £ €I, (w*) — /ﬂ)o’jH? — 3 lkj — HOJH? + O (e2); (viil) uniformly over kj € Ny, n and w* €

OV (r;,Y)e)

* * * OV (K ,'vY',t * _ —
{w'uj7wo'j}7 Hn (Wﬂn (w ) - WHH (w )) = 0p (’I’L 1/2)‘

Assumption (iv) requires {Yj,n ,uz-,aﬁ-, 1<t< n} satisfy certain mixing conditions over
the parameter space M; x H; (see, e.g. |Carrasco and Chen| (2002), Linton and Mammen (2005),

Yang| (2006), Francq and Zakoian| (2019)). Under Assumption [B.1| (vi), IL,, (w;j) = (I (00,) ,0)"
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= o(n~ /%) and HHn (wj,j) - wg,

T .
and II, (wég_) (0, 1119 (00,5)) " with HH” (wzj) —wy, ‘j ;
o(n=1/*). Assumption (vii) characterizes the local quadratic behavior of the population criterion,
while (viii) makes the stochastic equicontinuity condition, which are standard assumptions in the

sieve method literature.

Lemma B.1. Forj =1,--- ,k, under Assumption[B.1], as n — oo,

() ViEx (U“)

O7j

Zgjt—i-Op HN(O 1)

3 o5 —0h 1 1
(i) vnEx ( 0’07]' ) 725 —{—op( )E)N<O’4E [5;-{15—1]).
Proof of Lemma [B.1

By definition of &; and ko j, it is easy to show that (see similar proofs in e.g. |Chen and Shen| (1998)),

Chen et al. (2006)) 20 S %Z?:l [\Il (/’%\] + Gan (w*) 7Yj,t) - (FLJ?Y )] ien,un (%w )i
J

en (Rj — Ko, w"); + €n X 0p (n=Y/2), where w* € {wy,,, w5, }. Therefore,

OV (ko,j, Yjt)

ViR = o), = Vi (- T w) +0,(1), (B.4)

nt—ut .
Part (i) : w* = wy;, = (00;,0)". Thus Vn(K; — Ko, w*); = VnEx (%) = ﬁz;l &t +

Part (ii) : * = wj;j = (0, %0’07]')1-. Thus \/ﬁ<7i\] — Ro,j, W > fEX (UJ?GO]) =

JO]

S
N

3
ﬂ‘
N[ —
VS
SN0
o~

B.2 An Illustration : Semi-nonparametric GARCH Filter using Liu and Yang
(2016)

In this section, we verify Assumptions [4| and (1) in the theoretical framework of [Liu and Yang
(2016)). The following univariate semi-nonparametric GARCH models are used to prefilter the

temporal dependence of each {Yj;}7-, for j=1,--- k:

1/2

Yjvt:O—OJ (ft_l) §j7t:m]/ ( -]t £Jt7 ZB -]t 7”7707]) tz]"‘“ 7n
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Define Xj.. ¢+ = > 72, B;-_lv (Yjt—i;mj), where v; = (B;,1;)" is the finite-dimensional parameter
for the semi-nonparametric GARCH model. o, = (80,70,)" € T'; = (81, 85.2) X Mj1,m52] 1s
the unknown true value for v;, and X;; = Xj, .+ is the true conditioning variable. The form of
v (+,-) is known. The functional forms of m; (-), for j = 1,--- , k are left unspeciﬁed@7 and can be
estimated using kernel estimation or sieve estimation.

Because each X, + takes value on (0, 00), a common transformation has been done to Xj . +, so

that B spline regression can be applied to the transformed variables. For Vj, Vt, v; € I';, define the
ij,1 (va’Yj»t>+G’Yj72 (Xjﬁj,t>
2

transformed variable: Uj,,: = G (ij’ijt) = , where v;1 = (85,1,m;1)7,
Yi2 = (Bj2,m2)", G, and G, , are CDFs of X, and X, respectively. It is noted that

KXjmitrUjnit € Ft=1. In particular, for the unknown true value 70,5, the transformed variable is

G’Yj,l (Xj,t)'f‘G’Yj’z (Xj’t)
2

Uit = Ujro 0 =G (Xj%’j’t) =G (X)) = , Vj and Vt. Denote

hjm, (W) =t E (Y7 | Ujye =) s iy, (Ujny ) =0 E (Y | Uy t) s

hj (Ujﬂf) = hjﬁo,j(UjNo,j,t) =FE (Y]?t ‘ Uja"/o,j,t) = mj (Xj,t)' (B'5)

We assume the unknown function hj;,, € H;, Vv; € I, for j =1, k. H; (j =1,--- k) denotes
the space of functions on [0, 1] satisfying certain smoothness conditions.

The conditional variance function mj (-) is regressed using B spline, although other choices of
sieves can also be applied. Let G denote the space of cubic spline functions on [0, 1] used for
estimation. For j = 1,--- |k, given a realization of the jth time series {Yj,t}?:p define for Vvy; € T';
the cubic spline estimator of h; ., (-) : /ﬁjﬁj (-) = arg min,c o) = Y i1 {Yﬁt —h (Ujn, 1) }2. The
estimator of v; is 7; = argmin. er, # > it {th _ ﬁj,w (Uj7’7j7t)}27 with n” = n —n’, where the
first n’ data points are not used in the above estimator for implementation reasons (refer to Liu and

Yang| (2016) for detailed explanation).

To summarize, the semi-nonparametric GARCH parameter x = ('yI, R AN TR ,¢k)T, vj €
I'j and ¢; € H;, 7 = 1,--- ,k. The unknown true value ko = (7&1, e ,’y&k,hlﬁo,l, s Bk )T
2For parametric GARCH models, the functional forms of my (+), for j = 1,--- , k are known. When calculating

the effects of first-stage estimation error, the parts caused by estimating m;s disappear.
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The parameter space B = H;?:l I x ]_[;?:1 H; and B, = H?Zl I';x H§:1 3, where 7 is the space

of cubic spline functions. Let W be the linear span of B—{ko}. For each j, define Q (h, Y}, Uj) =
2 ~

Y2 = h(U;)| b € Hy. Therefore hy = hin,, = argminyen, E1Q (h, Y, Uy)] and by, =

argming,cce) # Yot @ (h,Yj4,Uj ). We define a pseudo-metric on H; induced by the criterion

function :
1
§||h_hj||i2zj = E[Q (h, Y, Ui)]=E[Q (hj, Y, Ujn)] = E[h(Ujs) — by (U 0)]?, Vh € H;. (B.6)

Let W; be the Hilbert space generated by H; — {h;}, equipped with the inner product

< whj,ﬂjhj >h;= 2F [wh]. (Uj,t) {Dhj (Uj’t)] , thj,’[ljh]. € Wj. (B?)
Then define the norm for w = (wl,, -+ ,wl  wp,, -+ ,wp, )" € W as
k k
|Jwl||* = Z [lwa, |7 + Z Hwth%j, where || - || denotes the corresponding Euclidean norm.
o =1

Under Assumption by choosing a different number of interior knots, n1s logn < 0p;m <

n=s (log n)4/5 (see Assumption (A6) and Proposition 2 in Liu and Yang (2016)), and we have
51[10p1] ’/Hjﬁo,j (u) — hj(u)‘ =0, (6hj7n) =0, <n*1/4> . (B.8)
ue|0,

For simplicity, we assume dy,,, = dp; 5 for all j. Obviously ||h— hjl|n, < \/QSUPue[O,l] |h(u) — hj(u)],

Vh € H;. Thus we have H/ﬁjﬁw = hjlln; < Op (Onn) = 0p (n_1/4), due to Eq.(B.8). Then we have

I = oll = Op () = 0p (n74) | (B.9)

nt—ut .
which can be used to prove Lemma and Lemma/|B.3| In the current setup, v/nEx (uﬂ H0.5 ) = 0and

t
90,

hjwo,j (Ujv’vo,jyt) 7hj/¥0,j (ij"/o,j,t)
hjm),j (ij’yo,j,t)

Et‘fo(t) j 1 Olog hjv’Yo ‘(UJ}’YO i) ~ 1
oT _’J> =3F 3’;; =1 V(Y = 0,4)+3vnEx

J

VnEx (

Assumption B.2. The data generating process of each individual time series satisfies Assumptions

(A1) - (A6) in|Liu and Yang (2010).

Lemma B.2. (Theorem 2 of Liu and Yang (2010)) For j = 1,---  k, under Assumption as

o~ n D
n =00, V(35 = 04) = 75 i1 S (Uje) (S?,t - 1) +0p (1) — T ~ N (0,2 (70,5))-

o8



S (Uj4) is a random vector with the same dimension as «;. See page 31-32 of |Liu and Yang
(2016)) for more details. Lemma is used to quantify the estimation errors caused by estimating
the parametric GARCH parts.

Now we consider a specific linear functional on #; : Vh € H;, p; (h) = E ( ’Z (([{;;tt))) In particular,

pj (hj) =FE (%) = 1. In the following lemma, we verify that p; (lALjWO’]) satisfies Assumption
(i), which is used to establish the main theorems of this paper. We have p; (h) — p; (h;) =
E (%W) =< wzj, h — hj >p;, where ij(Uj,t) = m is the unique Riesz representer

of pj, under the norm defined by Eqs. and (B.7]).

Assumption B3 (VS0 o1 o ftgiogns )} P {10 (wh, U30)) % 1 (U3 = b (U]} =
o (f ) (1) SUP gy, <O(1og ogn)an. ..} E{[H” <“’7w wﬂ)) ~ v, (UN)} X 11 (Usa) =Ry (Ujﬂt)]} B
o () (iit) pn { (V2 — 1y (Uj,t)> 10 (wi, U30)) = wh, Win)] } =0y ()5 () B (h (U0))? <
oo and inf,ep 1) hj(u) > 0.

Lemma B.3. Forj =1, -k, under Assumptions[B.9 and[B.3, as n — oo,

\/EEX (ﬁj,yo,j (Zj,lé)U_ ;"j (U ) —1/22< aQ hjvyjtan t) w* ) +Op(1)
AN A

=237, — 1) 4 0p(1) o Hy ~ N (0, Var [€2, - 1]),

0Q(h;,Y;¢,Uje) .« YJz,t hi(Uje) .o
where = oh o Wh T TR fjt

Lemma B3] is used to quantify the estimation errors caused by estimating the nonparametric
GARCH parts. Assumptions [B:2] and [B.3] only impose restrictions on each individual time series

{Yj+, X1 }}=:. Proof of Lemma is similar to that of Lemma thus it is omitted.

C Proofs of Lemmas and Theorems

Let ag, € argmin, 7 [l — apl|. Denote II,, (-) as the projection of V to A, — {aon}.
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C.1 Proofs for Theoretical Results in Section [3|
Derivation of Eq.

Under Assumptions(ii) and for any v = (vg,vl, e ,vk)T eVandw = (wu1,  Wyk, Wo1,"* , Wok)T €

W, we have that [ (ag + T1v, Ko + Tow, Y};) is continuously differentiable in small 71,72 € [0,1] :

02l (g + v, Ko + Tow, Y;)

010719 =0 72=0
82 log c(U?,00) (£ V5(&5,¢) fo,5(€5,6)—v5 (&5,0) o 5 (€5,e)
k W&OWJFOJ () + === j‘gg(ij]t)J e
dlog c(U? 0o 92 log c(Up.8) (&m
2\ Ry (60 + oy TG O v o (60
j=1
ég,t o :|
MJ »J
x |: UOJ + Ué»j

To evaluate the asymptotic effect of prefiltering on the joint estimation of semiparametric multi-

variate copula models, we define a functional T (ag, ko) [-,] on V x W as

0%l Y;
I (a0, o) fo,u] = By | ZHQ0H TR0+ 720, 1) - ()
1073 =0 T5=0
( 82 log c(U?,00) ](5Jt)f0J(§J t)— vj(fj,t)fé,]-(fj,t)
| TR oo (60) + 7 B ()
dlog c(UY,0, ko 621 U9.6 m, %0,j
5 o+ Qom0 0, (650) + Yoty gL [ vy () o (650) ’
: 92 log c(U2,600) v (&5,6) f0,5(€5,6)—v; (€5,0) £ 5 (€5,0) ’
e e vo fo g (€54) & + T2 [ R R E(Lfﬁ”j>
dlog c(U2,0 ko 0%logc(U%60) (&m. 90,5
\ + BTN (€50) €+ Doty TG [nt vy (2)d fo 5 (840) i )

for v € V and w € W. The second equality holds under the assumption that & is independent of
Ft=1. Under Assumption (iii), I" (a0, ko) [, ] is @ bounded bilinear functional on V x W. When

I (ao, ko) [, -] is evaluated at [v*,& — Kq], we obtain Eq.(L7) and the correction term in Theorem
Assumption C.1. (i) ||Qsm — aoll = Op(San) = 0p(n~Y4) ; (ii) there ewists v* € A, — {aon}

such that ||TLv* — v*|| = O(n=*); (iii) the smooth functional p satisfies Assumption 3 in |Chen

et al| (2006) with the smoothness parameter w > 2.

Assumption is a restatement of Assumptions 3 and 4 in |Chen et al. (2006). If the smooth
functional p is linear, then w = oo (e.g. the copula parameter and the marginal CDF function

evaluated at a point); for more general smooth functionals, w = 2.
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Assumption C.2. (i) V& € B, with ||k — rol| < O (log(logn)dnn), {Yi,s", 1<t <n} is a
strictly stationary B-mizing sequence with B(t) < Bot=C for some By > 0, ¢ = v —2 > 2; (ii)
for any small € > 0, there exist a constant s € (0,2) and a measurable function Uy,(-) such that
SUD ¢ A m Bt || <e. ol | <O (log(log m)ay )} |1 (@ 5 Ye) = L w0, Ye)| < Un (Vi) || — ol |*, with
(On.n)® = o(n™%), sup, E [U, (Y1)]” < My, for My >0 and v > 2; (iii) for allv € V, and w € W,

there exists 0 < My < 0o, such that ‘E (% [fu,u;])’ < M| |v]|[|w]|

Assumption [C.2[(ii) imposes some smoothness condition on  («, x,Y;) with respect to x in the
decaying neighborhood ||k — k|| < O (log(log n)dp,), where || - || is defined in Eq.(B.3)) (see similar
assumptions in e.g. [Chen and Shen| (1998)). Assumption [C.2[(iii) imposes that I (ap, ko) [-,] is a
bounded bilinear functional.

Define the Kullback-Leibler equivalent metric K (o, k) = Ex [l (o, k,Y;) — I (v, Ko, Y?)]-

Assumption C.3. (Local behavior of criterion)
(i) Let n, = n™7 with 1/8 < 7 < 1/4. Uniformly over a € Ay, k € B,, with |ja — ap| < o (1),

||k — kol| < O (log(logn)dnn) :

_ 2
K (a,k) =— W—I—F(ao,no) [ — ap, K — Ko
1 8%l (a, ko, Yr) ~1/4
+E<28K18KT[H—HO,H—HO]>+O(H 7']n>

(ii) Uniformly over o € A, and k € B,, with ||a — agl|| <o (n_/s), ||k — Kol] < O (log(logn)épn),

the following stochastic equicontinuity holds :
Hn {l (O{, K, Y;f) =1 (QO? R, Y;f) - [l (Oé, Ko, Y;f) =1 (060, R0, Y;f)]} = 0p (n_1/2> .

Assumption C.4. (Local behavior of criterion in the direction of the Riesz representer)

(i) Let €, = o (ﬁ) Uniformly over o € A, and k € By, with ||a — ag|| < O <log(logn)(5a7n>,

||k — kol| < O (log(logn)dp ) -

_ o £ enITy (v) — aol[* o — aol|?
2 2

F enl (@0, ko) (I, (v*) , & — ko] + O (€3) .

K (a,k) — K (a £ €11, (v7), k)
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Al(a,k,Yy) Bl(ao,no,Yt)} 1, (U*)) _

(ii) SUP{ ae A keBi|a—ao|| <O (log(log n)da.n ), |IKk—rol| <O (log(logn)dp )} H1 ([ Bat dat
Op (nfl/z) .

Assumptions (i) and (i) characterize the local quadratic behavior of the Kullback-Leibler
equivalent metric. Assumptions (ii) and (i) make the stochastic equicontinuity conditions.
Assumptions [C.3] and [C.4] are very common regularity assumptions in the sieve method literature,

see, e.g. (Chen and Shen| (1998)), |Chen and Liao| (2014)) and the references therein. They are easily

satisfied if the log-likelihood function is twice continuously differentiable around true ag, xo.

Proof of Lemma (1]

Let L, (a) = 137 1(a,Ko,Y;) and Ly (a) = 2 Yoiq U, R, Y:), where [ (a, Ko,Y}) is defined in

Eq.(6) and I (a, R, Y;) is defined in Eq.(4). We will first establish (L.1.) and (L.2.).
(L.1.) Ly (a) — Ly (a) = op (n~Y4) uniformly over a € A,,.

n n

> (007, Yy) = Lo 19, V2)| < %Z Un (Yy) IR — Kol = o, (n—1/4) ,

t=1 t=1

due to Assumption (ii).
(L.2.) We will show that Ly, (a)— Ly (o) — [Ly (@) — Ln (ag)] = op (n~Y4n,) uniformly over a € A,

Lu(@) = Lufe)| =

n

with o — ag|| < o(n,), where n, =n~7 with 1/8 <7 < 1/4.

Let o € A,, with [jo — a|| < 0 (1) and & € B, with ||k — ko|| < O (0p.1) :

Lo (@) = Ln (a0) ~ [La (@) — Ly (a0)]
= i {1 (@, R, Y7) — 100, R, Y2)} — pan {1 (e, 50, Ye) — (a0, 50, Y2)}
+ Ex [l (R, Y0)] - B[l (a0, ko, Y)] + E [l (a0, ko, Y2)] — Ex [l (a0, %, Yo)] + E[l (0, ko, Y3)] — E [l (a, k0, ;)]
= Ex [1(@.R,Y))] ~ E [l (00, 50, Y2)] — (Ex [l (a0 7, Yo)] — E [l (00, k0. Y2))) — (E[I (v ko, ¥)] — E [l (a0, 0, ¥0)])

+op (nil/ 2) , where the last equality holds uniformly due to Assumption (ii).
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Under Assumption i), we have:

1 0% (g, ko, Y,
E[l (o, 5,Y))] — E[l (a0, k0, Y3)] = E <2m [ — ag, a — ao})

1021 (v, Ko, Yr) 9%l (v, ko, Yz) —1/4
+E(zaﬁam[“‘“of”‘“0]> +E<aaam[“—%v“—ﬁd) +o(n ).

Therefore, uniformly over o € A,, with [ — a|| < 0 (1) and & € B, with ||k — ko|| < O (0p1) :

Ex [l (Oé,/,‘%, Y;f)] - K [l <a07 ko, Kf)] - (EX [l (0407//%7 Y%)] - F [l (Cm, Ko, Y;f)D - (E [l (av Ko, Y;f)] —F [l (040, K07Y;f)])

0?1 (v, ko, Y7) - 1/4 _1/4 )
=Ex <6’(18/<;T [ — ag, K — Ko] | + 0p (n 1/ nn> = 0p (n 1/ nn) , by Assumption (iii).

Thus we have (L.2.). Then we could use almost the same proof of Theorem 3.1 in |Ai and Chen

(2003) to show ||@smi — aoll = 0,(n~/%) , since we already have (L.1.), (L.2.), and ||@sm — a0l =

Op(80.n) = 0p(n~1/*) (Assumption (1)) O

Proof of Lemma [2]

For v,v € V" and w, w € W, we denote the second-order directional derivative of I (ag, ko, Yz) as

&1 (o, ko, Yz)
d(at,kT)T I (aT,kT)

d?l (g + 110 + 720, Ko + MW + W, V)
dridry

(0T, wT)T, (0T, wT)T]

T1=0 T0=0

C.2)

—

The proof is similar to that of Lemma 4.1. in (Chen et al.| (2009), thus it is omitted. O

Proof of Theorem [

Define r [a, ag, R, Yy] = 1 (, R, V) — L (w0, R, Y2) — %[a — ap]. Then, by definition of agy,, we

have

n

1 . - -~ —~
0 SE Z [l (asmla K, }/t) —1 (asml =+ e,11, (U*) y Ky Yt)]
t=1

=Hn [l (asmla/’%a }/t) —1 (asml + e,11, ('U*) 77%7 }/t)] +Ex [l (asmla E, Y;‘/) —1 (asml iy I P (U*) 77%7 Y;t)]

ol (oo, R, Yy . - . ~ “ ~
=+ €plin |:(80a.|.t)Hn (U ) + fn [7’ (asmh «p, K, Y;f) -r (asml + ann (’U ) , Q, R, th)]
+ IEX [l (&smb/’%a Y;i) -1 (asml + Ean (U*) 7//%7 }/t)] ’ (CS)

where €, is defined in Assumption [C.4]i).
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(S.1.) We first show

Ex [l (asmly//%a Y;t) —1 (asml + €,11, ('U*) 77%’ }/t)] = e, < asml_am v* > Fe, I’ (OZ(), HO) [’U*,k\ - /{0]“—

€nOp (n_1/2).

IEX [l (asmlaga th) —1 (asml * e, 11, (U*) 7/’%7 Y;f)] = Kl (&smla E) - Kl (&sml =+ e,11, ('U*) 7/’%)

a + ¢,I1,, (v*) — agl|? a — apl|? .

—H sml h ;( ) 0|| - H Sle 0|| Fenl (a07 /‘00) [Hn (U*) Y HO] + Op (6721)
Qgml + ¢,11 U* — Q) 2 Qgm] — O 2 * o~ —

—H o “ ;( ) H H o 9 H F enl (0, ko) [v*, K — Ko €nOp <n 1/2)

~ - 1
==+ €n < Qgml — QQ, vt > :l:en < Qgml — Qp, Hn (U*) —v* > +§€31||Hn (U*) ||2

F eI (a0, ko) [V, K — Kol + €n,0p (n_1/2)

=t €, < Qg — 0, U > FeuI' (v, ko) [V*, K — ko] + €,0p <n_1/2> ,

where the second equality is due to Assumption (i), the third equality is due to Assumptions

[C.1)(ii)[C.2(iii) and [4] the last equality holds because of Assumption (ii) and Lemma

(S.2.) We next show

Tenlin [Wﬂn (U*)} = Fenfin (Wﬁ«) + n0p (n1/2).

Il (o, K, Y3) “| _ Il (o, Ko, Yr) 9l (ao, Ko, Yr) o
un[ o7 Hn<v>]—un( 00010 1)y, (PO 0N 1y () )

o <8l (ao,/i,Yt)Hn (v") — ol (ao’m’Yt)Hn (v*)) o <8l (ao,mm}ﬁ)v*) o, <n_1/2) .

oaT oaT oaT

The last equality is implied by Chebyshev inequality, i.i.d. data, ||IL, (v*) — v*|| = o(1) and As-

sumption (ii).
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(S.3.) We then show

Hn [T (asmla o, K, Y;f) -r (&sml + eplly (U*) , 0, K, Y;f)] = €nOp (n_1/2)-

Hn [T (&smla «o, /’%7 }/t) -r (asml + e,11, (U*) , (0, /’%7 Y;f)]

a w ~ K\ S 81 Q| ,k\, Y;
= Hn [l (O‘sml’ R )/t) -1 (a5ml + epll, (U ) y Ky Y;f)] x entin |:(8004Tt)

a, R, Y R, Y;
= e | (PG - P 11, (0] = oy (1712)

oaT oaT

11, (v*)]

where @ € A is between agyy; and Qg £ €,11, (v*). The last equality is implied by Assumption
CAii).
Under Eq.(C.3), (5.1.)-(S.3.), we have

ol Y} - ~
0 < Fenpin <Wv*> F enl' (a0, ko) [V*, K — Ko] & €, < Qs — 0, ¥ > +€,0p (n_l/Q)
«
- . ol (g, Ko, Y:) . . ~
VN < Qgmi — ag, v >=\/npy (Mv ) +v/nI (oo, ko) [v*, R — ko] + 0p (1) .

oaT

Together with Assumptions and Lemma [T} we get

\/ﬁ [P (&sml) —p (050)] = \/ﬁ < &sml — Qq, vt > +0p (1>

= Vnuy, (al(ao’mv*> + v/nI (o, ko) [v*, K — Ko] + 0p (1)

oaT
Z?:l Sp(a) (OL[), RO, }/t)
n

DN <0, lim Var [ﬁ( +T (a, ko) v, & — H0]>:|> . O

Proof of Theorem 2

We could rewrite the efficient score defined in Eq. as

dlogc (UE,GO) k dlogc (UtO,OO) SE g7 (&)
S, an 5 = - / " dz + - : ) C4
90 ( t 040 K/O) 80 j:1 auj . 9%, (:1;) x fO,j (é],)ﬁ) ( )

where g7 (z) = b} (Fo,;(z)) fo,j(z), for all z € Ej and j = 1,--- k. b} ’s are defined in Eqs. (21)),

J
and @)
0 A
In this proof, we show that Eq. is valid, i.e. /nEx [8590 (Ui ’aoé’?—w(n HO))} = 0, which
7=0

is a dg by 1 random vector. To avoid tedious expressions, we assume fg ; is known to be zero, for
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j=1,---,k. The extension to 9 ; # 0 can be trivially replicated following the current proof. Then

~ . T .
the Ith component of Eq. is /nI' (v, ko) {51, K — fi()}, with v, = {el, —9i 5 —9) l] and e is

the Ith row of the dy by dy identity matrix, i.e. :

92 log c(U?,00) ' 950(&5.0)f0,5(€5.0) =97 1(&5.0)00 5 (Eie) o
E 81,6]89[ fOJ (é-J t) (—éjvt) + . fgj(éj]t) . 5]7t

k
a1l U0 0% log c(U?,00) ém,
> G ISTED Y 1%%‘%5 g @) fo; (&0 ) ¢
Jj=1 ot
X\/’TlEX ( i ’J>
0,7

forl=1,---,dy, according to Eq.. We show that for [ =1,--- ;dgand j =1, --- |k,

82 log c(U?,00) A 950(85,0)f0,5(&5.0) =95 1(€5,0.00 5 (Eae) o
E Taeﬁfoj(&t)(—&,tﬂ ! T2, L =0, (C.5)

ol U?,00) 921 00) (Em,
o SRR g (630) €t + Yooy e [0 g () o (€5) S

which is sufficient for Eq.. In the proof, for simplicity, we assume dy = 1. The extension to

dg > 2 is straightforward. Denote g;-‘J as g;-‘ for easier presentation, j =1,--- , k.
{& = (€14, . &ke)T}_, is a random sample satisfying Assumption [I| The true unconditional
variance of £; s, a(z)j =1forj=1,---,k. We construct afew tool models for {& = (&4, ,&re)THy,

in all of which the copula function is known apart from a finite dimensional parameter 6y. They are

different in terms of the knowledge of marginal distributions.

1. The marginal distributions of & are completely unknown. The likelihood function is

l(a, &) =logc[Fy (&) - 5 Fi (k)5 0] + Zlogf] (&t)

7j=1

2. For j = 1,---  k, the marginal distribution Fj,, ,(s) = Fp; (%) - Tszo g;(z)dz is known

except for the variance 0]2- and the parameter 7. The corresponding density is fj,gj,T(s) =

fo,j (%) % - Tg}"(%)é The likelihood function is

l(eao-; T, ft) - IOgC[Fl,Oj,T (51,25) y T 7Fk‘,0'k, (fk‘t + Zlogf] 05,T 5] t) (C6)
7j=1
The true value of o is 09 = (1,---, 1), while the true value of 7 is 7 = 0.
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3. The least favorable parametric sub-model: for j = 1,--- , k, the marginal distribution H; - (s) =
Foj(s) —1 f x)dx is known except the parameter 7. The likelihood function is 1’

evaluated at 0 = 09 = (1,--- ,1), i.e. 1(0,00,T,&).

Therefore, in terms of the efficiency bound for 6y, model [3] > model 2] > model [[] As shown in
Chen et al.| (2006]), model [3|is the least favorable parametric submodel for model [1, thus they are
all equal in terms of efficiency bound for 6.

Because model [3]is the least favorable parametric submodel, by construction, it is easy to show

ol (907 00,70, gt) + ol (007 00, 70, gt)
00 or ’

S@o (Utoa «p, FU‘O) = (07)

where Sp, (Ulk0 , 0, mo) is defined in Eq. 1) The efficient influence function of 6y in model [1] is,

—1
{E [590 (Uto, ayg, /10)]2} So, (Uto, ag, /10). Due to the definition of the efficient score, we must have

ol (6y, 00, 10,
E|:Sgo (Uto,ao,/ﬁo) (80, 70 0§t):|:0.

Oo

Plugging Eq.(C.7) into this equation, we get

> 31(90,00,70,&)+3l(90,00,70,§t) ol (0o, 00, 70, &t) _0
00 or 0o -

Then because of the information identity, we can further get

2 2
g [8 l(&g;@o;m,ﬁt) n 9 5(9(5:5;7'0’&)] —0. (C.8)
A straightforward calculation shows, for j =1,--- |k
82“9;’932;0’&) " %1 (eg;fgzjm,&) (C.9)
| Dol o () (~E5) + W““;jj@fﬁ” BB,
L 05 (65) €50+ Sy T [5Gt @) o (650) G0

Egs.(C.8)) and (C.9) together prove Eq.(C.5). Consequently, Eq. is valid. Therefore, we have

Asyvar [/\TGSml} =v," lim Var

n—o0

n1/2 ZS90 Ut , O, mo)] vy = Asyvar [ATGSml} O
t=1
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Proof of Theorem [3]

(i) The semiparametric Fisher information matrix for p in the full model (Eq.(3)) equals the

0
variance of the projection residual of the #-part score w onto the tangent space generated

by any other parameters— the marginals and the dynamic parameters. We essentially need to solve

the following infinite-dimensional optimization problems for [ =1,--- ,dy :
dlogc(UP,60) _ §~ [ dloge(UY, by) (% vsa(€0)
1nf ) ’—Z{’/ vji(x )d:z:—i— } (C.10)
v. ZGHJ 1 Jv w.  €EWp 891 j=1 8“] —00 fOJ( )
2
k k
Z t,Jl -1-2 [8logc(Ut ,Ho)fo (€0) + fo,J(ﬁ )] wz,jl N fj,tw;jl
o (6 7
_ ,j = duj 75 fo.i (&) U(t),j U(tJ,j
where v.; = (vig, - ,vp)" and w.; = (Wyi, - Wy kl, Wel, - W kt)'. Because & and U
t
are independent of F'=1 if w.; solves the above optimization problem, then u;‘;’jl = c¢,,j and
0.
t
% = ¢,,51, Where ¢, j; and ¢, j; are constants. The optimization problems (C.10) can be simplified
0,5
to, forl=1,--- ,dy :
dlogc(Up,60) _ §~ [ dloge(UY, by) [+ vs(E0)
inf E|—— —Z{’/ vji(x )da?+ } (C.11)
v€l1h_, V5, ¢ €R2* 90, = O —o00 fo,y( t)
2
dlog c(Uy, 6y fo, (&)
+Zc0ﬂ + Z [(t)foa (&) + T | lewgt + o] |
j=1 j=1 u.] fo:]({j )
where ¢.; = (Cut, -+ Cukls Colly** » Coki) -
Forli=1,---,dgand j = 1,--- ,k, any v;; € V; and (¢ ji,coj1) € R?, there exists a unique
function
-1 1 _
oty = L ] (g )] g )R )+ s B ),
gl \Y5) = gl ol
fOJ‘ |:FOT]1 (’UJJ)} fO,j |:F ,]1 (u])} fOJ( 0,5 (uj))
(C.12)

Under Assumption |7 and Eq., we have

0 10, t)) A <—f6,j(§j,t)§j,t - fo,j(fj,t)>
E [bﬂvl (Uj,t)] E< fO,]({] t) CMJH_E fO,j({j,t)

Thus b;; € £3([0,1]). On the other hand, for [ = 1,--- ,dg and j = 1,--- ,k, any b;; € £3([0,1]),

ot =0, B ([0 (UD)]?) < ox.
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Eq.(C.12) uniquely identifies (¢, ji, ¢ j1) € R? and vj; € V; :

ro(€..)E2
E &b (Foj (§))] = cpji — B <fo](£]t)§“> Cojl = Cujis

fo. (&)
f0.5(E50)€3 J0 G088 + foi(&5.0)E7
el s ) = (BT s - (B L0 N
vj’l(a:) = by, (F(),j (ac)) fo,j (:E) + C#,jlf(l)’j (LU) + Co 4 (fé,j (m)x + fO,j (CE)) , for all z € Ej, (C.13)

which are obtained using Assumptions [I] (i) and [7] Eq.(26) and the Cauchy-Schwarz inequality.

Therefore, Eq.(C.12) defines a one-to-one and onto mapping of Vgx R%to £9([0,1]) forj =1,--- k.

Thus by change of variables, the optimization problems ({C.11]) can be rewritten as, forl =1,--- | dg:
0 k 0 uo ?
o0l Uy, o 0l Uy, o ,
inf B s ) 66(9 b _ > { sl KAl g( c:%) / " b a(u)du + by (Ujot)} )
(br, b ) €{£3([0,1]) } t j=1 U 0

which coincides with the optimization problems and can be solved by B* (defined in Eq.).
Thus the semiparametric Fisher information matrix for 6y in the full model equals Z, (6y) =
E (590 (Uto7 g, KJO) S@o (Utoa «o, RU)T)'

(@) It is a direct conclusion of part (i) and Theorem O

C.2 Proofs for Theoretical Results in Section [4]

Proof of Theorem [4]

Vit (Fias(@) = Foy (@) = Vi (Fias(@) = Fiao(@)) + Vit (Frae(@) = Foya))
=V {nil S (& <o} - 1g < o) } +/n {nil S g <o) - Fo,j<:c>>} +0, (n712)

—Vinpin (1{&0 < 2} —1{g0 < 2}) + ViEx (1{&§ < 2} —1{g, < })

+n 12 Z (I{& <z} —Fyj (2) + O, <n*1/2> .
t=1

~t s

pt, ({6122} - 160 = 20) = o (1o < 550+ o) -1l 29) = 0 0

can be shown similar to Example 1 of |Chen et al.| (2003) and is also a much weaker version of
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Eq.(C.20)). Second,

Tt — oyt ot
Vilx (1{&, <o} ~1{ge <2}) = VaEx (H {fj,t < Bty ‘?m} ~I{g < w})

0,5 90,
r ~¢ t ~t
= \/EEX FO,j L 7 J + zj — F()’j (l‘)
I 90, 90,
r 2
~ t ~t ¢ ~ t ~t t
B — Moy 05 =00 1 [ BT Ho 05— 00
=VnEx | fo; () | =+ +§f6,j($) P P A
9,5 90,5 90,5 90,5
~ t ~t t
M‘—No,' g.—o’o’,
= fog (@) VnEx | =——" | +2fo; (2) ViEx | —— | + 0, (1),
90,5 90,5
where the second equality uses the fact that &;; being independent of Fi=1 . the third equality
nt—ut ot
is due to Taylor expansion around x, and Z lies between x and Bilos 4 UO;] x. Since fo;(-) is
0. 0.

continuously differentiable (Assumption (ii)), fo.i (5)‘ < oo and }fé,j (z) IL“ < 00. Along with the

fact that ||K; — HOJHJQ‘ =0, (n_l/z), we obtain the fourth equality. Thus, v/n (ﬁj’gs(iﬂ) — Fo; (x)) =

Ot b 5t ot .
o (e V(P ) o wfo (r) VEx (P70 ) 40T 2SI (g < @) = Fo () + 0p (1),
Then Theorem 4 holds under Assumption O

sJ

We will establish Lemma 3] in the theoretical framework of [Liu and Yang (2016]) (see Appendix
B3).

Assumption C.5. Forj=1,---  k, the first-order partial derivative a%zg“) exists and is continuous

on {u € [0,1%;0 < uj < 1}.

2
Assumption C.6. Fori,j =1,--- k, (i) the second-order partial derivatives %leoaz) exist and sat-

ahj,’Yo,j (u)
B'y]T

83h]\"/0,j (w)
I} Ou?

02 F . . . T .
W?)Z)Zizj’ < ooy (ii) Assumption|7 (1); (iii) infyuepo,1) hjrg; (1) > 05 (iv) SUPyepo 1)

82h]’w07j (u)
dv;0u

i8fy Sup, ¢ gr

Ry, (w)

Ohj ., (1)
5 JuZ < 00, SUPyg[o,1]

00, SUPye(0,1] Du < 00, SUPye0,1) < 00, SUDy(0,1]

0.

Assumption C.7. {Y;, X1 4,4, Xiqyt 1 <t < n}ois a strictly stationary B-mizing sequence
with B(t) < Bot™¢ for some By > 0 and { = y—2 > 2, Vv; € Tj with ||y;—70,5|| < O (log(log n)n_1/2)

forj=1,--- k.
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Proof of Lemma [3]

For simplicity, we prove Lemma, [3| for k = 2. When k > 2, the proof is similar. Denote the rescaled

~ ~ A N\T
empirical copula functions of & = (§14,&2,)" and & = (517,5, 52,15) as

A~ 1 - -1 H—1 1 g = -~

Cn(u1,uz) = — T ;}1 (gu < Py (u1), 6o < Fus(w)) = ;H (Ul,t <u, Uz < ug) ,
R "

_ PO - N N

Cn(ur,u2) = ;H (gl,t < Fi (), &4 < FMS(@)) = ;H (Ul,t <y, Upy < U2> ,

where ﬁj,gs and ﬁj’gs are the rescaled empirical distribution functions of §;; and Ej,t for j = 1,2,
respectively. Therefore, @n(ul,uz) = ﬁ(@n(ul,w) - C’o(ul,uz)) + O, (%) and (En(U1,U2) =
Vn <6n(u1,u2) — Co(uq, uz)) + 0, (n_l). Because @n ~ C is a well-known result, in this proof,
essentially we show

Cn ~ C. (C.14)

To prove Eq.(C.14)), we define two distribution functions on [0, 1]2 : Gluy, ug) = %4-1 Yo I(Foa (§1e) <

ur, Fog (624) < ug) and G (ug, up) = #1 Yo 1 (Fo,l (&t) <, Fop <g2t) < U2>. Note that :

Cn(ur,u2) = Gn(Gy ) (w1), Gop (u2)), (C.15)

1,n

where éj,n, j = 1,2 are the marginals of G Define the empirical process Gn, (uy,uz) = \/ﬁ(én(ul, ug)—
Co(ur,uz)) =+/n (én(ul, ug) — @n(ul,ug))+\/ﬁ (@n(ul,uQ) - Co(ul,uQ)), where /1(Gp (u1, uz)—
Co(ur,uz)) = Cp(ur,u2) +0Op (n_l) ~ C(uq,uz), C,, and C are defined in Eq.. In the following
(T.1.) and (T.2.), we show weak convergence of G,, and then use Eq.(C.15) to establish the weak

convergence of C,,.

13Neumeyer et al| (2019) uses the same transformation to establish the invariance of the empirical copula pro-
cesses to the first-stage estimation error. They consider nonparametric ARCH models and use the local polynomial

estimation, while we consider semi-nonparametric GARCH models and use the B spline estimation.
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(T.1.) We first prove

Ex [\/ﬁ (én(ul,uz) - @n(ul,uz)ﬂ
1 80 Y _ _ 810 h ) U , L
ZQW]COJ (Fovll(ul)) Fy i () [E ( g T( S t)) T: +H1]

o
1 8CO(U1, UQ)

_ 810gh27 7(U2’ ,,t)
5o De) g (b)) Pt | B (SR 1y ] 40,(0),

where the expectation takes over the data, and the first-stage estimators are considered to be

(C.16)

deterministic. T; and Hj, for j = 1,2, are defined in Lemmas and Note that

Ex {\/ﬁ (én(uhuz) - @n(ul,w))}
_ hg (Ur5,4) 1 ha2,(Uszy.1)
=vnEx {1 |&14 < Fyi(w \/m U Gop < Fy(ug)y | R
' 071( ) hlv'YO,l(UlfYO,lat) ' 072( ) h27"/o,2(U2,’Yo,2,t)
— V{1610 < Fylw), &0 < Fd ()|} +0, (n7")
_ g (Ur 5, 1) 1 oz, (Uz5,.40)
:\/ﬁ EX FO F l(ul)\/ ;Y1 ;Y1 , F (UZ) ;Y2 Y2,
01 h11'70,1 (UL’YO,l,t) 0.2 h2,’¥0,2(U2,70,2,t>
~ Ry (Fol(w), Fog(ua))}+0p (n7")
—1
OFy ( (ul) F0’2 (u2)> \/’ \/ hi 5 Y1 Ul,’h, 1
071 1,70,1 UL'YO 1,t )

OF, (F; M (u F‘lu
+EX[ 0(0, (32 02(2) ( h2772 UQ%))l)]+0p(l)

h2f¥0 2 U27’Yo 2,t

~ 9Cq (u1, u2) -1 1 g Ume)
—7&“ Joa (Fo,l (U1)> Fo 1 (u1)Ex Vvn mo } Ul,vo P B) 1

3 2] (b)) Fyd By | Vi ( Lo Uama) 1)]+op<1>, (©17)
u9 )

h 70,2 U2,’Yo 2,t
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where the second equality is due to & being independent of P_IE, the third equality is implied by

Taylor expansion, Assumption (i)(iii) and Eq.(B.8). Note that, for j = 1,2,

i || Ll ) L (i Uise) ~ sy Uinest) ) o
hj,“ro,j (Uj,“/o,ji) 2 hj/YO,j (Ujﬁo,j,t)

_lf hjﬁj(Ujﬁj,t) - hjﬁo,j(Ujﬁo,j,t) + hjﬁo,j(Ujﬁo,jvt) - hjﬂo,j (Ujﬁo,jvt) X 1
V" g (U ) op(1)
7,70, \¥Y 770,55t
1 GIOghj’YO'(UJ"YO't) EJ'YO‘(Uj’YO't)_hj'm'(Uj“m't)
NG 0o Bomnst) (5, g ) s W) ~Moesllimat)) g 1), (c1s)
2 87} ! ’ hjﬁo,j (Ujﬁo,j,t) P

where the first equality is by Taylor expansion of w/ﬁjﬁj(Ujﬁj,t) around 4 /hj, (U~ ;¢) and

Eq.(B.8), the second equality is again by Taylor expansion and Eq.(B.8)), and 7; —vp,; = O, (n_l/ 2).
Taking the expectation of Eq. (C.18]), Lemmas and imply, for j = 1,2

E b B =_F

hja, (Uja,.0) 1 (9108 hjro s Ujroy.t)
hj:’YO,j (Uj:'YO,j,t) 2

) Y+ %Hj +op(1).  (C.19)

Then Eqs.(C.17) and (C.19)) lead to Eq.(C.16).

(T.2.) We then show

~ o~

NG (Gn(ul,uz) _ @n(ul,uQ)> _Ey [\/ﬁ (én(ul,uQ) — Gl uQ))} ] —o,(1). (C.20)

sup
u€(0,1]2

Following |Akritas and Keilegom! (2001)), |[Dette et al.| (2009) and Neumeyer et al. (2019), we define

the class of functions:

F= {(U17U27§1,E2) = e <yt (u1), Ea <yt (u2)], 1,2 € Ry, e € CIF ([0, 1])} ;

where 6 € (0,1], (EM([O, 1]) is the class of all differential functions ¢ defined on [0,1] such

that [|¢]|11s < 2, infyepo1) ¥ (u) > 3. and [|¢|[145 = max {SUpue[o,l] ()], supyepo 1] W/(U)‘} +

SUPy£u/€[0,1] Wu)_iw Note that

|lu—u

o1 + allirs < |[¥rllivs + [ld2lhis,  and  [[AY[[i1s = [Al[¢ll4s, VA ER. (C.21)

"If random variable W is independent of Z, let F denote the CDF of W, then E{I(W < Z)} =

E{E[L(W < 2)|2]} = E{F(Z)}.
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Denote the centered process

Zn(g) = \/152 (& FY) —Ex (g (& F )], Vg e F. (C.22)
t=1

Note that /n <C~}n(u1,u2) - @Am,m)) —-Ex {\/ﬁ (é (w1, uz) — G U17U2)>}

. hi5, (Ui ) hz (Va5
=Zn | T &1 < K 1(“1)\/Ma &1 < Fyy (u2) RESAGPE
" 01 th,“70,1 (UL’}’O,I: ) 0 2 ,'Yo 2 U2,’Yo 2,t t)

— 7 (H {&t < Fy(u), o < F&Q(W)D +0, (n71). (C.23)

ij( 37t t)
h‘] 0,5 (UJ 70,5 t)

1. We first show ¢ (u) = Ujno it =u € 521+5 ([0,1]) almost surely. Equivalently

Ujge) 1

h]‘ﬁj(

we show ||¢]|145 = op (1), where ¢(u)

€13,

o~ ~ ~

hia;(Uja,.6) _101oghjng; (Ujngt) 1 s (Uinest) = Pine; (Ujo )
Jontlind 1 5~ 00)+ 5

—— Ui~ .+ = u. As shown in Eq.
hj,vo,j (Ujﬁo,j,t) Ji0,5:t !

hjv’YO,j(Uijo,j,t) 2 87; hj»’Yo,j(Ujﬂo,j,t)
Thice  (Uine ) = hine (Uine
4+ = J570,5 ( ],70,.7775) Jf/o,;( Jﬁo,gi) +R (Uj,'yo,j,t) ’
2 hj,'Yo,j(Uj,’Yo,j,t)

where iszﬁO’j () is the projection of h; , ; (-) onto the cubic spline function space and sup,c(o 1) [ (u)| =

Ologhj v, (u)
— a7 (i 0,)

op(n~1/2). = 0, (1) is valid under Assumption |C.6| (iii) (iv) and

1+6
Lemma m Also, hj, ;(u) is estimated using cubic spline functions, Zf};kk AiBja(u).

The support [0,1] is divided into N + 1 equally-spaced subintervals J; = [ﬁ, %), for

j=01--- N—-1, Jy = [Niﬂ,l]. As shown in Lemma A.9 of Liu and Yang (2016,

1 hj o i (quvo,jyt)fhj,'yo,j (Uj,’Yo,j,t)

SUPye0,1] ‘hj%’j (w) = jpo,; (u)| = O(N™4) = o(n~1/2). Thus the two terms T iy t)
and R (Ujjn,oyj,t) can be handled analogously as in the proof of Theorem 1 in [Neumeyer et al.

(2019).

As shown in Proposition 2 and Lemma A.14 of Liu and Yang (201 ) o, (W) — %jm’j (u) =
og(n

Zyzl—k AiBja(u), SUPyue0,1] |0, (u) —ﬁjm,j (U)‘ = ( )\F) and maXJ 1— k{ )\J‘} =
Oy (%) For any given value 4, if @ € J; = [% N—) then Bj4(%) # 0 only for
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J = j—3,j— 23— 17, thus hjn,, (@) — hjny, (@) = 3)_;_ 3 A\sBya(ii). Furthermore,

according to Lemma A.3 (ii) of |Liu and Yang| (]2016[), SUPyefo,1] |%B]74(’U,)‘ = O(N) and

%B]A(U)’ = O(N?) (see Liu and Yang| (2016) pages 5, 17 for detailed descrip-

SUPye[0,1]

tions). Therefore, under Assumption (iii) (iv), for some My, Ma < oo

Rinos (Uinoit) = Moo Ujiot)
hjﬁo,j (Uj:'YO,j>t)

d
B
Tu 74(u)

N o~
< M; max {‘)\J‘} sup
148 J=1-k u€l0,1]

=0p (log(n)]\ﬁ/?> =0, (1),

N (|~ 2
+ Ms max {‘)\J‘} sup |—=
J=1-k uE[O,l] du2

Bj(u)

NG

where the last equality is satisfied under Assumption A6 of Liu and Yang (2016), n'/6 <<

N << n'/?log(n)=%/%, and N = o (n1/5 log(n)_2/5) is needed. Due to Eq. (C.21), we have

|@l[1+5 = op (1), consequently (u) = Ujnojt = u € 521+6([0, 1]) almost

hjwo,j (U]’,’Yo,j,t)

surely. Therefore,

_ hs (U5, 4) 1 ha s (Uz5,4)
I 517 < F, 1 Ul \/,71 L , §27 < F, U2 SRR R ALEA, F, as.
' 01 ( ) hlv’YO,l (Ul,’yo,ht) ! 0.2 ( ) h2770,2(U27’Yo,2,t)

~ 1 ~
- We have log N (&,C3* ([0,1]), |||l ) = O (¢7757) and log Ny (&, 3 ([0,1]), ]I l2) =

0] (Eﬁ), for every € > 0, due to [van der Vaart and Wellner| (1996) Theorem 2.7.1 (page

155) and Corollary 2.7.2 (page 157), where || - [|oc denotes the sup norm and || - [[2 de-

notes the Lo norm. Define the semi-norm (see same definitions in Doukhan et al. (1995),

|Dedecker and Louhichi| (]2002[) and |Dette et al.| (12009[)): lgll3,5 = fol B Huw)Q2(u)du, 571 (u) =

inf {2 > 0: B <u}, Qy(u) =inf {z > 0:Pr{|g| > 2} < u}, where [z] is the integer part of z

and S is the mixing coefficient. Following an analogous argument as in the proofs of Lemma

1 of |Akritas and Keilegom| (2001) and Lemma 1 of Dette et al.| (2009)), we can show that

lOgN[] (67~F7H :

248) = 0O (log (6_1)) +0 (e_l%é) for every € > 0. Along with one bracket

being sufficient for € > 1, we have [;° \/log Ny (e, F, || - |l2,8)de < co. So the centered pro-

cess Zy(-) defined in Eq.(C.22) is asymptotically || - ||2 g-equicontinuous, due to Section 4.3 of

\Dedecker and Louhichi| (2002]).
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3. We are left to show

~

his, (U ho = (Us .
sgﬂfugﬁmvm“%%@%g@wvfmhmﬁ

u€l0,1]2 hl,“/o,l (Ulﬁo,l,t h2ﬁo,2 (U27“/0,2,t)

~ 16 < Fplw), &0 < Fij(u)] Hw 0. (C.24)

)

Denote

- hgy (Ui5,.0) ha g, (Uz5y.0)
A(ui,uz) = Prq |l < Fl(ug)y | —2 =t uo i | 22\ T2t
(u1,u2) §1,e < Foqp( 1)\/h17701(U1’701, ] €20 < Fyp ( 2)\/]12,70,2((]2,70,2,0

— I [ﬁt < Fop(w), &4 < FJ?I(UQ)” ~ 0}

hi5 1 Ul 71t

\/ 1,701 U1701,)

IN

Pr §1t<F01 Ul

- Pr{6 < Fylm)}

ha s
+ |Pr 772 727 — Pr {fgt < F_l(UQ)}
ho 2,70,2 UQ:VO 2,t ) 7 02
Uiz
= |Ex { Foa \/ 13 (U1510) —u
hlﬁo 1 Ul,'YO 15t )
ho %, (U:
+ |Ex { Foa | Fys (UQ)\/W(M%) —up| =0, (n—1/2) ’
hQ,"/o,z(U?,’Yo,z,t)

where the last equality can be shown using the similar argument as Eq.(C.17). By the defini-

tion of [|-[|y 5 and Assumption we have

_ Bz (Urz,4) ho,(Ua g, 1)
]I < F 1 u ;Y1 7717 < F ;Y2 sY2,
th -0t ( 1>\/h17“/0 1 (Ulﬁo 1,t ) 52 ! 02 ( ) h2770,2(U2770,2,t)

-1 —1 2
-1 |:§1,t < F071 (U1)7 62,7& < F072 (UQ)] 2.8

A(u1,u2) Aut,u2) ,,—1/¢ (¢c-1)/¢
= / B (v)dv < / Uil/cdv = A 87111/2U2) — 0,
0 0 Bo By (¢ —1)/¢C

uniformly on (u1,u2) € [0,1]2. By > 0 and ¢ > 2 are defined in Assumption . Because the

centered process Z,(-) is asymptotically || - ||2 g-equicontinuous, we establish Eq.(C.20) using

Bos.(CZ9) and (C2),
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(T.1.) and (T.2.) imply

B R 190, 7 0log hy, Ulrg i,
vn (Gn(uhm) - Gn(u1,u2)> ~ 20;11 uz)f 1 ( E ( & 1780%( L0 t)> Ty + Hl]
1
190Cy (Ul,UQ) 810g h2770,2 (U2a"/0,21t)
+587f02( ( ))F (u )[E< ol Ty +Hyl,

therefore, Gy, (u1,u2) = /n (én(ul,m) — Co(u1, u2)) ~ C(ur, uz)

2] g () Bt [ (TR )

2 Ou o
18Cy(uy, usz) _ _ dlog ha 5., (Uz,50.2,1)
5o o (i) i) [ (Bt )y .

Under Assumption Theorem 3.9.4 of van der Vaart and Wellner| (1996) implies (also see Propo-

sition A.1. of (Genest et al.| (2007))),

Cu(u1,uz) = v/n (5n(U1,U2) - Co(u17u2)> +O0p(n ) = Vn (CNT' (G (ur), Gy (u2)) — Co(u1>u2)> +Op(n )

= @n(ub ug) — 8002211’ UQ)@n(ul, 1) — 8C0(81;12’ UQ)@n(laW) +op(1)
s Clug, ug) — WC(ul, 1) — W@(l,w) =C. O
Proof of Theorem [5]
Similar to the proof of Theorem 2 in Neumeyer et al.| (2019). O
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