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1 Introduction

The well-known Chicago Board Options Exchange (CBOE) VIX index, computed from a panel of options

prices, is a model-free measure of expected average variance for the next 30 days under the risk-neutral

measure. The index has become the benchmark for stock market volatility, and is used as the “investor

fear gauge” for financial market practitioners. With the launch of VIX futures in 2004 and VIX options

in 2006, volatility derivatives have received increasing attention from the market, as the average daily

trading volume of VIX futures and VIX options have increased by over 25 and 137 times, respectively,

in the last decade. VIX-linked products essentially create a volatility market that enables investors to

trade volatility directly, as with equity or fixed income securities1. In addition to the VIX index that

measures 1-month implied volatility, the CBOE has also launched a series of implied volatility indices

across different maturities in recent years, to reflect the volatility term structure under the risk-neutral

measure. The CBOE S&P 500 3-month Volatility Index (Ticker:VXV) was launched in November 2007.

The CBOE Mid-Term Volatility Index (Ticker: VXMT), a measure of the expected volatility of the

S&P 500 index over a 6-month time horizon, was launched in November 20132. The whole family of

CBOE VIX indices and VIX futures provides rich information for the implied volatility term structure

of the stock market.

Zhang and Zhu (2006) was the first to attempt to price VIX futures based on the classic continuous-

time Heston model. The importance of the volatility term structure in VIX futures pricing was illus-

trated in Zhu and Zhang (2007). Lin (2007) extended the model with simultaneous jumps in both

1Luo and Zhang (2014) provide a good discussion of the market for volatility derivatives.
2CBOE reported historical data of VXMT back to January 2008.
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returns and volatility to price VIX futures with approximation formulas. Adding jumps to the mean-

reverting process was also investigated by Sepp (2008), Zhang et al. (2010), and Zhu and Lian (2012),

etc. Under the discrete-time Heston-Nandi GARCH framework, Wang et al. (2017) derived the pricing

formulas for both VIX and VIX futures. Following the ideas of Hao and Zhang (2013) and Kanniainen

et al. (2014), the model parameters were jointly estimated, as the log-likelihoods of both the stock

returns (realized volatility if required) and the VIX information were included in the objective function.

The empirical results suggested that including the risk-neutral information in the objective function

improves parameter estimation and yields better pricing performance.

The seminal work of Andersen et al. (2003) proved the realized volatility computed from high

frequency intra-day returns to be an accurate measure of the latent volatility process. Volatility models

with the realized measures have attracted great attention in recent years. Leading models include the

heterogeneous autoregressive (HAR) model(Corsi (2009)), the MEM model(Engle and Gallo (2006)),

the HEAVY model(Shephard and Sheppard (2010)), and the Realized GARCH model(Hansen et al.

(2012)). Among these models, the HAR model is receiving increasing attention in volatility modeling

and financial applications due to its estimation simplicity and good forecasting performance. The model

introduces a cascade structure into the linear autoregression framework, in which the current daily

realized variance is regressed on the lagged realized variance over the previous day, week, and month.

Empirical studies show that the HAR model provides a parsimonious but effective approximation of the

long memory process of volatility3.

Most studies focus on the performance of the HAR model and its extensions into forecasting volatility

or realized volatility under the physical measure, but Corsi et al. (2013) and Majewski et al. (2015) have

shown that the HAR framework is also capable of matching the volatility information implied by option

prices, i.e., under the risk-neutral measure. Corsi et al. (2013) extended the HAR model with a Gamma

innovation (the Heterogeneous Autoregressive Gamma, HARG) and specified an exponentially affine

pricing kernel. Majewski et al. (2015) further developed the model by allowing more flexible leverage

components (LHARG) and derived the analytical pricing formula for European options. In this study,

we extend the LHARG model by including lagged quarterly and yearly realized variance into the RV

dynamics, and derive the analytical formulas for the VIX term structure in addition to the VIX futures.

We find that adding these two terms enhances the model’s ability to capture volatility dynamics over

longer horizons, and it is also empirically important for the purpose of pricing VIX term structures and

VIX futures. Compared with the pricing formula under the classic Heston-Nandi GARCH model in

Wang et al. (2017), our proposed model provides superior performance in pricing VIX term structures

and VIX futures. The improvement is more pronounced during high volatility periods when the realized

volatility provides more accurate information about underlying volatility than the squared daily returns.

3See Corsi et al. (2012) for a review of this model.
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A rolling window out-of-sample pricing analysis is also conducted and the main empirical findings are

robust.

The remainder of the paper is organized as follows. Section 2 introduces the model setup and derives

the pricing formula for VIX term structures and VIX futures. In Section 3, the model estimation using

different datasets is discussed. Section 4 presents the empirical results, and Section 5 concludes.

2 THE MODEL

2.1 LHARG Model and Risk Neutralization

In this study, we denote the original LHARG model of Majewski et al. (2015) as LHARG-M, as it

contains volatility components up to the monthly average. We extend the model to LHARG-Q by

including the quarterly average (63 trading days), and to LHARG-Y by including both the quarterly

and the yearly average (252 trading days). We use LHARG to represent all of these if a property holds

for all three models. The LHARG-Y model is specified as

Rt+1 = r + λRVt+1 −
1

2
RVt+1 +

√
RVt+1εt+1, εt+1 ∼ i.i.dN(0, 1) (2.1)

RVt+1|Ft ∼ Γ(δ,Θ(RVt,Lt), θ)

Θ(RVt,Lt) = d+βdRV
(d)
t + βwRV

(w)
t + βmRV

(m)
t + βqRV

(q)
t + βyRV

(y)
t +

αd`
(d)
t + αw`

(w)
t + αm`

(m)
t + αq`

(q)
t + αy`

(y)
t

We define the components as follows:

RV
(d)
t = RVt `

(d)
t = ε2t − 1− 2γεt

√
RVt

RV
(w)
t =

1

4

4∑
i=1

RVt−i `
(w)
t =

1

4

4∑
i=1

(ε2t−i − 1− 2γεt−i
√
RVt−i)

RV
(m)
t =

1

17

21∑
i=5

RVt−i `
(m)
t =

1

17

21∑
i=5

(ε2t−i − 1− 2γεt−i
√
RVt−i)

RV
(q)
t =

1

41

62∑
i=22

RVt−i `
(q)
t =

1

41

62∑
i=22

(ε2t−i − 1− 2γεt−i
√
RVt−i)

RV
(y)
t =

1

189

251∑
i=63

RVt−i `
(y)
t =

1

189

251∑
i=63

(ε2t−i − 1− 2γεt−i
√
RVt−i)
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Rt, RVt, and r denote the log-return of the underlying index, the realized volatility, and the risk-free

rate, respectively. λ captures the equity risk premium. The conditional distribution of RVt+1 features

a noncentral gamma distribution (denoted as Γ(·)) with shape and scale parameters equal to δ and θ

respectively. The location parameter is given by Θ(RVt,Lt). Such an autoregressive gamma framework

is particularly useful for modeling a non-negative time series, and was thoroughly studied in Gourieroux

and Jasiak (2006). Obviously LHARG-Q is nested in LHARG-Y, and the original LHARG-M can be

recovered by setting βq, βy, αq, and αy to zero.

The specification of the leverage function was inspired by Christoffersen et al. (2008) and enriched

by a heterogeneous structure4. Unlike the Heston-Nandi leverage function, Θ(RVt,Lt) is no longer

guaranteed to be positive. However, Majewski et al. (2015) provided numerical evidence that the

analytical results can effectively describe a regularized version of the model.

According to the properties of the noncentral gamma distribution, the conditional expectation of

RVt+1 in the physical (P ) measure is

EPt [RVt+1] = θδ + θΘ(RVt,Lt)

= θδ + θd+ θβdRV
(d)
t + θβwRV

(w)
t + θβmRV

(m)
t + θβqRV

(q)
t + θβyRV

(y)
t +

θαd`
(d)
t + θαw`

(w)
t + θαm`

(m)
t + θαq`

(q)
t + θαy`

(y)
t

Therefore, the stationary condition for the LHARG-Y model is

πP = θ(βd + βw + βm + βq + βy) < 1

The unconditional expectation of RV under the P-measure is given by

EP [RVt] =
θδ + θd

1− θ(βd + βw + βm + βq + βy)

When θδ + θd is positive and the stationary condition is satisfied, the unconditional variance will be

positive.

We can rewrite the formula Θ(RVt,Lt) as

Θ(RVt,Lt) = d+

p∑
i=1

βiRVt+1−i +

q∑
j=1

αj`t+1−j

4Majewski et al. (2015) denoted this leverage function as “Zero-Mean” and found it to have the best option pricing
performance, because its less-constrained leverage allows the process to explain a larger fraction of the skewness and
kurtosis observed in real data.
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where

`t+1−j = ε2t+1−j − 1− 2γεt+1−j
√
RVt+1−j

RVt ≡ (RVt, RVt−1, ..., RVt+1−p) Lt ≡ (`t, `t−1, ..., `t+1−q)

βi =



βd i = 1

βw/4 2 ≤ i ≤ 5

βm/17 6 ≤ i ≤ 22

βq/41 23 ≤ i ≤ 63

βy/189 64 ≤ i ≤ 252

αj =



αd j = 1

αw/4 2 ≤ j ≤ 5

αm/17 6 ≤ j ≤ 22

αq/41 23 ≤ j ≤ 63

αy/189 64 ≤ j ≤ 252

Following Majewski et al. (2015), we specify the following exponentially affine stochastic discount factor,

Mt,t+1 =
exp(−v1tRVt+1 − v2tRt+1)

EPt [exp(−v1tRVt+1 − v2tRt+1)]

where v1t is the price of the realized volatility risk and v2t is the price of the equity risk. The non-

arbitrage condition requires that exp(r) = EQt (exp(Rt+1)). With the above stochastic discount factor,

we have exp(r) = EPt (Mt+1 exp(Rt+1)), which implies v2t = λ. We assume a constant price of realized

volatility risk, v1t ≡ v1, so that the structure of the physical dynamics is preserved in the corresponding

risk-neutral (Q) dynamics5:

Rt+1 = r − 1

2
RVt+1 +

√
RVt+1ε

∗
t+1, ε∗t+1 ∼ i.i.dN(0, 1)

RVt+1|Ft ∼ Γ(δ∗,Θ∗(RVt,L
∗
t ), θ∗)

Θ∗(RVt,L
∗
t ) = d∗ +

p∑
i=1

β∗iRVt+1−i +

q∑
j=1

α∗j`
∗
t+1−j

The risk-neutral parameters are linked to the physical parameters through

β∗i = [βi + αi(2γλ+ λ2)]/(1 + θy∗), α∗j = αj/(1 + θy∗)

δ∗ = δ, d∗ = d/(1 + θy∗), θ∗ = θ/(1 + θy∗), γ∗ = γ + λ

ε∗t = εt + λ
√
RVt

`∗t+1−j = ε∗2t+1−j − 1− 2γ∗ε∗t+1−j
√
RVt+1−j

5This assumption is commonly cited in the literature, such as in Corsi et al. (2013), Christoffersen et al. (2014).
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L∗
t ≡ (`∗t , `

∗
t−1, ..., `

∗
t+1−q)

where y∗ = (λ− 1/2)2/2 + v1− 1/8. The corresponding stationary and positivity condition under Q are

πQ = θ∗(β∗d + β∗w + β∗m + β∗q + β∗y) < 1 θ∗δ∗ + θ∗d∗ > 0

2.2 The VIX Pricing Formula

In line with Hao and Zhang (2013), the VIX can be calculated as the annualized arithmetic average of

the expected daily variance over the following month under the risk-neutral measure:(
VIXt

100

)2

=
1

n

n∑
k=1

EQt [RVt+k]×AF (2.2)

where AF is the annualizing factor that converts the daily variance into annualized variance. The

implied volatility term structure at time t with the maturity of n is defined as the average expected

volatility over the next n trading days:

Vt(n) =
1

n

n∑
k=1

EQt [RVt+k] (2.3)

Assuming that there are 22 trading days in a month and 252 trading days in a year, the model-implied

VIX, VXV, and VXMT are6:

VIXt = 100
√

252Vt(22) (2.4)

VXVt = 100
√

252Vt(63) (2.5)

VXMTt = 100
√

252Vt(126) (2.6)

PROPOSITION 1. If the return of S&P500 follows the LHARG model, then the model-implied volatil-

ity term structure at time t can be presented by a weighted average of the long-run variance µQ and

lagged RV s with some zero mean leverage adjustments:

Vt(n) = (1−
p∑
i=1

ξ̄i)µ
Q +

p∑
i=1

ξ̄iRVt+1−i +

q∑
j=1

ω̄j`
∗
t+1−j (2.7)

where

ξ̄i =
1

n

n∑
k=1

ξ
(k)
i ω̄j =

1

n

n∑
k=1

ω
(k)
j µQ ≡ EQ(RVt) =

θ∗δ∗ + θ∗d∗

1−
∑p

i=1 θ
∗β∗i

6The selection of the number of trading days is in line with Majewski et al. (2015).
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ξ
(k)
i and ω

(k)
i can be obtained by an iterative relationship:

ξ
(k+1)
i =

ξ
(k)
i+1 + ξ

(k)
1 θ∗β∗i 1 ≤ i < p

ξ
(k)
1 θ∗β∗i i = p

ω
(k+1)
j =

ω
(k)
j+1 + ξ

(k)
1 θ∗α∗j 1 ≤ j < q

ξ
(k)
1 θ∗α∗j j = q

with initial conditions: ξ
(1)
i = θ∗β∗i , ω

(1)
j = θ∗α∗j .

In the LHARG-Y model, the p and q are both equal to 252. The proof of this proposition is given

in the Appendix.

Proposition 1 shows that the implied volatility term structure is determined by the weighted aver-

age of the past realized volatilities and long-run volatility level with leverage adjustments. Plugging

Equation (2.7) into Equations (2.4) - (2.6), we can obtain the VIX, VXV, and VXMT pricing formulas,

respectively.

2.3 The VIX Futures Pricing Formula

Following the expression given in Proposition 1 of Zhu and Lian (2012), the VIX futures price at time

t with maturity time T can be presented as the conditional expectation of VIX under the Q-measure.

F (t, T ) = EQt [VIXT] = EQt [100
√

252VT (22)] =
100
√

252

2π

∫ ∞
0

1− EQt [exp(−sVT (22))]

s3/2
ds

The last term EQt [exp(−sVT (22))] is the moment-generating function of the VT (22) under the Q-measure.

PROPOSITION 2. Under the risk-neutral measure, the moment-generating function of the VT (22)

has the following form:

f(z, k,RVt,L
∗
t ) = EQt [exp(zVt+k(22))] = exp

Ω(k) +

p∑
i=1

φ
(k)
i RVt+1−i +

q∑
j=1

Γ
(k)
j `∗t+1−j


where Ω(k), φ

(k)
i , and Γ

(k)
j can be obtained by the following iterations

Ω(k+1) = Ω(k) +A(φ
(k)
1 ,Γ

(k)
1 )

φ
(k+1)
i =

φ
(k)
i+1 + Bi(φ(k)1 ,Γ

(k)
1 ) 1 ≤ i < p

Bi(φ(k)1 ,Γ
(k)
1 ) i = p

Γ
(k+1)
j =

Γ
(k)
j+1 + Cj(φ(k)1 ,Γ

(k)
1 ) 1 ≤ j < q

Cj(φ(k)1 ,Γ
(k)
1 ) j = q

with the initial values:

Ω(1) = zµQ(1−
p∑
i=1

ξ̄i) +A(zξ̄1, zω̄1)
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φ
(1)
i =

zξ̄i+1 + Bi(zξ̄1, zω̄1) 1 ≤ i < p

Bi(zξ̄1, zω̄1) i = p
Γ
(1)
j =

zω̄j+1 + Cj(zξ̄1, zω̄1) 1 ≤ j < q

Cj(zξ̄1, zω̄1) j = q

The definitions of µQ, ξ̄i, and ω̄j are given in Proposition 1, and A(·),Bi(·), Cj(·) are given as:

A(η, s) = −1

2
log(1− 2s)− s− δW(χ, θ∗) + d∗V(χ, θ∗)

Bi(η, s) = V(χ, θ∗)β∗i Cj(η, s) = V(χ, θ∗)α∗j

V(χ, θ∗) =
θ∗χ

1− θ∗χ
, W(χ, θ∗) = log(1− θ∗χ), χ(η, s) = η +

2s2γ∗2

1− 2s

Proof: See the Appendix.

Replace EQt [exp(−sVT (22))] with f(−s, T − t,RVt,L
∗
t ), and the analytical pricing formula is ob-

tained.

2.4 Comparison of the Model

Our model can be compared with the Heston-Nandi GARCH model (HNG) presented by Heston and

Nandi (2000). This is a GARCH type model with explicit VIX and VIX futures pricing formulas, which

is popular as it is one of the very few discrete-time volatility models that yield analytical solutions for

European option prices. The specification of the HNG model under the physical measure is

Rt+1 = r + λht+1 −
1

2
ht+1 +

√
ht+1εt+1

ht+1 = ω + βht + α(εt − γ
√
ht)

2

The risk-neutral counterpart under LRNVR(Duan (1995)) is

Rt+1 = r − 1

2
ht+1 +

√
ht+1ε

∗
t+1

ht+1 = ω + βht + α(ε∗t − γ∗
√
ht)

2

where ε∗t = εt + λ
√
ht, γ

∗ = γ + λ. The persistence parameters under the P and Q measure are

πP = β + αγ2 and πQ = β + αγ∗2, respectively. Pricing formulas for VIX term structures and VIX

futures under the HNG can be found in Wang et al. (2017).
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3 DATA AND ESTIMATION

3.1 Data Description

We collect data on S&P 500 index returns and the CBOE panel implied volatility indices including

VIX, VXV, and VXMT. We also collect the panel of VIX futures prices with various maturities 7. The

VXMT data start in January 2008, so our full sample spans a 9-year period from January 2008 to March

2017.

To overcome the possible micro-structure noise problem in calculating the realized variance, the

RV is calculated using the micro-structure noise robust realized kernel (see Barndorff-Nielsen et al.

(2008)).The realized kernel series is trimmed, following Majewski et al. (2015), by removing the most

extreme observations (outside the four standard deviation threshold defined by a rolling window of 200

days)8. The realized kernel is also re-scaled to match the sample variance of daily close-to-close returns.

According to Zhu and Lian (2012), several filters are applied to the VIX futures price data. First,

VIX futures with fewer than five days to maturity are removed. Second, data with an associated open

interest of fewer than 200 contracts are excluded to avoid any liquidity-related bias. Finally, to match

the time horizon in the VIX term structure data, we drop all VIX futures with a time to maturity of

over six months. In total, the sample includes 2,270 daily observations for the underlying data and

13,349 observations for VIX futures prices. Table I reports the summary statistics of our data set. For

the VIX term structure, we find that 1) the average volatility levels are higher in longer maturities; 2)

the standard deviation of the series decreases almost monotonically with maturity, which is reinforced

by Figure I, in which the volatility index is smoother for a longer maturity; and 3) all series are skewed

and leptokurtic, but the skewness and kurtosis decrease as the maturity increases.

[Insert Table I here]

[Insert Figure 1 here]

3.2 Parameter Estimation

Following the ideas of Hao and Zhang (2013), Kanniainen et al. (2014) and Wang et al. (2017), we

estimate the LHARG model by maximizing the joint log-likelihood function of the observed market

data, i.e., the index return and its realized kernel, VIX term structure (VIX, VXV, and VXMT), and

VIX futures prices. We assume independent and normal distributions for the pricing errors associated

7The realized measures are collected from the Realized Library at the Oxford-Man institute, and other data can be
found on the CBOE’s website.

8This procedure is proposed by Majewski et al. (2015), and affected about 1.48% of our observations. As a comparison,
this procedure affected 1.5% of the observations in Majewski et al. (2015).
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with the VIX term structure and VIX futures9. The corresponding log-likelihood functions are

• The log-likelihood to match the returns and realized kernels

`R = −T
2

log(2π)− 1

2

{ T∑
t=1

log(RVt) + [Rt − r − λRVt +
1

2
RVt]

2/RVt

}
`RV = −

T∑
t=1

(RVt
θ

+ Θ(RVt−1,Lt−1)
)

+

T∑
t=1

log
( ∞∑
k=0

RV δ+k−1
t

θδ+kΓ(δ + k)

Θ(RVt−1,Lt−1)k

k!

)

• The log-likelihood to match the market implied volatility indices

`VIX = −T
2

log(2πs2VIX)− 1

2s2VIX

T∑
t=1

(VIXMod
t −VIXMkt

t )2

`VXV = −T
2

log(2πs2VXV)− 1

2s2VXV

T∑
t=1

(VXVMod
t −VXVMkt

t )2

`VXMT = −T
2

log(2πs2VXMT)− 1

2s2VXMT

T∑
t=1

(VXMTMod
t −VXMTMkt

t )2

• The log-likelihood to match the market VIX futures prices

`Fut =
{
− N

2
log(2πs2Fut)−

1

2s2Fut

N∑
i=1

(FutMod
i − FutMkt

i )2
}
× T

N

where the gamma function Γ(·) and the s2 are estimated with the sample variance of pricing errors.

Note that the log-likelihood in `RV cannot be applied directly because it contains an infinite number

of terms. To implement the maximum likelihood estimator, we truncate the infinite sum up to its 90th

order, following Majewski et al. (2015). The T/N in `Fut is used to adjust the imbalance in the number

of observations between VIX futures prices and other series.

As the variance premium parameter v1 is not identifiable without risk-neutral information in our

model, maximizing the joint log-likelihood function `R,RV = `R+`RV using returns and realized volatility

information is not an option. This is not the case for traditional GARCH models, where λ determines

both equity and the variance premium. The risk-neutral information can be extracted from either the

VIX term structure or VIX futures quotes. We therefore use the following estimation methods:

9Let T be the number of observations in the returns, realized variance, and volatility indices, and N be the number of
VIX futures prices.
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• To maximize the joint log-likelihood with the VIX term structure10:

`R,RV,VIX = `R + `RV + `VIX `R,RV,VXV = `R + `RV + `VXV `R,RV,VXMT = `R + `RV + `VXMT

• To maximize the joint log-likelihood with VIX futures:

`R,RV,Fut = `R + `RV + `Fut

For the following empirical analysis, we only keep the daily leverage component and constrain other

leverage components to zero to make the model more concise. The main results do not change when

additional leverage components are added.

4 EMPIRICAL RESULTS

4.1 Parameter Estimation

Table II reports the estimated parameters for different LHARG models with different estimation meth-

ods. The suffix “-Q” denotes the augmented LHARG with quarterly components, and “-Y” denotes

the augmented LHARG with quarterly and yearly components. “VIX1M” (VIX), “VIX3M” (VXV),

“VIX6M” (VXMT), and “Fut” (VIX futures) indicate the market data used in the maximum likelihood

estimation along with the index returns and realized kernels.

[Insert Table II here]

For the LHARG-M model in columns (1)-(4), the coefficients for all of the lagged volatility compo-

nents are significantly positive. However, the monthly coefficients increase significantly and the weekly

coefficients decrease when VIX3M or VIX6M are used in the estimation. The volatility index is smoother

than the realized volatility11, as it is an average of expected volatility over a certain period. Therefore,

the long-term moving average of the realized measures can provide more valuable information than the

short-term moving average when a longer-term volatility index is modeled. Similar patterns can be

found when VIX futures prices are used in the estimation.

In line with other studies, the persistence parameter πQ is greater than πP and close to 1, which

indicates a high persistence in the risk-neutral dynamic. The risk premium parameter v1 is negative in

all cases. As shown in Corsi et al. (2013), a negative v1 is consistent with the literature focusing on

variance risk premium, such as Bakshi and Kapadia (2003), Carr and Wu (2009). The absolute value of

10It is possible to construct a log-likelihood with all three volatility indices simultaneously, but our preliminary results
show that the improvement can only be found when compared with the (R,RV,VIX) case. The variance premium parameter
v1 may be different for different terms, so we estimate the parameters with each of the three indices one at a time.

11See Table I for the standard deviation of Ann.RK and VIXs.
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the variance premium parameter decreases when the maturity increases, while the equity risk premium

λ remains at a stable level. The equity premium and the variance risk premium therefore appear to be

quite different, providing additional motivation for separating v1 from λ.

For the LHARG-Q model in columns (5)-(8), the quarterly coefficient θβq is positive and signif-

icant across different estimation methods. The quarterly coefficients exceed the monthly coefficients

when a longer-term volatility index is fitted. The log-likelihood value of `R,RV changes slightly, while

larger improvements are found in `R,RV,VIX and `R,RV,Fut, indicating the importance of the newly added

components. Similar results can be found for the LHARG-Y model in columns (9)-(12). The classic

volatility cascade structure is restored where the longer-term volatility component has a smaller coeffi-

cient, possibly because LHARG-Y has sufficient explicit volatility information, as the maturity of VIX

futures is restricted to a maximum of 180 days.

[Insert Table III here]

Table III reports the results for HNG. In HNG models there is no room for an independent variance

risk premium within a single shock, so the equity risk premium λ fluctuates violently across different

methods. Using risk-neutral information, the model provides a larger equity premium parameter λ than

its physical counterpart (see the “R” method). The estimated equity risk premium must therefore be

inflated to fit the Q information, which is not the case when equity risk and variance risk premium are

modeled with separate parameters, as in the LHARG models.

4.2 Full-sample Pricing Performance

Table IV reports the volatility indices and the VIX futures pricing performance of different models and

methods. Panels A through C are associated with VIX1M, VIX3M, and VIX6M, respectively.

[Insert Table IV here]

For VIX1M and VIX3M, all of the LHARG models outperform the HNG in terms of RMSE. When

pricing VIX6M, the HNG model outperforms the LHARG-M model for all estimation methods. This is

not the case for our augmented LHARG models. In particular, the LHARG-Y always provides a smaller

RMSE than the other two LHARG models and dominates the HNG model. These findings indicate that

1) including realized measures when the VIX term structure or VIX futures are priced is important;

and 2) the model structure is also important as a model without explicit long-term information (i.e.,

the yearly component) can be outperformed by a model without realized measures.

[Insert Table V here]

Table V presents the full-sample RMSE for VIX futures where the model parameters are estimated

jointly with the index return, the realized kernel (for LHARG models), and the VIX futures prices.

We still find that LHARG-Y is the best model, while HNG dominates LHARG-M and delivers similar

results to LHARG-Q. In addition, the total RMSE for VIX futures pricing is decomposed by the VIX

13



level and the time to maturity when the price is quoted. The first dimension is linked to the model’s

ability to generate an appropriate variance risk premium. The second dimension is linked to the model’s

ability to track volatility dynamics at different time horizons. Again, the LHARG-Y model performs

better across all maturities and extreme volatility periods. The performances of the LHARG-M and

HNG models are mixed: the LHARG-M model performs better for short-term VIX futures, while HNG

is better for the longer-term. A possible explanation is that the high-frequency data, while providing

useful real-time information on latent volatility, are overreacting to short-term shocks in the view of

pricing long-term VIX futures. Taking the average of the realized measures over a much longer time

span significantly reduces the sensitivity of the model in reacting to temporary shocks.

[Insert Figure II here]

Figure II presents the relationship between the VIX futures pricing error (RMSE) and the maturity

in different volatility intervals for the HNG and LHARG-Y models. The models here are also jointly

estimated by index return, realized kernels (for LHARG models), and VIX futures prices. The results

show that the LHARG-Y model outperforms HNG in almost all respects, particularly during high

volatility periods.

4.3 Out-of-Sample Pricing Performance

The proposed models are more complex than the Heston-Nandi GARCH model and have several addi-

tional parameters, and include the LHARG-M and LHARG-Q model as special cases, so there may be

concerns about in-sample overfitting. Thus, we also conduct an out-of-sample pricing analysis based on

a rolling window of 252 trading days, with the parameters updated on a monthly basis. We evaluate

the out-of-sample pricing errors from 200902-201703 (the observations in 2008 are used as a pre-sample

to obtain the first set of parameters) with 2018 volatility indices and 11909 VIX futures prices.

[Insert Table VI here]

Table VI presents the out-of-sample version of Table IV. For the short-term implied volatility indices

such as VIX1M and VIX3M, all of the LHARG models still outperform HNG regardless of the estimation

method. For a long-term volatility index, HNG only performs slightly better than LHARG-Y (the

reduction in the RMSE is less than 1%) when the parameters are estimated with VIX1M, and in the

remainder of the cases LHARG-Y dominates.

[Insert Table VII here]

For VIX futures pricing, Table VII shows that in most cases the LHARG-Y model delivers the fewest

pricing errors 12, while the results for LHARG-M and HNG are mixed. Thus, most of the empirical

12In line with Table V, we only report the results where the parameters are estimated jointly with futures prices. The
results for other methods are similar and are available upon request.
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results from the previous section remain in the out-of-sample analysis. We do not find significant

evidence of in-sample overfitting for our proposed model.

5 CONCLUSION

This paper extends the LHARG model proposed in Majewski et al. (2015) by adding quarterly and

yearly lagged realized volatility into the HAR structure. The derived analytical pricing formulas for

both the CBOE VIX term structure and VIX futures with different maturities are based on the extended

model. We estimate the model parameters by jointly matching the information from both the physical

and the risk-neutral measures. Our empirical results suggest that the quarterly and yearly components

of lagged realized volatility should be added into the model to capture the long-term volatility dynam-

ics. With the realized volatility based on high frequency data, the proposed model provides superior

pricing performance to the classic Heston-Nandi GARCH model, both in-sample and out-of-sample.

The improvement is more pronounced during high volatility periods.
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Appendix A: Proof of Proposition 1

Following the definition of the Gamma distribution, we have:

EQt [RVt+1] = θ∗δ∗ + θ∗Θ∗(RVt,L
∗
t )

= θ∗δ∗ + θ∗d∗ +

p∑
i=1

θ∗β∗iRVt+1−i +

q∑
j=1

θ∗α∗j`
∗
t+1−j

Let µQ ≡ EQ(RVt) = (θ∗δ∗ + θ∗d∗)/(1−
∑p

i=1 θ
∗β∗i ), then

EQt [RVt+1]− µQ =

p∑
i=1

θ∗β∗i (RVt+1−i − µQ) +

q∑
j=1

θ∗α∗j`
∗
t+1−j

Suppose the formula of EQt [RVt+1]− µQ is

EQt [RVt+k]− µQ =

p∑
i=1

ξ
(k)
i (RVt+1−i − µQ) +

q∑
j=1

ω
(k)
j `∗t+1−j
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When k = 1, ξ
(1)
i = θ∗β∗i , ω

(1)
j = θ∗α∗j . When k 6= 1, we have

EQt [RVt+k+1]− µQ = EQt [EQt+1[RVt+k+1 − µQ]]

= EQt [

p∑
i=1

ξ
(k)
i (RVt+2−i − µQ) +

q∑
j=1

ω
(k)
j `∗t+2−j ]

= EQt [ξ
(k)
1 (RVt+1 − µQ) + ω

(k)
1 `∗t+1] +

p∑
i=2

ξ
(k)
i (RVt+2−i − µQ) +

q∑
j=2

ω
(k)
j `∗t+2−j

=

p∑
i=1

ξ
(k)
1 θ∗β∗i (RVt+1−i − µQ) +

q∑
j=1

ξ
(k)
1 θ∗α∗j`

∗
t+1−j +

p−1∑
i=1

ξ
(k)
i+1(RVt+1−i − µQ) +

q−1∑
j=1

ω
(k)
j+1`

∗
t+1−j

=

p∑
i=1

ξ
(k+1)
i (RVt+1−i − µQ) +

q∑
j=1

ω
(k+1)
j `∗t+1−j

ξ
(k+1)
i =

ξ
(k)
i+1 + ξ

(k)
1 θ∗β∗i 1 ≤ i < p

ξ
(k)
1 θ∗β∗i i = p

ωj =

ω
(k)
j+1 + ξ

(k)
1 θ∗α∗j 1 ≤ j < q

ξ
(k)
1 θ∗α∗j j = q

So the Vt(n) can be expressed as

Vt(n) =
1

n

n∑
k=1

EQt [RVt+k]

=

p∑
i=1

ξ̄iRVt+1−i +

q∑
j=1

ω̄j`
∗
t+1−j + µQ(1−

p∑
i=1

ξ̄i)

where ξ̄i = 1
n

∑n
k=1 ξ

(k)
i , ω̄j = 1

n

∑n
k=1 ω

(k)
j .

Appendix B: Proof of Proposition 2

Vt(n) = µQ(1−
p∑
i=1

ξ̄i) +

p∑
i=1

ξ̄iRVt+1−i +

q∑
j=1

ω̄j`
∗
t+1−j

= a∗ +

p∑
i=1

b∗iRVt+1−i +

q∑
j=1

c∗i `
∗
t+1−j

where a∗ = µQ(1 −
∑p

i=1 ξ̄i), b
∗
i = ξ̄i, c

∗
j = ω̄j . Using the results in Corsi et al. (2013), the moment-

generating function of RVt+1 is

EQt [exp(ηRVt+1)] = exp(
η

1− ηθ∗
θ∗Θ∗(RVt,L

∗
t )− δlog(1− ηθ∗))
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Then we have

EQt [exp(zRVt+1 + s`∗t+1)] = EQt [exp(zRVt+1 − s− 2sγ∗ε∗t+1

√
RVt+1 + sε∗2t+1)]

= EQt [exp(zRVt+1 − s)EQ[exp(−2sγ∗
√
RVt+1ε

∗
t+1 + sε∗2t+1)|RVt+1]

= EQt [exp(zRVt+1 − s−
1

2
log(1− 2s) +

2s2γ∗2RVt+1

1− 2s
)]

= exp(−1

2
log(1− 2s)− s− δlog(1− χθ∗) +

χ

1− χθ∗
θ∗Θ∗(RVt,L

∗
t ))

= exp(A(z, s) +

p∑
i=1

Bi(z, s)RVt+1−i +

q∑
j=1

Cj(z, s)`∗t+1−j)

where

A(z, s) = −1

2
log(1− 2s)− s− δW(χ, θ∗) + d∗V(χ, θ∗)

Bi(z, s) = V(χ, θ∗)β∗i

Cj(z, s) = V(χ, θ∗)α∗j

V(χ, θ∗) =
θ∗χ

1− θ∗χ
, W(χ, θ∗) = log(1− θ∗χ), χ(z, s) = z +

2s2γ∗2

1− 2s

Combining the above two equations, EQt [exp(zVt+1(n))] is

EQt [exp(zVt+1(n))] = EQt [exp(z(a∗ +

p∑
i=1

b∗iRVt+2−i +

q∑
j=1

c∗j`
∗
t+2−j))]

= EQt [exp(zb∗1RVt+1 + zc∗1`
∗
t+1)]× exp(za∗ +

p−1∑
i=1

zb∗i+1RVt+1−i +

q−1∑
j=1

zc∗j+1`
∗
t+1−j)

= exp(A(zb∗1, zc
∗
1) +

p∑
i=1

Bi(zb∗1, zc∗1)RVt+1−i +

q∑
j=1

Cj(zb∗1, zc∗1)`∗t+1−j)

× exp(za∗ +

p−1∑
i=1

zb∗i+1RVt+1−i +

q−1∑
j=1

zc∗i+j`
∗
t+1−j)

= exp(Ω(1) +

p∑
i=1

φ
(1)
i RVt+1−i +

q∑
j=1

Γ
(1)
j `∗t+1−j)

Ω(1) = za∗ +A(zb∗1, zc
∗
1)

φ
(1)
i =

zb∗i+1 + Bi(zb∗1, zc∗1) 1 ≤ i < p

Bi(zb∗1, zc∗1) i = p
Γ
(1)
j =

zc∗j+1 + Cj(zb∗1, zc∗1) 1 ≤ j < q

Cj(zb∗1, zc∗1) j = q
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Assume EQt [exp(zVt+k(n))] adopts the following formula

EQt [exp(zVt+k(n))] = exp(Ω(k) +

p∑
i=1

φ
(k)
i RVt+1−i +

q∑
j=1

Γ
(k)
j `∗t+1−j)

When k = 1, it holds. When k > 1, we have

EQt [exp(zVt+k+1(n))] = EQt [EQt+1[exp(zVt+k+1(n))]]

= EQt [exp(Ω(k) +

p∑
i=1

φ
(k)
i RVt+2−i +

q∑
j=1

Γ
(k)
j `∗t+2−j)]

= EQt [exp(φ
(k)
1 RVt+1 + Γ

(k)
1 `∗t+1)]× exp(Ω(k) +

p−1∑
i=1

φ
(k)
i+1RVt+1−i +

q−1∑
j=1

Γ
(k)
j+1`

∗
t+1−j)

= exp(A(φ
(k)
1 ,Γ

(k)
1 ) +

p∑
i=1

Bi(φ(k)1 ,Γ
(k)
1 )RVt+1−i +

q∑
j=1

Cj(φ(k)1 ,Γ
(k)
1 )`∗t+1−j)×

EQt [exp(zVt+k+1(n))] exp(Ω(k) +

p−1∑
i=1

φ
(k)
i+1RVt+1−i +

q−1∑
j=1

Γ
(k)
j+1`

∗
t+1−j)

=exp(Ω(k+1) +

p∑
i=1

φ
(k+1)
i RVt+1−i +

q∑
j=1

Γ
(k+1)
j `∗t+1−j)

Ω(k+1) = Ω(k) +A(φ
(k)
1 ,Γ

(k)
1 )

φ
(k+1)
i =

φ
(k)
i+1 + Bi(φ(k)1 ,Γ

(k)
1 ) 1 ≤ i < p

Bi(φ(k)1 ,Γ
(k)
1 ) i = p

Γ
(k+1)
j =

Γ
(k)
j+1 + Cj(φ(k)1 ,Γ

(k)
1 ) 1 ≤ j < q

Cj(φ(k)1 ,Γ
(k)
1 ) j = q
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TABLE I

Descriptive Statistics (2008-2017)

N Mean Std Skew Kurt Min Max

Panel A: S&P 500 Returns and VIX Term Structure
Return(×102) 2270 0.05 1.27 0.02 10.51 −9.47 10.96

Ann.RV 2270 16.27 11.84 3.00 13.60 2.96 108.65
VIX1M 2270 20.69 9.85 2.34 7.01 10.32 80.86
VIX3M 2270 22.27 8.54 1.99 4.72 12.24 69.24
VIX6M 2270 23.58 7.50 1.68 3.16 14.04 61.47

Panel B: VIX Futures
Total 13349 22.78 7.17 1.56 3.22 11.73 66.23

Partitioned by VIX Level
VIX≤15 4244 16.95 1.95 0.41 1.30 11.73 26.60

15<VIX≤20 4120 20.64 2.81 0.51 −0.29 14.55 30.85
20<VIX≤25 2301 25.08 3.05 0.21 −0.71 18.45 32.55
25<VIX≤30 1112 27.95 2.88 −0.18 −0.86 20.20 34.55
30<VIX≤35 523 31.45 2.58 −1.41 3.06 20.08 36.85

35<VIX 1049 39.95 6.92 0.54 3.91 17.80 66.23

Partitioned by Maturity
DTM≤30 2211 21.20 8.71 2.14 5.26 8.73 66.23

30<DTM≤60 2195 22.06 7.65 1.76 3.46 12.70 57.62
60<DTM≤90 2352 22.79 7.20 1.63 3.13 13.45 59.77
90<DTM≤120 2323 23.21 6.60 1.34 1.82 14.25 52.26
120<DTM≤150 2163 23.60 6.20 1.13 0.99 14.85 47.07

150<DTM 2105 23.88 5.91 0.98 0.52 15.20 45.26

Note: Kurt is excess kurtosis. Ann.RV is the annualized daily volatility calculated by
√

252×Adj.RK × 100
and Adj.RK = RK×var(ret)/mean(RK). VIX1M, VIX3M, and VIX6M are CBOE VIX, VXV, and VXMT.

21



T
A
B
L
E

II

P
a
ra

m
et

er
E

st
im

a
ti

o
n

o
f

L
H

A
R

G
M

o
d
el

s

M
o
d

el
L

H
A

R
G

-M
L

H
A

R
G

-Q
L

H
A

R
G

-Y
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0
)

(1
1
)

(1
2
)

M
et

h
o
d

V
IX

1M
V

IX
3M

V
IX

6M
F

u
t

V
IX

1
M

V
IX

3
M

V
IX

6
M

F
u

t
V

IX
1
M

V
IX

3
M

V
IX

6
M

F
u

t
λ

3.
56

7
3.

56
8

3.
56

5
3.

5
6
1

3
.5

6
8

3
.5

6
8

3
.5

6
7

3
.5

5
7

3
.6

1
1

3
.5

6
8

3
.5

6
9

3
.5

5
7

(2
.6

88
)

(1
.8

59
)

(1
.6

07
)

(0
.9

1
8
)

(5
.1

1
5
)

(1
.5

4
3
)

(2
.4

6
1
)

(0
.5

5
2
)

(0
.2

5
4
)

(2
.4

5
4
)

(6
.1

2
6
)

(1
.8

5
5
)

θ(
×

10
−
5
)

3.
35

1
3.

47
5

3.
50

3
3
.5

0
8

3
.2

7
6

3
.3

4
6

3
.4

0
0

3
.4

5
5

3
.2

9
4

3
.3

6
2

3
.4

2
4

3
.4

8
7

(0
.2

37
)

(0
.2

86
)

(0
.3

10
)

(0
.2

9
5
)

(0
.2

3
1
)

(0
.2

3
7
)

(0
.2

6
6
)

(0
.2

6
5
)

(0
.2

4
0
)

(0
.2

5
5
)

(0
.2

8
9
)

(0
.1

9
9
)

δ
1.

49
7

1.
61

2
1.

61
0

1
.6

8
2

1
.4

2
1

1
.5

3
1

1
.5

6
0

1
.6

4
0

1
.4

2
9

1
.5

4
0

1
.5

9
6

1
.6

7
5

(0
.0

53
)

(0
.0

51
)

(0
.0

55
)

(0
.0

5
0
)

(0
.0

5
4
)

(0
.0

5
0
)

(0
.0

5
0
)

(0
.0

5
6
)

(0
.0

5
7
)

(0
.0

5
2
)

(0
.0

5
1
)

(0
.0

5
5
)

θd
(×

10
−
5
)

-3
.5

56
-4

.1
39

-4
.2

96
-4

.2
6
7

-3
.3

6
4

-3
.7

4
3

-3
.8

5
3

-3
.9

1
0

-3
.5

0
2

-3
.9

7
4

-4
.1

6
9

-4
.2

5
0

(0
.2

66
)

(0
.3

35
)

(0
.3

66
)

(0
.3

9
8
)

(0
.2

6
2
)

(0
.2

6
4
)

(0
.2

9
8
)

(0
.3

1
8
)

(0
.2

2
1
)

(0
.2

9
9
)

(0
.3

5
8
)

(0
.2

2
9
)

θβ
d

0.
45

7
0.

47
4

0.
47

0
0
.4

7
9

0
.4

3
7

0
.4

2
2

0
.4

3
2

0
.4

5
6

0
.4

3
5

0
.4

1
0

0
.4

2
0

0
.4

4
3

(0
.0

27
)

(0
.0

35
)

(0
.0

38
)

(0
.0

3
5
)

(0
.0

2
8
)

(0
.0

2
9
)

(0
.0

3
3
)

(0
.0

3
3
)

(0
.0

3
0
)

(0
.0

3
2
)

(0
.0

3
5
)

(0
.0

3
2
)

θβ
w

0.
29

1
0.

18
9

0.
17

8
0
.1

7
3

0
.3

4
4

0
.3

4
1

0
.3

3
2

0
.3

0
0

0
.3

3
7

0
.3

3
0

0
.3

1
3

0
.2

9
4

(0
.0

32
)

(0
.0

45
)

(0
.0

48
)

(0
.0

5
4
)

(0
.0

3
1
)

(0
.0

3
8
)

(0
.0

4
0
)

(0
.0

3
2
)

(0
.0

2
8
)

(0
.0

3
9
)

(0
.0

4
2
)

(0
.0

3
7
)

θβ
m

0.
16

0
0.

24
5

0.
26

7
0.

2
4
6

0
.0

8
8

0
.0

6
1

0
.0

2
4

0
.0

2
6

0
.0

9
1

0
.0

9
0

0
.0

7
8

0
.0

6
2

(0
.0

14
)

(0
.0

19
)

(0
.0

20
)

(0
.0

1
6
)

(0
.0

1
2
)

(0
.0

1
3
)

(0
.0

1
3
)

(0
.0

0
4
)

(0
.0

1
1
)

(0
.0

1
4
)

(0
.0

2
4
)

(0
.0

1
1
)

θβ
q

0
.0

5
0

0
.0

8
9

0
.1

1
9

0
.1

0
7

0
.0

3
6

0
.0

6
5

0
.0

7
5

0
.0

6
4

(0
.0

0
4
)

(0
.0

0
8
)

(0
.0

1
1
)

(0
.0

0
5
)

(0
.0

0
4
)

(0
.0

0
7
)

(0
.0

0
8
)

(0
.0

0
3
)

θβ
y

0
.0

2
5

0
.0

2
8

0
.0

3
1

0
.0

3
6

(0
.0

0
2
)

(0
.0

0
2
)

(0
.0

0
3
)

(0
.0

0
1
)

θα
d
(×

10
−
6
)

2.
51

3
1.

90
0

1.
55

4
1
.8

6
9

2
.5

4
7

1
.6

5
1

1
.3

9
8

1
.6

0
2

4
.1

0
0

3
.2

6
1

3
.0

7
1

3
.4

6
0

(0
.3

21
)

(0
.4

44
)

(0
.4

75
)

(0
.6

1
4
)

(0
.3

0
6
)

(0
.3

6
5
)

(0
.3

6
5
)

(0
.2

7
2
)

(0
.4

5
5
)

(0
.3

6
6
)

(0
.5

0
8
)

(0
.4

3
4
)

γ
32

3.
1

31
1.

0
31

6.
8

3
0
5
.8

3
3
6
.5

4
0
8
.4

4
3
5
.8

4
1
1
.5

2
3
9
.5

2
4
1
.8

2
3
0
.5

2
1
9
.8

(3
2.

0)
(3

5.
3)

(4
4.

7)
(5

1
.4

)
(3

6
.8

)
(6

8
.6

)
(8

8
.3

)
(6

4
.4

)
(2

0
.8

)
(2

7
.5

)
(3

0
.5

)
(2

9
.3

)
υ
1

-1
15

1.
2

-9
03

.7
-7

46
.6

-9
1
9
.1

-1
1
5
0
.8

-9
9
4
.7

-9
2
6
.9

-1
0
8
4
.8

-1
0
7
8
.8

-1
0
0
9
.3

-9
4
2
.4

-1
1
2
0
.7

(4
86

.0
)

(4
19

.5
)

(5
63

.7
)

(3
6
5
.5

)
(5

6
3
.2

)
(4

1
0
.0

)
(4

7
3
.5

)
(5

2
1
.5

)
(1

6
1
.1

)
(3

8
5
.4

)
(5

6
1
.9

)
(2

0
8
.1

)
π
P

0.
90

8
0.

90
8

0.
91

5
0
.8

9
7

0
.9

1
8

0
.9

1
2

0
.9

0
7

0
.8

8
8

0
.9

2
3

0
.9

2
3

0
.9

1
7

0
.8

9
8

π
Q

0.
98

9
0.

97
2

0.
96

8
0
.9

6
2

0
.9

9
8

0
.9

8
1

0
.9

7
1

0
.9

6
4

0
.9

9
9

0
.9

9
4

0
.9

8
4

0
.9

7
8

lo
g
L

` R
,R

V
26

90
9

26
90

4
26

89
7

26
9
0
4

2
6
8
9
7

2
6
9
0
5

2
6
8
9
8

2
6
9
0
4

2
6
9
0
4

2
6
9
1
5

2
6
9
1
7

2
6
9
2
2

` R
,R

V
,V

IX
2
1
3
7
4

21
20

2
21

07
0

2
1
1
9
5

2
1
6
2
1

2
1
4
2
0

2
1
1
2
8

2
1
1
1
8

2
1
8
1
3

2
1
6
6
6

2
1
5
1
3

2
1
4
4
4

` R
,R

V
,V

X
V

20
56

7
2
0
9
7
1

20
90

2
2
0
9
5
0

2
1
0
3
4

2
1
4
4
5

2
1
3
6
4

2
1
3
2
6

2
1
4
9
4

2
1
7
9
0

2
1
7
2
2

2
1
5
4
0

` R
,R

V
,V

X
M

T
19

61
3

20
63

4
2
0
7
5
7

20
6
3
5

2
0
0
3
1

2
1
0
7
4

2
1
2
0
8

2
1
0
5
4

2
0
7
5
2

2
1
4
7
3

2
1
6
0
5

2
1
3
6
7

` R
,R

V
,F
u
t

19
68

7
20

42
6

20
34

7
2
0
4
5
8

1
9
9
8
5

2
0
7
3
3

2
0
7
2
2

2
0
8
5
2

2
0
7
8
5

2
1
0
8
8

2
1
1
0
6

2
1
3
1
3

N
ot

e:
H

er
e

w
e

re
p

or
t
θβ

i
an

d
θα

i
in

st
ea

d
of
β
i

a
n

d
α
i

to
m

a
ke

th
e

re
su

lt
s

m
o
re

co
m

p
a
ra

b
le

a
m

o
n

g
d

iff
er

en
t

m
o
d

el
s.

S
a
n

d
w

ic
h

-t
y
p

e
ro

b
u

st
st

an
d

ar
d

er
ro

rs
ar

e
in

p
ar

en
th

es
es

.
T

h
e

se
co

n
d

ro
w

in
d

ic
a
te

s
th

e
in

fo
rm

a
ti

o
n

se
t

u
se

d
.

F
o
r

si
m

p
li

ci
ty

,
w

e
u

se
”
V

IX
1
M

”
to

d
en

o
te

”R
+

R
V

+
V

IX
1M

”,
as

w
el

l
as

”V
IX

3M
”,

”V
IX

6
M

”
,

a
n

d
”
F

u
t”

.
T

h
e

b
o
ld

n
u

m
b

er
in

lo
g
-l

ik
el

ih
o
o
d

in
d

ic
a
te

s
th

e
la

rg
es

t
w

it
h

in
ea

ch
ro

w
in

ea
ch

m
o
d

el
.

22



TABLE III

Parameter Estimation of Heston-Nandi GARCH Model

Method R R+VIX1M R+VIX3M R+VIX6M R+Fut

λ 4.098 6.981 8.202 9.020 6.105
(2.894) (0.611) (0.558) (0.590) (0.291)

ω(×10−14) 9.358 9.358 9.358 9.358 9.358
(6.449) (0.677) (2.015) (0.704) (0.630)

β 0.735 0.697 0.667 0.665 0.769
(0.029) (0.019) (0.020) (0.019) (0.024)

α(×10−6) 5.556 3.275 2.057 1.596 1.364
(0.969) (0.212) (0.059) (0.045) (0.062)

γ 199.5 293.2 391.7 446.9 403.5
(24.7) (11.3) (12.2) (13.8) (12.9)

πP 0.957 0.979 0.983 0.984 0.991
πQ 0.966 0.992 0.996 0.997 0.998
logL
`R 7339.7 7256.7 7228.4 7217.2 7186.1

`R,VIX -198.5 445.6 372.7 268.8 151.4
`R,VXV -331.8 721.4 891.9 829.9 722.2
`R,VXMT -431.2 615.6 1036.9 1138.3 1076.9
`R,Fut -377.1 570.6 974.8 1091.3 1123.8

Note: Sandwich-type robust standard errors are in parentheses. The first row indicates the information set

used. For simplicity, we name each column with the information set used for the estimation. For example,

“R+Fut” means the parameters are estimated with index returns and VIX futures prices. The bold number

in log-likelihood indicates the largest within each row.
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TABLE IV

Full-Sample Pricing RMSE for VIX Term Structure

Method LHARG-M LHARG-Q LHARG-Y HNG

Panel A: VIX1M Pricing
R+RV+VIX1M 2.771 2.472 2.279 4.862
R+RV+VIX3M 2.982 2.711 2.443 4.959
R+RV+VIX6M 3.152 3.074 2.616 5.166

Panel B: VIX3M Pricing
R+RV+VIX1M 3.953 3.202 2.622 4.306
R+RV+VIX3M 3.303 2.681 2.314 3.945
R+RV+VIX6M 3.394 2.770 2.386 4.035

Panel C: VIX6M Pricing
R+RV+VIX1M 6.018 4.981 3.637 4.512
R+RV+VIX3M 3.830 3.157 2.660 3.701
R+RV+VIX6M 3.618 2.968 2.513 3.522

Note: For the HNG model, the information sets used do not include RV, i.e., “R+RV+VIX1M” for HNG is

actually “R+VIX1M”. The bold number indicates the minimum RMSE within each row.
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TABLE V

Full-Sample Pricing RMSE for VIX Futures Pricing

Model LHARG-M LHARG-Q LHARG-Y HNG

Total RMSE 4.140 3.480 2.863 3.496

Panel A: Partitioned by VIX Level
VIX≤15 3.330 2.905 2.210 2.606

15<VIX≤20 2.763 2.443 1.765 2.466
20<VIX≤25 4.226 3.920 3.126 2.865
25<VIX≤30 4.987 4.396 3.786 3.467
30<VIX≤35 5.261 4.330 5.103 6.507

35<VIX 7.996 5.747 4.762 7.235
Panel B: Partitioned by Maturity

DTM≤30 3.967 3.344 2.929 4.457
30<DTM≤60 4.129 3.330 2.699 3.447
60<DTM≤90 4.016 3.313 2.674 3.260
90<DTM≤120 4.089 3.415 2.759 3.106
120<DTM≤150 4.280 3.658 2.967 3.205

150<DTM 4.370 3.824 3.152 3.345

Note: This table only reports the pricing performance for the “Fut” method (i.e., “R+Fut”for HNG and

“R+RV+Fut” for LHARG models.). The bold number indicates the minimum RMSE within each row.
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TABLE VI

Out-of-sample Pricing RMSE for VIX Term Structure

Method LHARG-M LHARG-Q LHARG-Y HNG

Panel A: VIX1M Pricing
R+RV+VIX1M 2.116 2.039 1.912 3.722
R+RV+VIX3M 2.206 2.156 2.080 3.681
R+RV+VIX6M 2.505 2.452 2.339 3.783

Panel B: VIX3M Pricing
R+RV+VIX1M 3.966 3.504 2.574 3.935
R+RV+VIX3M 2.296 2.010 1.746 3.253
R+RV+VIX6M 2.269 2.098 1.913 3.109

Panel C: VIX6M Pricing
R+RV+VIX1M 7.839 7.618 4.667 4.652
R+RV+VIX3M 3.681 3.315 3.039 3.488
R+RV+VIX6M 2.508 2.115 1.735 2.852

Note: The out-of-sample performance evaluation is based on a rolling window of 252 trading days, with the

parameters updated on a monthly basis. We evaluate the out-of-sample pricing errors of 2018 trading days

(i.e., 200902-201703, the observations in 2008 are used as a pre-sample to get the first parameter for the out-

of-sample analysis.). For the HNG model, the information sets used do not include RV, i.e., “R+RV+VIX1M”

for HNG is actually “R+VIX1M”. The bold number in each panel indicates the minimum RMSE within each

row.
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TABLE VII

Out-of-sample Pricing RMSE for VIX Futures

Model LHARG-M LHARG-Q LHARG-Y HNG

Total RMSE 3.040 2.659 2.223 3.299

Panel A: Partitioned by VIX Level
VIX≤15 2.062 1.915 1.283 1.924

15<VIX≤20 2.754 2.376 1.795 2.772
20<VIX≤25 3.137 2.601 2.432 3.879
25<VIX≤30 3.368 3.161 3.351 4.956
30<VIX≤35 4.181 3.536 4.195 5.139

35<VIX 6.816 5.903 4.284 6.348
Panel B: Partitioned by Maturity

DTM≤30 2.898 2.861 2.799 3.630
30<DTM≤60 2.729 2.515 2.311 3.383
60<DTM≤90 2.729 2.334 2.004 3.258
90<DTM≤120 2.994 2.438 1.908 3.146
120<DTM≤150 3.292 2.718 1.971 3.139

150<DTM 3.557 3.065 2.242 3.209

Note: This table only reports the out-of-sample pricing performance for the “Fut” method (i.e., “R+Fut”for

HNG and “R+RV+Fut” for LHARG models.). The bold number indicates the minimum RMSE within each

row.

27



2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

20

40

60

80

100

 

 

Ann.RV

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

20

40

60

80

100

 

 

VIX1M(VIX)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

20

40

60

80

100

 

 

VIX3M(VXV)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

20

40

60

80

100

 

 

VIX6M(VXMT)

FIGURE 1
Time Series Data for Ann.RV, VIX, VXV, and VXMT

Note: Reported are S&P500 annualized realized volatility, and time series data of VIX, VXV, and VXMT.
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FIGURE 2
Full-sample Pricing RMSE for VIX Futures Pricing under Different Volatility Periods

Note: This graph only reports the pricing performance for the “Fut” method (i.e., “Ret+Fut” for HNG and

“Ret+RV+Fut” for LHARG-Y). The number X in the horizontal axis denotes the maturity within (30(X-

1),30X] days.
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