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1 Introduction

Value-at-Risk (VaR) measures the potential loss in the value of a risky portfolio over a defined period for

a given probability (also called the confidence level). It is one of the key risk measures recognized in the

Basel accords for financial institutions and has also received considerable attention in many related areas,

such as Solvency 2 regulation for insurance companies (Nieto and Ruiz (2016)). Because it is a quantile in

a statistical sense, a proper platform for VaR forecast should take the time-varying non-Gaussian feature

(Harvey and Siddique (1999), Grigoletto and Lisi (2009), Bekaert et al. (2015) and others) into account.

In addition, regulators often set a high level of confidence1 associated with the VaR calculation to make
1For example, the Bank of International Settlement (BIS) indicates a 99% confidence level for market risk assessment.
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bankruptcy a highly unlikely event for commercial banks. This requires better ability to model skewness

and kurtosis because the prediction of extreme quantiles relies heavily on them.

The literature suggests twoways tomodel the non-normality of returns (and loss equivalently). Distribution-

based methods search for the proper parametric distribution that has room for non-zero skewness and flex-

ible kurtosis. Leading examples include skewed-t distribution (Hansen (1994)) and skewed generalized

-t distribution (Theodossiou (1998)). Other distributions such as generalized Pareto distribution, z distri-

bution, asymmetric Laplace distribution and Johnson SU distribution are also mentioned in the literature

(see Yan (2005), Lanne and Pentti (2007), Ergun and Jun (2010), Gerlach et al. (2013)). Most of these

distributions have been applied for VaR prediction (seeWu and Shieh (2007), Lin et al. (2014), Dendramis

et al. (2014) and others). Meanwhile, expansion-based methods using Gaussian distribution adjusted by

higher moments have been used to approximate the original distribution such as the Gram-Clarlier Ex-

pansion (GCE) of normal density function (Leon et al. (2005) and others). Examples of the application

of VaR prediction with expansions can be found in Mauleón (2010), Alizadeh and Gabrielsen (2013) and

Zoia et al. (2018) and others.

Despite these developments, there are still some gaps in the current literature. The first is that current

dynamic higher moments models (such as Jondeau and Rockinger (2003), Leon et al. (2005), Bali et al.

(2008), Polanski and Stoja (2010)) only rely on daily return to drive the dynamics of higher moments.

Consequently they try to pin down the dynamics of the first four moments with one information source and

are thus inefficient in terms of the information used2. Although a number of models use realized measures

in volatility modeling (e.g. Andersen et al. (2003), Ghysels et al. (2006), Corsi (2009), Shephard and

Sheppard (2010), Hansen and Huang (2016) and others), applications of higher moments extracted from

intraday returns are limited. Current research focuses on issues such as return prediction, risk premium

and volatility forecasting (Amaya et al. (2015), Broll (2016), Mei et al. (2017) etc.), while less attention

is paid to use their information for dynamic higher moments modeling3. Existing studies on VaR forecast

with realized measures such as Watanabe (2012), Louzis et al. (2013), Bee et al. (2016) and Wu et al.
2For example, Russo (2009) use standardized return zt−1 and |zt−1| to update skewness and kurtosis parameters at t ac-

cordingly. The argument of significant noise in daily return for volatility (Andersen and Bollerslev (1998)) is also applicable
to higher moments cases. The r3t (rt) and r4t (|rt|) are only loosely related to higher moments.

3One can argue that volatility models with realized higher moments as volatility predictors also incorporate higher moments
information. However, in these models, realized higher moments can only affect the distribution indirectly through the channel
of volatility.

2



(2019) use only realized variance for conditional variance identification and the higher moments are only

identified by daily returns. To the best of our knowledge, formal discussion on VaR forecast using realized

higher moments is rare.

The second gap is not just an issue of VaR prediction but of all applications that involve the calculation

of skewness and kurtosis using expansion-based methods. Due to truncation error, the original formula of

expansions such as GCE can deliver a negative value, which is inconsistent with the definition of density

function. In practice, as in Leon et al. (2005) and others, the original formula is squared and unified

to form a valid density function where estimation methods such as MLE can be applied. However, this

squared transformation will distort the correct moments from the expansion parameters in GCE. Although

Brio and Perote (2012) suggest using the method of moments to estimate parameters in GCE to avoid this

problem, constructing moment conditions can be difficult for complicated models. To the best of our

knowledge, no formal discussion has focused on the correction of this distortion4.

To fill both of these gaps, this paper proposes a Realized GARCH-RSRK model that jointly models

returns, realized volatility, realized skewness and realized kurtosis. As an extension of the original Re-

alized GARCH model (Hansen et al. (2012)), the new model uses four different information sources for

the dynamics of the first four moments accordingly. We also provide the correct formula for the first four

moments under the squared transformation and discuss the VaR forecast using Cornish-Fisher expansion

(CFE). Empirical evidence of VaR prediction based on four major Chinese indices strongly suggests the

inclusion of realized higher moments information and the correct moment formulas. These results are

robust to the choice of estimation window, alternative index and sub-sample investigations. It is worth to

mentioning here that our paper is not only linked to the literature on volatility models and VaR predic-

tion but the correct moment formula of the transformed GCE distribution may have broader interest for

researchers who use expansion-based higher moments.

In a recent study, Wu et al. (2019) propose a Realized GARCH model with GCE error to predict VaR.

However, our paper is fundamentally different for two reasons. 1) The only realized information in their

model is realized volatility. The dynamics of skewness and kurtosis are still driven by daily return alone.

In contrast, additional realized higher moments are used jointly in the framework proposed in our paper.

In fact, the Wu et al. (2019) model is nested in our model when realized higher moments are excluded
4Mauleón (2010) mentioned the distortion for Hermite densities but did not discuss the correction of such distortion.
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and our empirical results highlight the importance of including them. 2) The VaR in Wu et al. (2019) is

directly calculated via CFE with GCE parameters, which is proven in our paper to suffer from significant

distortion. Therefore, the empirical results reported in their paper are unreliable to this extent.

The remainder of this paper is organized as follows. Section 2 introduces our methods, including

the Realized GARCH-RSRK model, the correct formula for higher moments and the VaR prediction

procedure. Section 3 presents the empirical results, including estimated parameters and out-of-sample

VaR forecasting performance. Section 4 provides additional robustness checks. Section 5 concludes

the paper. The proofs of the formulas for moments under squared transformation are relegated to the

Appendix.

2 The methodologies

2.1 The Realized GARCH-RSRK model

The model proposed in this paper is based on the original Realized GARCHmodel (Hansen et al. (2012)):

rt = µ+
√
htzt (1)

h̃t = α0 + α1h̃t−1 + α2R̃V t−1 (2)

R̃V t = ω0 + ω1h̃t + τ(zt) + ut (3)

where rt is the log return and ht is its conditional variance. RVt is the realized variance that is constructed

from intraday returns. Equation (3) is the measurement equation that links realized variance and condi-

tional variance with ut as the measurement error and the variance specific shock. τ(z) = ω2z+ω3(z
2−1)

is the leverage function to capture the asymmetric responds of volatility to return shocks. ω2 < 0 is

compatible with the well documented leverage effect. ỹ is defined as the logarithm of y for simplicity.

Following Leon et al. (2005), we assume that zt follows the transformed GCE distribution with density

function (gce(z)):

gce(zt|st, kt) =
φ(zt)ψ

2(zt)

Γt
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ψ(zt) = 1 +
st
3!

(z3t − 3z) +
kt − 3

4!
(z4t − 6z2t + 3) (4)

Γt = 1 +
st
3!

+
(kt − 3)2

4!

ψ(zt)φ(zt) is the original formula for GCE with the first four moments equal to (0, 1, st, kt). This result is

widely used with GCE in the literature. However, in estimation, a squared transformation is applied to get

the valid (non-negative with unit integration) density function gce(zt|st, kt). In practice, it is clear that st,

kt are linked but not equal to the conditional skewness and kurtosis5. Nevertheless, we can still formulate

the dynamics of those two parameters with realized higher moments6:

st = β0 + β1st−1 + β2RSt−1 RSt = δ0 + δ1st + δ2zt + ηt (5)

k̃t = γ0 + γ1k̃t−1 + γ2R̃Kt−1 R̃Kt = θ0 + θ1k̃t + θ2|zt|+ ϑt (6)

where RS and RK denote the realized skewness and realized kurtosis calculated with intraday returns.

Following Amaya et al. (2015), assuming that we have N intraday returns, the realized higher moments

are defined as:

RSt =
√
N

(
N∑
i=1

r3i,t

)
RV

−3/2
t RKt = N

(
N∑
i=1

r4i,t

)
RV −2t (7)

Following Russo (2009), the return shocks zt−1 that enter higher moment dynamics are zt−1 and |zt−1|

instead of z3t−1 and z4t−1, which reduces protentially extreme values. (ut, ηt, ϑt) is a collection of random

shocks associated with the second to fourth moments, and we assume that they follow a multivariate

normal distribution: 
ut

ηt

ϑt

 ∼ N

0,


σ2
u

σ2
η

σ2
ϑ




The reduced form of Equations (5) and (6) are:

st = β̂0 + β̂1st−1 + β̂2zt−1 + β2ηt−1 (8)
5The correct formula of conditional moments will be discussed in the next section.
6The flexibility of the measurement equations here allows st, kt to be related but not equal to the conditional skewness and

kurtosis.
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k̃t = γ̂0 + γ̂1k̃t−1 + γ̂2|zt−1|+ γ2ϑt−1 (9)

where β̂0 = β0 + β2δ0, β̂1 = β1 + β2δ1, β̂2 = β2δ2, γ̂0 = γ0 + γ2θ1, γ̂1 = γ1 + γ2θ1 and γ̂2 = γ2θ2. If

we do not include information from realized higher moments (i.e. drop η and ϑ in Equation (8) and (9)),

then the dynamics will reduce to:

st = β0 + β1st−1 + δ2zt−1 (10)

k̃t = γ0 + γ1k̃t−1 + θ2|zt−1| (11)

This setup relies on information from daily return alone to update the dynamics of higher moments7. From

here on, we call the mode defined by Equation (1 - 3, 5 and 6) the Realized GARCH-RSRK model (R for

realized) and the model defined by Equation (1 - 3, 10 and 11) is referred as the Realized GARCH-SK

model. A comparison between the two will reveal the information content of realized higher moments.

With the help of realized variance and higher moments, we can directly apply QMLE to estimate

model parameters because {(ut, ηt, ϑt)} are observable. The corresponding likelihood functions are:

Likelihood for Realized GARCH

LRG =
T∑
t=1

(logLrt + logLRVt)

logLrt = −1

2

[
log(2π) + log(ht) + z2t

]
logLRVt = −1

2

[
log(2π) + log(σ2

u) +
u2t
σ2
u

]
Likelihood for Realized GARCH-SK

LRG−SK =
T∑
t=1

(logLGCErt + logLRVt)

logLGCErt = logLrt + log(ψ2(zt))− log(Γ(zt))

7Wu et al. (2019) formulate their model with a linear setting for kurtosis parameter kt. However, we use a log-linear setting
here because it is robust to outliers and it also automatically insures the positivity of kt.
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Likelihood for Realized GARCH-RSRK

LRG−RSRK =
T∑
t=1

(logLGCErt + logLRVt + logLRSt + logLRKt)

logLRSt = −1

2

[
log(2π) + log(σ2

η) +
η2t
σ2
η

]
logLRVt = −1

2

[
log(2π) + log(σ2

u) +
u2t
σ2
u

]
In all cases, T is the number of observations. Following the nesting structure of the three models,

we start with the Realized GARCH and then use the estimates as initial values for Realized GARCH-SK.

The results for the Realized GARCH-SK are used as initial values for the Realized GARCH-RSRK. The

standard errors of the parameters are calculated using the robust standard error, as required for QMLE.

2.2 The moments for transformed density

As mentioned previously, the common practice in GCE-based estimation involves the square transforma-

tion of the original GCE formula ψ(zt)φ(zt) to get a valid density function gce(zt|st, kt). However, this

process will ruin the direct link of st and kt to the third and fourth central moment of zt. Therefore, in this

section we provide the correct moments for gce(zt|st, kt) and show the difference between the commonly

used “higher moments” (st, kt) to the correct higher moments.

As shown in the appendix, the moment of order r about the origin (mr) can be expressed as:

m1,t = E[zt|st, kt] =
st(kt − 3)

3

1

Γt

m2,t = E[z2t |st, kt] = [1 +
7

6
s2t +

3

8
(kt − 3)2]

1

Γt

m3,t = E[z3t |st, kt] = [2st + 4st(kt − 3)]
1

Γt

m4,t = E[z4t |st, kt] = [3 + 2(kt − 3) +
25

2
s2t +

41

8
(kt − 3)]

1

Γt

Therefore, the corresponding r-th order central moment ur,t = E[(zt − E(zt))
r] follows:

u1,t = m1,t u2,t = m2,t −m2
1,t u3,t = m3,t − 3m2,tm1,t + 2m3

1,t
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u4,t = m4,t − 4m3,tm1,t + 6m2,tm
2
1,t − 3m4

1,t

Obviously, u3,t 6= st and u4,t 6= kt. If the model is estimated with transformed density gce(zt|st, kt), the

correct moments will be different from (0, 1, st, kt).

[Insert Figure 1 here]

To illustrate the difference between the higher moments parameter and correct higher moments, We

present the estimated st and kt from Realized GARCH-RSRK model (using CSI300 data) and the corre-

sponding u3,t and u4,t in Figure 1. It is clear that the correct higher moments are significantly different

from st and kt. In particular, the st only covers part of the conditional skewness dynamics and it signif-

icantly underestimates the strong negative cases. The kt also uniformly underestimates the conditional

kurtosis. As for VaR forecasting, such combination will lead to underestimation of VaR at high confi-

dence levels8. In Section 3.3, we provide the results of the VaR forecast with incorrect moments and also

document significant underestimation of VaR in most cases.

2.3 The VaR forecast

Suppose that the return rt+1 has a continuous conditional density function f(rt+1|It). For confidence level

q, the associated VaR of rt+1 satisfies9:∫ −V aRq,t+1

−∞
f(rt+1|It)drt+1 = q

This means that from time t to time t+ 1, the probability of the standardized loss greater than−V aRq,t+1

will not exceed q. For a distribution-based approach where an explicit CDF is available, one can easily

get V aRq,t+1 by inverting the CDF. For the expansion-based method, the explicit formula of CDF is hard

to obtain. One can get V aRq,t+1 by numerical integration and a search algorithm, although at a cost of

high computing power requirement. As an alternative method, we use CFE (Cornish and Fisher (1938))

to approximate V aRq,t+1. Assuming that a random variable z follows the CDF of ϕ(z), the q-th quantile
8The correlation between st and u3,t is 0.99 in level and first difference. The correlation between kt and u4,t is 0.26 in level

and 0.25 in first difference. This suggests that kt even losses a large portion of information regrading to the level and dynamics
of conditional kurtosis.

9In this paper, we refer the 99% confidence level as q = 1% because we formulate models based on return rather than loss.
In addition, when we say higher level of confidence, we mean smaller q.
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of z (ϕ−1z (q)) is linked to the q-th quantile of standardized normal distribution (φ−1(q)) via:

ϕ−1z (q) = φ−1(q) + (φ−1(q)2 − 1)
s

3!
+ (φ−1(q)3 − 3φ−1(q))

k − 3

4!
(12)

given that z is a mean zero, unit variance random variable with skewness of s and kurtosis of k. The

common practice of inserting st and kt directly into Equation (12) for ϕ−1z (q) is only valid when the

parameters are estimated with the original formula. When transformed density is used, the following

procedure will provide the correct VaR forecast:

1. Define the standardized zt+1 as:

z∗t+1 = (zt+1 − u1,t+1)/
√
u2,t+1

The corresponding skewness and kurtosis of z∗t+1 is

u∗3,t+1 = u3,t+1/u
3/2
2,t+1 u∗4,t+1 = u4,t+1/u

4
2,t+1

2. Calculate the q-th quantile of z∗t+1 with Equation (12)

ϕ−1z∗t+1
(q) = φ−1(q) + (φ−1(q)2 − 1)

u∗3,t+1

3!
+ (φ−1(q)3 − 3φ−1(q))

u∗4,t+1−3
4!

3. Restore the q-th quantile of zt+1

ϕ−1zt+1
(q) = u1,t+1 +

√
u2,t+1ϕ

−1
z∗t+1

(q)

4. Restore the VaR of rt+1

V aRt+1 = −(µ+
√
ht+1ϕ

−1
zt+1

(q))

3 Empirical results

3.1 Data and summary statistics

Our empirical results are based on four major Chinese indices: the Shanghai Stock Exchange Composite

Index (SSEC hereafter), the Shenzhen Stock Exchange Component Index (SZSEC hereafter), the China

Securities Index 300 index (CSI300 hereafter) and the SSE 50ETF (50ETF hereafter) that tracks the SSE

50 index. The first two series track the stock price in China’s two stock exchanges accordingly. The

CSI300 index replicates the performance of the top 300 stocks traded in both the Shanghai and Shenzhen
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exchanges. It is also the underlying asset of China’s stock index futures. The 50ETF is China’s first

and most liquid ETF and it covers 50 of the largest blue-chip stocks traded on the Shanghai exchange10.

It is also the underlying asset of China’s only domestically traded exchange-based option for the equity

market. The data ranges from 2005 to 2017, with an average sample size of around 3100 trading days11.

To avoid the effect of market micro-structure noise, realized variance and higher moments are constructed

using 5 minutes intraday returns following Amaya et al. (2015) and others. Table 1 provides the summary

statistics.

[Insert Table 1 here]

It is clear that all of the return series exhibit negative skewness and positive excess kurtosis. The RS

is, on average, slightly positive with a skewness close to zero. This suggests that the RS is relatively

symmetric with respect to zero. The average RK is much larger than 3, which suggests excess kurtosis for

intraday returns. Both RV and RK skew heavily to the right with extreme maximum values. This supports

the log-linear setting for the dynamics of RV and RK.

[Insert Figure 2 here]

In Figure 2, we provide the time series of return and realized measures for CSI300 as an illustration12.

Other than the common volatility clustering shown in return and RV, one can conclude that there is a lower

persistence for RS and a higher persistence of RK.

3.2 Parameter estimates

Table 2 and 3 report the full sample estimation results. For simplicity, we note the Realized GARCH

model as RG, the Realized GARCH-SK model as RG-SK and the Realized GARCH-RSRK model as

RG-RSRK. The tables are divided into three parts: variance equation, skewness equation and kurtosis

equation. The mean equation and constants in each equation are omitted to save space. We provide robust

standard errors in parentheses.
10The 50 stocks constitute around 25% of the Shanghai Stock Exchange’s market capitalization.
11The data for SSEC and SZSEC start at January 4th, 2005, the CSI300 starts at April 8th, 2005 and the 50ETF starts at

February 23rd, 2005. The original dataset is collected from RESSET at 1 min frequency (240 observations per day) and we
eliminate trading days with less than 100 observations due to missing records or the circuit breaker shut-down at January 4th
and January 7th, 2016.

12Other series have similar figures. To save space, we only show CSI300 because it is the only index that is constructed with
stocks from both markets.
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[Insert Table 2 here]

[Insert Table 3 here]

For the variance equation, we report similar results to those in the literature on Realized GARCH type

models13. The highly significant and sizeable14 realized variance parameter α2 suggests the importance

of realized variance in conditional variance modelling and ω1 ≈ 1 justifies the measurement equation.

Variance process for all series are highly persistent because the persistent parameters πv ≡ α1 +α2ω1 are

close to one. Except for the 50ETF, we also document a significant leverage effect through negative ω2

and positive ω3. Through a positive but insignificant ω2, we do not find support for a leverage effect in the

50ETF series15.

For the skewness equation, due to the low persistence feature shown in Figure 2, the autocorrelation

of skewness parameters are weak. The parameter β1 is not significant for most cases and the persistence

parameter for skewness πs ≡ β1 + β2δ1 lies between -0.23 and 0.06 for RG-RSRK model. In contrast, β2
is positive and highly significant across all of the models. This suggests that realized skewness provides

important information in modelling the dynamics of conditional skewness. For the kurtosis equation,

the persistent parameter πk ≡ γ1 + γ2θ1 reports high persistent, which is consistent with Figure 2. The

significant realized kurtosis parameter γ2 suggests the importance of realized kurtosis in modelling the

dynamics of conditional kurtosis.

Due to the difference in magnitude between returns and realized higher moments, we cannot directly

compare parameters β2 and γ2 in RG-RSRK with δ2 and θ2 in RG-SK to assign the relative importance

of daily return based information. Instead, we can use parameters β̂2 and γ̂2 from RG-RSRK’s reduced

form Equation (8) and (9) for comparison because they are both parameters for daily returns. Simple

calculation shows that for all series β̂2 is smaller than δ2 and for all series γ̂2 is much smaller θ2. This

suggests that when the realized higher moment is included, the importance of daily returns is lowered,

especially for kurtosis dynamics.
13Such as Hansen et al. (2012), Tian and Hamori (2015) and others
14“Sizeable” here is used in the sense that α2 serves as the ARCH term in traditional GARCH models. For these models,

the parameters are often reported at a magnitude smaller than 0.1.
15The lack of conventional leverage effect for 50ETF is also documented in Yue et al. (2018) and Huang et al. (2018) using

50ETF option data.

11



3.3 Out-of-sample VaR forecast

The out-of-sample VaR forecast is based on a rolling window estimation with window length of one year

(250 days) and the parameters are updated on a daily basis. Six confidence levels (q) are tested (two

extreme levels at 0.5% and 1.0%; three moderate levels at 1.5%, 2%, 2.5% and a mild level at 5%). A

smaller q requires a higher ability in to model higher moments. We calculate the empirical failure rate

(FER) for each case and then evaluate the statistical significance with the unconditional coverage (Kupiec

(1995)) and conditional coverage (Christoffersen (1998)) test. The EFR is defined based on the event that

VaR fails to bound the return from below Ut = I{rt ≤ −V aRt}:

EFR ≡ π = n1/T =
T∑
t=1

Ut/T

For given confidence level q, the ideal model should yield π = q. Because Ut follows a Bernoulli distribu-

tion, Kupiec (1995) proposed a simple test of the correct probability of failure of a VaR forecast through

likelihood ratio:

LRuc = 2 ln

(
πn1(1− π)T−n1

qn1(1− q)T−n1

)
The statistics follow aχ2(1) distribution and rejection indicates significant over (π < q) or underestimation

(π > q) of risk. While the unconditional coverage test only focuses on the probability of failure, the

conditional coverage test also takes the independence of each failure into account by augmenting the

unconditional coverage LR with:

LRcc = LRuc + 2 ln

(
πn01
01 (1− π01)n00πn11

11 (1− π11)n10

πn01+n11(1− π)n00+n10

)

where nij is the number of cases featuring Ut = i followed by Ut+1 = j and πj1 = nj1/(nj0 + nj1). The

statistics follow an χ2(2) distribution under null hypothesis.

Table 4 provides EFR with statistical significance evaluated by unconditional coverage test in panel A

and the p-value of conditional coverage test in panel B for all four series.

[Insert Table 4 here]

For the benchmark RG model, the statistics document a significantly higher EFR for all extreme and
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moderate confidence levels (with a exception of 2.5% level for 50ETF). Because a higher EFR than the

proposed level indicates an underestimation of VaR, this result confirms the importance of non-Gaussian

distribution for VaR prediction. As for the higher moments models, in most cases the RG-RSRK model

outperformed RG-SK model with smaller difference of EFR relative to corresponding q. Unconditional

coverage test rejects RG-SK for all series at extreme levels, and also at some moderate levels. Although

the EFR for RG-RSRK indicates overestimation at mild level compare to others occasionally, the test fails

to reject RG-RSRK for all cases. The major difference between the two models is that the RG-RSRK

includes additional information from realized higher moments, which suggests the importance of this

information in modelling the dynamic higher moments for extreme tails. The conditional coverage test

yields similar results. RG-RSRK is the only model that passes the test for extreme and moderate levels

for all series.

As a comparison, Table 5 uses the incorrect yet wildly used “moments” (0, 1, st, kt) instead of the

correct moments to calculate VaR forecast. Other than the moments used, Table 5 shares the same setups

as Table 4.

[Insert Table 5 here]

It is clear that for all extreme and moderate cases, a large underestimation of risk is reported with

large deviation between EFR and q, and also highly significant rejections by unconditional coverage test.

Interestingly, for some cases at the 5% level, themodels do occasionally pass the test. This is not surprising

because amild level is not heavily reliant on highermoments which leaves enough room for errors in higher

moments calculation. As mentioned in the introduction, the mild level is far from being enough for risk

management under the Basel framework.

4 Robustness check

4.1 Alternative window length

To check whether our results depend on the choice of estimation window, in this section we perform our

out-of-sample investigation with two years (500 days) and three years (750 days) rolling window16. In
16By doing this, we have at least 10 years of data for performance evaluation. Due to the difference in window length, panel

A is evaluated with 11 years data while panel B is evaluated with 10 years data. The results are similar when we use the last
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line with Table 4, six confidence levels are tested. The results are listed in Table 6. We only report the

EFR results with unconditional coverage test to save space.

[Insert Table 6 here]

The main results of VaR forecast using one year rolling window remain under alternative window

lengths. For most cases, we find that the RG-RSRK model outperforms the other two models especially

for extreme confidence levels. The RG significantly underestimates risk for all four series at moderate and

extreme levels, while in most cases RG-SK significantly underestimates risk at extreme level. The only

rejection for RG-RSRK is CSI300 with an estimation using 750 day rolling window. The RG-RSRK also

passes the test for all series and levels. In short, the superior performance of RG-RSRK in VaR forecasting

does not depend on the estimation windows, especially for moderate and extreme levels.

4.2 Split sample results

To check if our results depend on a specific sample period, we evenly split our out-of-sample period into

two sub-samples: 2006-2011 and 2012-201717. The results are listed in Table 7. Again, only EFR and

unconditional coverage test are reported to save space.

[Insert Table 7 here]

Similar to our main findings, the RG-RSRK model outperforms the other two models especially over

extreme confidence levels. RG is rejected at all moderate and extreme levels for most cases and in both

samples. As expected, the RG-SK model performs better than RG, but is still rejected for extreme levels

for considerable times. Rejection for RG-RSRK only happens at the 5% level for the second sub-sample.

Therefore, we conclude that the superior performance of RG-RSRK in VaR forecasting does not depend

on a specific sample, especially for moderate and extreme levels.

4.3 Alternative series

We test four representative indices series for the Chinese equity market. This section provides some addi-

tional results with US data to check whether our findings are limited to a specific market. We use the S&P

10 years data to evaluate panel A.
17Each sample has roughly 1500 observations. We do not pursue a sub-sample with a short length because we want to test

extreme levels (even with 1500 observations, the expected number of failures is less than 10 for the 0.5% level).
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500 ETF data ranging from 2007-2017 to preform our out-of-sample investigation on VaR forecasting18.

The results are given in Table 8. Both full and subsample results under unconditional and conditional

coverage test are reported.

[Insert Table 8 here]

We find a similar pattern to the results based on Chinese data for EFR and statistical significance over

different models. The RG-RSRK passed both tests under all levels and sample periods, while RG-SK fails

at extreme levels and RG fails at extreme and moderate levels. These findings suggest that the superior

performance of RG-RSRK in VaR forecasting does not depend on a specific market.

5 Conclusion

In this paper, we extend the Realized GARCHmodel to jointly model realized variance and realized higher

moments for dynamic higher moments modeling of financial returns. With the proposed framework, we

discuss the information content of realized higher moments through the lens of the VaR forecast. Our

empirical results indicate that the new model significantly outperforms the traditional models in terms of

the extreme VaR forecasting. This highlights the importance of realized higher moments in modeling the

dynamics of extreme tails. Our empirical results also highlight a significant distortion between correct

moments and GCE moment parameters as a result of the squared transformation applied in estimation.

The corrected formulas for moments under such transformation are derived and the importance of using

the correct moments over the original moments parameters in GCE is supported by real data. In addition,

our results are robust to different estimation windows, sample periods and index series from both Chinese

and US markets.
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6 Appendix

The formulas of correct moments can be obtained by expanding the squared transformation of GCE den-

sity:

g(z) =
1

Γ
φ(z)[1 +

s

3!
(z3 − 3z) +

k − 3

4!
(z4 − 6z2 + 3)]

2

=
1

Γ
φ(z)[1 +

s2

36
(z6 − 6z4 + 9z2) +

(k − 3)2

242
(z8 − 12z6 + 42z4 − 36z2 + 9)

+
(k − 3)s

72
(z7 − 9z5 + 21z3 − 9z) +

k − 3

12
(x4 − 6z2 + 3) +

s

3
(z3 − 3z)]

Where φ(z) is the standard normal density function, therefore:

∫
zrφ(z)dz =

 0 if r is odd

(r − 1)!!, if r is even

The expected expectation is:

E[z] =

∫
zg(z)dz

=
1

Γ

∫
z[1 +

s2

36
(z6 − 6z4 + 9z2) +

(k − 3)2

242
(z8 − 12z6 + 42z4 − 36z2 + 9)]

+
(k − 3)s

72
(z7 − 9z5 + 21z3 − 9z) +

k − 3

12
(z4 − 6z2 + 3) +

s

3
(z3 − 3z)]φ(z)dz

=
1

Γ

∫
[z +

s2

36
(z7 − 6z5 + 9z3) +

(k − 3)2

242
(z9 − 12z7 + 42z5 − 36z3 + 9z)

+
(k − 3)s

72
(z8 − 9z6 + 21z4 − 9z2) +

k − 3

12
(z5 − 6z3 + 3z) +

s

3
(z4 − 3z2)]φ(z)dz

=
1

Γ
[0 + 0 + 0 +

(k − 3)s

72
(105− 9 ∗ 15 + 21 ∗ 3− 9 ∗ 1) + 0 +

s

3
(3− 3 ∗ 1)]

=
1

Γ

(k − 3)s

72
∗ 24 =

(k − 3)s

3

1

Γ

The second moment is:

E[z2] =

∫
z2g(z)dz
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=
1

Γ

∫
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s2

36
(z6 − 6z4 + 9z2) +

(k − 3)2
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The third moment is:

E[z3] =
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z3g(z)dz

=
1

Γ
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Figure 1: The difference between the higher moments parameter and correct higher moments
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Table 1: Summary statistic

Mean Median STD Skew Ex.Kurt Min Max

SSEC

R 0.03 0.09 1.69 -0.54 4.44 -9.20 9.00
RV 2.02 0.97 3.21 5.27 42.11 0.07 43.57
RS 0.12 0.12 1.00 0.03 1.44 -4.86 4.68
RK 5.36 4.66 2.65 4.00 24.44 2.35 32.24

SZSEC

R 0.04 0.08 1.90 -0.48 2.98 -9.75 9.25
RV 2.57 1.43 3.73 5.40 46.32 0.05 57.83
RS 0.14 0.11 1.03 0.18 0.87 -4.51 5.14
RK 5.55 4.80 2.65 3.49 19.28 2.69 35.43

CSI300

R 0.04 0.10 1.80 -0.52 3.86 -9.68 8.92
RV 2.28 1.16 3.52 5.39 44.67 0.06 47.72
RS 0.13 0.10 1.02 0.15 1.11 -4.79 4.90
RK 5.47 4.76 2.67 3.66 20.58 2.45 33.07

50ETF

R 0.04 0.00 1.91 -0.15 5.42 -11.19 10.52
RV 2.14 1.16 3.46 6.53 60.60 0.06 48.72
RS 0.18 0.19 1.06 0.07 2.76 -6.33 8.12
RK 5.60 4.75 3.26 6.34 73.48 2.37 66.00

Note: Ex.Kurt is excess kurtosis which is defined as the kurtosis minus
3. Other than Skew and Kurtosis, numbers for return (R) are reported in
percentage and those for RV are multiplied by 104 accordingly. SSEC:
Shanghai Stock Exchange Composite Index; SZSEC: Shenzhen Stock Ex-
change Component Index; CSI300: CSI 300 Index; 50ETF: SSE 50 ETF.
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Table 2: In sample parameter estimation

SSEC SZSEC
RG RG-SK RG-RSRK RG RG-SK RG-RSRK

Variance Equation

α1 0.581 0.606 0.570 0.595 0.591 0.605
(0.03) (0.02) (0.03) (0.03) (0.03) (0.03)

α2 0.377 0.390 0.437 0.337 0.341 0.353
(0.03) (0.02) (0.04) (0.03) (0.03) (0.03)

ω1 1.046 0.959 0.927 1.123 1.120 1.049
(0.03) (0.02) (0.04) (0.05) (0.07) (0.05)

ω2 -0.081 -0.073 -0.077 -0.097 -0.093 -0.092
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

ω3 0.084 0.077 0.078 0.090 0.084 0.083
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Skewness Equation

β1 -0.481 -0.221 -0.246 -0.004
(0.09) (0.10) (0.38) (0.03)

β2 0.085 0.107
(0.03) (0.02)

δ1 -0.124 -0.636
(0.04) (0.18)

δ2 0.080 0.571 0.072 0.620
(0.02) (0.02) (0.02) (0.02)

Kurtosis Equation

γ1 0.861 0.930 0.951 0.971
(0.02) (0.06) (0.10) (0.01)

γ2 0.005 0.008
(0.00) (0.00)

θ1 8.257 2.702
(6.14) (0.76)

θ2 0.125 0.055 -0.007 0.046
(0.01) (0.01) (0.01) (0.01)

LogLR 8,946 8,954 9,047 8,443 8,526 8,529
LogLR,RV 6,672 6,679 6,744 6,203 6,286 6,289
LogLAll 1,942 1,423

Note: Robust standard error in parentheses. µ, α0, ω0, β0, δ0, γ0, θ0 are omitted to save space. LogLAll is
the loglikelihood for (R,RV,RS,RK) which is only available for RG-RSRK.
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Table 3: In sample parameter estimation (cont.)

CSI300 50ETF
RG RG-SK RG-RSRK RG RG-SK RG-RSRK

Variance Equation

α1 0.584 0.582 0.593 0.644 0.667 0.646
(0.03) (0.03) (0.03) (0.03) (0.02) (0.03)

α2 0.346 0.379 0.368 0.256 0.257 0.254
(0.03) (0.04) (0.03) (0.03) (0.02) (0.03)

ω1 1.125 1.035 1.041 1.298 1.218 1.299
(0.06) (0.10) (0.06) (0.10) (0.04) (0.12)

ω2 -0.084 -0.080 -0.081 0.020 0.017 0.018
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

ω3 0.068 0.062 0.062 0.037 0.031 0.035
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Skewness Equation

β1 -0.078 0.114 -0.378 0.046
(0.40) (0.10) (0.08) (0.22)

β2 0.099 0.086
(0.02) (0.02)

δ1 -0.543 -0.771
(0.19) (0.23)

δ2 0.085 0.581 0.162 0.562
(0.04) (0.02) (0.02) (0.02)

Kurtosis Equation

γ1 0.836 0.968 0.822 0.974
(0.04) (0.01) (0.02) (0.01)

γ2 0.007 0.009
(0.00) (0.00)

θ1 3.800 2.336
(1.61) (0.85)

θ2 0.107 0.050 0.086 0.060
(0.01) (0.01) (0.01) (0.01)

LogLR 8,527 8,584 8,637 8,180 8,256 8,410
LogLR,RV 6,229 6,284 6,337 5,757 5,829 5,987
LogLAll 1,496 711

Note: Robust standard error in parentheses. µ, α0, ω0, β0, δ0, γ0, θ0 are omitted to save space. LogLAll is
the loglikelihood for (R,RV,RS,RK) which is only available for RG-RSRK.
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Table 4: Out-of-sample VaR forecast evaluation (window = 250 days)

q RG RG-SK RG-RSRK RG RG-SK RG-RSRK

Panel A: Unconditional Coverage Test (EFR %)

SSEC SZSEC

0.5 1.45*** 1.28*** 0.66 1.66*** 0.90*** 0.73
1.0 2.07*** 1.87*** 1.14 2.32*** 1.38* 1.24
1.5 2.83*** 2.28*** 1.52 2.73*** 1.97** 1.80
2.0 3.11*** 2.87*** 2.11 3.28*** 2.56** 2.35
2.5 3.52*** 3.21** 2.63 3.60*** 3.25** 2.87
5.0 4.84 5.01 4.59 5.39 5.08 5.01

CSI300 50ETF

0.5 1.48*** 0.92*** 0.53 1.20*** 0.88*** 0.53
1.0 2.12*** 1.34* 0.95 1.73*** 1.44** 1.23
1.5 2.82*** 1.69 1.27 2.04** 2.01** 1.73
2.0 3.14*** 2.22 1.97 2.47* 2.40 2.29
2.5 3.46*** 2.79 2.50 3.00 2.92 2.68
5.0 4.94 4.90 4.51 4.37 4.86 4.65

Panel B: Conditional Coverage Test (p-value)

SSEC SZSEC

0.5 0.00*** 0.00*** 0.46 0.00*** 0.02** 0.23
1.0 0.00*** 0.00*** 0.52 0.00*** 0.13 0.28
1.5 0.00*** 0.00*** 0.93 0.00*** 0.14 0.44
2.0 0.00*** 0.01*** 0.89 0.00*** 0.12 0.37
2.5 0.00*** 0.06* 0.91 0.00*** 0.05** 0.27
5.0 0.92 0.65 0.38 0.29 0.59 0.88

CSI300 50ETF

0.5 0.00*** 0.01** 0.90 0.00*** 0.03** 0.90
1.0 0.00*** 0.13 0.75 0.00*** 0.05** 0.31
1.5 0.00*** 0.31 0.37 0.08* 0.03** 0.62
2.0 0.00*** 0.17 0.32 0.19 0.06* 0.51
2.5 0.01*** 0.63 0.16 0.24 0.21 0.83
5.0 0.50 0.92 0.35 0.14 0.47 0.09*

Note: Panel A reports the empirical failure rate (EFR) with stars associated with the unconditional coverage test
(Kupiec (1995)). Panel B reports the p-values of the conditional coverage test (Christoffersen (1998)). For both
panels, ***, **, * indicate significance at 1%, 5% and 10% accordingly.
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Table 5: VaR forecast with incorrect moments (window = 250 days)

q 0.5 1.0 1.5 2.0 2.5 5.0

SSEC RG-SK 1.97*** 2.63*** 3.21*** 3.59*** 4.04*** 5.98**
RG-RSRK 1.14*** 2.14*** 2.63*** 3.07*** 3.49*** 5.49

SZSEC RG-SK 1.52*** 2.28*** 2.80*** 3.53*** 3.98*** 5.95**
RG-RSRK 1.38*** 2.11*** 2.77*** 3.22*** 3.73*** 5.81*

CSI300 RG-SK 1.52*** 2.05*** 2.75*** 3.31*** 3.63*** 5.68
RG-RSRK 1.06*** 1.80*** 2.57*** 3.10*** 3.46*** 5.29

50ETF RG-SK 1.27*** 1.87*** 2.36*** 3.07*** 3.38*** 5.18
RG-RSRK 1.20*** 1.73*** 2.22*** 3.07*** 3.38*** 5.07

Note: Table reports the empirical failure rate (EFR) with stars associated with the unconditional coverage
test (Kupiec (1995)). ***, **, * indicate significance at 1%, 5% and 10% accordingly. This table use
incorrect moments (0, 1, st, kt) instead of the correct moments (u1t, u2t, u3t, u4t) to formulate VaR.
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Table 6: VaR forecast with alternative window length

q RG RG-SK RG-RSRK RG RG-SK RG-RSRK

Panel A: Window Length = 500 days

SSEC SZSEC

0.5 1.40*** 1.51*** 0.45 1.51*** 0.76* 0.49
1.0 2.16*** 2.04*** 1.10 2.16*** 1.14 1.10
1.5 2.76*** 2.53*** 1.47 2.61*** 1.85 1.55
2.0 3.25*** 3.18*** 1.89 2.95*** 2.31 1.85
2.5 3.52*** 3.44*** 2.42 3.44*** 2.73 2.50
5.0 4.99 5.44 4.57 5.37 4.77 4.81

CSI300 50ETF

0.5 1.24*** 0.81** 0.43 1.31*** 0.81** 0.73
1.0 2.28*** 1.39* 1.04 1.85*** 1.31 1.04
1.5 2.71*** 1.89 1.43 2.16*** 1.70 1.74
2.0 2.94*** 2.28 1.74 2.47* 2.40 2.13
2.5 3.05* 2.67 2.24 2.86 2.67 2.47
5.0 5.26 4.64 4.41 4.83 4.79 4.48

Panel B: Window Length = 750 days

SSEC SZSEC

0.5 1.46*** 1.38*** 0.54 1.51*** 0.59 0.54
1.0 1.92*** 2.09*** 1.09 2.09*** 1.09 1.25
1.5 2.46*** 2.63*** 1.50 2.51*** 1.46 1.59
2.0 3.09*** 2.84*** 2.00 2.84*** 2.13 2.09
2.5 3.38*** 3.26** 2.46 3.26** 2.34 2.42
5.0 4.72 5.30 4.30 5.18 4.60 4.47

CSI300 50ETF

0.5 1.33*** 0.90** 0.51 1.33*** 0.73 0.47
1.0 2.01*** 1.28 0.94 1.71*** 1.15 1.03
1.5 2.31*** 1.88 1.46 2.14** 1.71 1.67
2.0 2.74** 2.44 1.80 2.61** 1.97 1.97
2.5 2.95 2.74 2.35 2.91 2.57 2.52
5.0 4.88 4.49 4.02** 4.53 4.23* 4.36

Note: Panel A reports the empirical failure rate (EFR) using 500 days (2 years) rolling window and panel B
reports the EFR using 750 days (3 years). Stars are associated with the unconditional coverage test (Kupiec
(1995)). ***, **, * indicate significance at 1%, 5% and 10% accordingly.
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Table 7: VaR forecast evaluated with evenly split samples

q RG RG-SK RG-RSRK RG RG-SK RG-RSRK

SSEC(2006-2011) SSEC(2012-2017)

0.5 1.53*** 1.25*** 0.70 1.37*** 1.30*** 0.62
1.0 2.09*** 1.88*** 1.32 2.06*** 1.85*** 0.96
1.5 3.13*** 2.44*** 1.60 2.54*** 2.13* 1.44
2.0 3.69*** 3.20*** 2.02 2.54 2.54 2.19
2.5 4.31*** 3.55** 2.64 2.74 2.88 2.61
5.0 5.71 5.64 5.22 3.98* 4.39 3.98*

SZSEC(2006-2011) SZSEC(2012-2017)

0.5 1.67*** 1.11*** 0.63 1.65*** 0.69 0.82
1.0 2.51*** 1.53* 1.25 2.13*** 1.24 1.24
1.5 3.06*** 2.09* 1.74 2.41*** 1.86 1.86
2.0 3.69*** 2.57 2.51 2.89** 2.54 2.20
2.5 4.11*** 3.34* 2.99 3.09 3.16 2.75
5.0 5.78 5.43 5.64 5.02 4.74 4.40

CSI300(2006-2011) CSI300(2012-2017)

0.5 1.60*** 1.02** 0.51 1.37*** 0.82 0.55
1.0 2.47*** 1.23 1.09 1.78*** 1.44 0.82
1.5 3.34*** 1.67 1.38 2.33** 1.71 1.17
2.0 3.85*** 2.18 2.10 2.47 2.26 1.85
2.5 4.14*** 2.98 2.61 2.81 2.61 2.40
5.0 6.17* 5.52 5.37 3.77** 4.32 3.70**

50ETF(2006-2011) 50ETF(2012-2017)

0.5 1.30*** 0.94** 0.65 1.10*** 0.82 0.41
1.0 1.95*** 1.59** 1.23 1.51* 1.31 1.24
1.5 2.46*** 2.17* 1.88 1.65 1.86 1.58
2.0 2.82** 2.75* 2.60 2.13 2.06 1.99
2.5 3.54** 3.40** 3.11 2.47 2.47 2.27
5.0 5.13 5.57 5.28 3.64** 4.19 4.05*

Note: This table reports the empirical failure rate (EFR). Stars are associated with the unconditional coverage
test (Kupiec (1995)). ***, **, * indicate significance at 1%, 5% and 10% accordingly.
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Table 8: VaR forecast using S&P500 ETF

Unconditional coverage (EFR%) Conditional coverage (p-value)

q RG RG-SK RG-RSRK RG RG-SK RG-RSRK

Panel A: Full sample: 2008-2017

0.5 1.71*** 1.07*** 0.68 0.00*** 0.00*** 0.44
1.0 2.30*** 1.75*** 0.99 0.00*** 0.00*** 0.78
1.5 2.90*** 2.18*** 1.75 0.00*** 0.03** 0.59
2.0 3.34*** 2.70** 2.14 0.00*** 0.05** 0.87
2.5 3.81*** 3.10* 2.58 0.00*** 0.17 0.82
5.0 5.92** 5.68 5.28 0.10* 0.22 0.81

Panel B: sub-sample: 2008-2012

0.5 1.67*** 1.35*** 0.71 0.00*** 0.00*** 0.56
1.0 2.46*** 1.75** 0.87 0.00*** 0.04** 0.82
1.5 3.02*** 2.07 1.75 0.00*** 0.17 0.53
2.0 3.57*** 2.62 2.07 0.00*** 0.13 0.57
2.5 4.29*** 3.10 2.78 0.00*** 0.12 0.30
5.0 6.75*** 5.96 5.72 0.02** 0.23 0.52

Panel C: sub-sample: 2013-2017

0.5 1.75*** 0.79 0.64 0.00*** 0.37 0.77
1.0 2.14*** 1.75** 1.11 0.00*** 0.04** 0.79
1.5 2.78*** 2.30** 1.75 0.00*** 0.09* 0.55
2.0 3.10*** 2.78* 2.22 0.03** 0.18 0.77
2.5 3.34* 3.10 2.38 0.17 0.34 0.92
5.0 5.08 5.40 4.85 0.98 0.76 0.97

Note: The left-hand panel reports the empirical failure rate (EFR) with stars associated with the unconditional
coverage test (Kupiec (1995)). The right-hand panel reports the p-value of conditional coverage test (Christof-
fersen (1998)). For both panels, ***, **, * indicate significance at 1%, 5% and 10% accordingly.
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