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1. Introduction 

This paper uses the model of coalitional economies (also called bargaining 

economies or coalitional games) with transferable utilities (TU) and with non-transferable 

utilities (NTU) to study the Coase theorem,1 and it shows that the main insights and major 

aspects of the Coase theorem can be stated in two mathematical theorems: In coalitional TU 

(NTU) economies without transaction costs, maximal (efficient) payoffs are produced by 

allocating inputs to optimal (efficient) firms based on firms’ shadow values, and these 

payoffs will be split by the owners within the non-empty core.   

The paper also makes three other advances: 1) It fixes the empty-core problem of the 

Coase theorem (Aivazian and Callen 1981, Coase 1981), which appeared so serious that 

Telser (1994) claimed that “the Coase ‘theorem’ needs much repair when there is an empty 

core”; 2) it provides a method to estimate the upper (lower) bound of transaction costs that 

support (prevent) the optimal outcome predicted by the Coase theorem in each application; 

and 3) it establishes the duality between sub-coalitions’ producing ability (which defines the 

maximal payoff) and blocking power (which defines the core stability). Such duality reveals 

that a firm’s shadow value is equal to its balancing weight, and it implies six theorems (three 

new and three known) on the existence of the usual core in coalitional games. 

The breakthrough in our search for a repair of the empty-core problem is the 

discovery that maximal profits in the Aivazian-Callen example (1981), or efficient outcomes 

in more general cases, are achieved in advanced forms of production or minimal balanced 

collections of the firms rather than conventional forms of production such as the monopoly 

                                                 
1   The earliest reference to (or version of) Coase theorem was in Stigler (1966, Chapter 6, page 113):  “The 

Coase theorem thus asserts that under perfect competition private and social costs will be equal”. 
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or other partitions of the firms. 

The rest of the paper is organized as follows. Section 2 provides a fix for the empty-

core problem in the Aivazian-Callen example (1981). Section 3 studies the duality between 

sub-coalitions’ blocking power and producing ability in coalitional TU games. Sections 4 

and 5 establish the TU and NTU Coase theorems, respectively. Section 6 concludes, and the 

appendix provides proofs. 

2.  A fix for the empty-core example of the Coase theorem 

An important study of the Coase theorem was the following empty-core example 

reported more than three decades ago in Aivazian and Callen (1981): 

Example 1: n=3, v(1)=3000, v(2)=8000, v(3)=24000; v(12)=15000, v(13)=31000, 

v(23)=36000; v(123)=40000, where for each firm S⊆ N={1,2,3}, v(S) is its daily profits.2 

This is an example of a three-owner coalitional economy or three-person coalitional 

TU game. Its five partitions or conventional forms of production are: B1={1,2,3},B2={12,3},  

B3={13,2},B4={23,1}, and Bm={123}, their total profits satisfy π(B1) = v(1)+v(2)+v(3)=35000 

< π(B2)= v(12)+v(3)= π(B3)=π(B4) = 39000<π(Bm)=v(123)=40000. Given that the monopoly 

has the largest profits among the five partitions, the Coase theorem implies that the monopoly 

merger will be formed.  However, this conclusion breaks down after one checks coalitional 

rationality. Let x=(x1,x2,x3)≥0 be a split of π(Bm) = 40000. Subcoalitions’ rationality requires 

that it has no blocking coalitions or be in the usual core or satisfy the following inequalities:  

(i) x1≥v(1)=3000, x2≥v(2)=8000, x3≥v(3)=24000; 

(ii) x1+x2≥v(12)=15000, x1+x3≥v(13)=31000, and x2+x3≥v(23)=36000. 

                                                 
2   We simplify v({i}) as v(i), v({1,2}) as v(12).  Similar simplifications apply to other coalitions. 
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Adding up the inequalities in (ii) yields x1+x2+x3≥(15000+31000+36000)/2=41000>40000, 

which contradicts x1+x2+x3 = 40000. Thus any split of monopoly profits is blocked by at least 

one coalition. Consequently, the monopoly can not be formed so the Coase theorem fails.  

Is the above argument false, or could the insight of the Coase theorem possibly be 

wrong?  Telser (1994) observed that “Coase's elaborate analysis in his comment (1981) fails 

to come to grip with the issues raised by this example,” and concluded that “The Coase 

"theorem" needs much repair when there is an empty core” (see Aivazian and Callen 2003 

for discussion).  Such a serious issue remained unsettled for more than three decades, until 

this study. To see our repair, move a step deeper inside our coalitional economy and assume 

that each of the seven firms produces a product called profit from an input called labor, using 

the following linear production functions: 

f1(x)=3000x/8=375x, f2(x)=1000x, f3(x)=3000x, 0≤ x ≤8;  

f12(x)=937.5x, f13(x)=1937.5x, f23(x)=2250x, 0≤x≤16; and f123(x)=5000x/3, 0≤x≤24;  

where a singleton firm has one full-time worker or 8 hours of labor inputs, so two-party 

firms have two workers, and the monopoly, three workers. It is straightforward to see that 

these production functions generate the same profits as those in Example 1.  

Now, consider operating each of the three two-party firms at full capacity for 4 hours 

(or at half capacity for 8 hours), which can be arranged, for example, in the following 

sequence: S=12 opens at full capacity from 8:00 a.m.-noon, S=13 from noon-4:00 p.m., and 

S=23 from 4:00-8:00 p.m. The profits from this advanced form of production are truly 

maximal and are given by 

mp = f12(8)+ f13(8)+ f23(8) = [v(12)+v(13)+v(23)] /2 =41000>π(Bm)=40000,  

which exceeds the profits of operating the monopoly at full capacity for 8 hours. Define the 

new core as the splits of the above mp that are unblocked by all subcoalitions. One can 
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check that the new core of Example 1 has a unique vector: x1=5000, x2=10000, x3=26000, 

which is the optimal outcome predicted by the Coase theorem.  

Note that the above optimal outcome is achieved when all three firms open for 

business only half of the time and all three workers have two part-time jobs, instead of one 

full-time job. This conclusion does not seem to have been reported in the previous literature, 

and it provides a new argument in studying labor theory and production theory. 

Now, our repair is to replace conventional forms of production with advanced forms 

of production, or replace the usual core with the always non-empty new core (or simply, the 

core), so the Coase theorem is now free of the empty-core problem and will be precisely 

stated as Theorem 2 in section 4 and Theorem 4 in section 5. 

3. The maximum of generated-payoffs and the duality in coalitional TU games 

Let N={1,2,…,n} be the set of players, N =2N be the set of all coalitions. A TU game 

in coalitional (or characteristic) form is given by a set function v: N→R+ with v(∅)=0, 

specifying a joint payoff v(S) for each coalition S∈N, or precisely by  

(1) Γ = {N, v(.)}. 

We will refer game (1) as a coalitional economy and a player i as the owner of firm i (or 

worker i) when the emphasis is on the Coase theorem.  We use a lowercase v in v(.) to define 

the above TU game (1), and an uppercase V in V(.) to define NTU games in section 5. 

Let X(v(N)) = {x∈ Rn
+ |Σi∈Nxi

 = v(N)} denote the preimputation space or the set of 

payoff vectors that are splits of v(N). A split x=(x1,…,xn)∈ X(v(N)) satisfies the rationality of 

a coalition S∈N or is unblocked by S if it gives S no less than v(S) (i.e., Σi∈Sxi
 ≥ v(S)), and is 

in the usual core if it is unblocked by all S≠ N.  Denote the usual core of (1) as 
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 (2) c0(Γ) = {x∈ X(v(N)) | Σi∈Sxi
 ≥ v(S) for all S ≠ N}. 

We use a lowercase c in c0(Γ) to denote the above TU core and an uppercase C in C0(Γ) to 

denote the NTU core in section 5.  

The concept of generated-payoffs is defined by balanced collections of coalitions. 

Given a player i∈N and a collection of coalitions B ={T1,...,Tk},  let B(i)={T∈B | i∈T} 

denote the subset of coalitions of which i is a member. Then, B is a balanced collection if it 

has a balancing vector w={wT|T∈B}∈Rk 
++ such that ΣT∈B(i)wT=1 for each i∈N.  

To see the intuition of a balancing vector, treat game (1) as a coalitional economy as 

in Example 1, where each singleton firm i has one full-time worker (or 8 hours of labor 

inputs). For each firm S∈N , let k=k(S)= |S| denote its size or cardinality, then each firm S has 

8k hours of labor inputs or k  workers, and produces a daily profit of v(S) by operating at full 

capacity for 8 hours, with the following linear production function: 

(3) fS(x) = v(S)x /[8k(S)],  0≤ x ≤8k(S). 

Now, each balanced B  with a balancing vector w defines the following form of production:   

Operate each firm T∈B  at full capacity for 8wT hours, and produce a profit equal to 

(4) gp(B) = Σ T∈B fT(8wT k(T)) = Σ T∈B wT v(T). 

The above operation and its generated payoff gp(B) are feasible because the 

condition ΣT∈B(i)wT=1 or balancedness ensures that each worker i works exactly 8 hours (i.e., 

i works for 8wT  hours at each T in B(i)). In Example 1, the collection B5={12,13,23} with 

balancing vector w = {½, ½, ½} yields the payoff gp(B5)= [v(12)+v(13)+v(23)] /2=41000. 

Thus, balancing weights here are proportions of inputs that each firm T∈B  receives 

from all its owners (or that a worker i allocates to his/her firms in B(i)). Such productions 
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represent an advance beyond conventional forms of production or partitions, because they 

include partitions as special cases and they could, as in Example 1, possibly produce higher 

payoffs. The discovery of such higher payoffs beyond v(N)  is the breakthrough in our search 

for a repair for the empty-core problem of the Coase theorem.3 

A balanced collection is minimal if no proper subcollection is balanced. It is known 

that a balanced collection is minimal if and only if its balancing vector is unique (Shapley 

1967). Denote the set of all minimal balanced collections (excluding the grand coalition) as 

(5) B = {B = {T1, ..., Tk} |N∉ B, B is a minimal balanced collection}. 

In three-person games like Example 1, B has five entries: the four non-monopoly partitions, 

B1, B2, B3 and B4, plus B5={12,13,23}. We are now ready to define the maximum of 

generated-payoffs (mgp) and maximal payoffs (mp):4 

Definition 1: Given game (1), gp(B) in (4), and B in (5), mgp and mp are given by 

(6) mgp = mgp(Γ)= Max {gp(B) | B ∈ B}, and 

(7) mp = mp(Γ) = Max {mgp, v(N)}. 

The definition considers only minimal balanced collections because mgp is achieved 

among minimal balanced collections, just as the optimal value in linear programming is 

achieved among the extreme points. The following duality result is the theoretical foundation 

of our repair for the empty-core problem of the Coase theorem. 

                                                 
3   It is known that total payoffs in a non-monopoly partition might be higher than the monopoly payoffs. See 

Sun et al (2008) on market games, Zhou (1994) on bargaining set, and Guesnerie and Oddou (1979) on c-core. 

4   It is easy to show that mp is equal to grand coalition’s payoff in the game’s cover (Shapley-Shubik 1969). 

When the functions in (3) satisfy fS(x)=Σi∈S fi(λi) for each S, all λ≥ 0∈RS, Σi∈Sλi=x, game (1) becomes identical 

to a market (T,G,A,U) as defined in Shapley-Shubik (1969), with T=N, G=Rn
+ , A=I, and U={ fi | i∈N}. 
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Theorem 1: Given game (1), the maximization problem (6) for mgp is dual to the 

following minimization problem for the minimum no-blocking payoff (mnbp, Zhao 2001): 

(8) mnbp = Min {Σi∈Nxi
 | x∈ Rn

+; Σi∈S xi ≥ v(S), all S ≠ N}, 

so mgp = mnbp holds. 

By the above duality, a firm’s shadow value in (8) is equal to the balancing weight5 in 

(6), and the minimal worth of the grand coalition needed to guarantee no-blocking given in 

(8) is equal to the maximal payoffs produced by sub-coalitions given in (6). Because mnbp 

represents sub-coalitions’ power to block proposed splits of v(N) (Zhao 2001), mgp represents 

their ability to produce payoffs that are different from v(N), their producing ability and 

blocking power are dual to each other. Such duality is perhaps the most salient property in 

cooperative games, because it also holds in NTU games (see Theorem 3) and it leads directly 

to three existence theorems (two known) on the usual core, as given below: 

Lemma 1: Given game (1), its usual core is non-empty if and only if each of the 

following three arguments holds:  

(i) the game is balanced (Bondareva 1962, Shapley 1967); 

(ii) the grand coalition has enough to guarantee no-blocking (Zhao 2001); and 

(iii) players can not produce a higher payoff than the grand coalition’s payoff. 

Precisely, the above three core arguments are: (i) Σ T∈BwTv(T)≤ v(N) for each balanced 

B with a balancing vector w, (ii) v(N)≥ mnbp, and (iii) mgp≤ v(N).  Theorem 1 also implies, as 

shown in the next section, the answers to four important questions arising from the Coase 

                                                 
5  So far we have three interpretations of the balancing weights: i) percentage of time during which the firm 

operates; ii) proportion of inputs that the firm receives; and iii) the frequency (or probability) with which the 

firm forms (or a player joins his/her coalition), assuming that the game is replicated/repeated for a finite 

number of times (or that uncertainty is added into the game). Other interpretations remain to be discovered. 

The shadow value for the grand coalition N can be given as: wN=1 if v(N)≥ mgp, and wN=0 if v(N)<mgp. 
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theorem: What payoffs will be split? How will the payoff be split? What firms will form? and 

How much inputs will each of the formed firms receive? Note that the Coase theorem won’t 

be complete if any of these four questions is not answered. 

4.   The TU Coase theorem 

By the new argument for core existence or part (iii) in Lemma 1, players in games 

with an empty usual core will not split the grand coalition’s payoff v(N), because the game’s 

mgp is greater than v(N). Then, what payoffs will they split?  We postulate that they split the 

maximal payoff mp  in (7). By mp=v(N) if c0(Γ)≠∅, = mgp>v(N) if c0(Γ)=∅, it stands to 

reason that they will always split mp. This answers the question of what payoffs will be split. 

Next, consider the question of how to split the maximal payoff. Let  

(9) Y = Y(Γ) = Arg-Min{Σi∈Nxi | x∈Rn
+, Σi∈S xi

 ≥ v(S) for all S≠N} 

denote the minimal set or the set of minimal solutions in (8) for mnbp. Coalitional rationality 

or no-blocking leads to the following new core: 

(10) c(Γ) = {x∈ X(mp) | Σi∈Sxi
 ≥ v(S), all S⊆ N}= 

( )
( )

0 if   

 if   

c ( ) v N mp

Y( ) v N mp,

Γ

Γ

⎧ =⎪
⎨

<⎪⎩
 

which answers the question of how to split mp. Note that the above new core or simply the 

core is always nonempty because it is identical to the usual core in (2) when the usual core is 

nonempty, and the minimal set in (8) or (9) when the usual core is empty. 

 Note that the new core in (10) includes the usual core of the game’s cover or balanced 

cover (Shapley-Shubik 1969), which is a new game Γbc={N,  
_
v(.)}, where each  

_
v(S) = mp(S) is 

the maximal payoff of the subgame ΓS ={S,v(.)}. 

Now, consider the question of what firms will form. Because players always split mp, 

they will form the optimal collections or optimal coalitions that generate mp, which will be 
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either the grand coalition or the optimal set in (6) for mgp or their union.  Let  

(11) B0 = B0(Γ) = {B∈B| gp(B)= mgp} = Arg-Max{gp(B)|B∈B} 

denote the optimal set in (6), then the set of optimal collections B*(Γ)  can be given as 

(12) B* = B*(Γ) = 

⎩
⎨
⎧      {N}              if mgp(Γ)< v(N);

    B0(Γ)             if mgp(Γ)>v(N);

 {N}∪B0(Γ)      if mgp(Γ) = v(N);

 

which answers the question of what firms will form. 

Finally, the unique balancing vector for each optimal B  answers the question of how 

much inputs will each of the formed firms receive. The above answers cover all the relevant 

aspects of the Coase theorem for our coalitional economy (1), which can now be stated as:    

Theorem 2: In coalitional economy (1) without transaction costs, owners will 

produce the maximal payoff by allocating inputs to optimal firms based on firms’ shadow 

values, and they will split the maximal payoff within the non-empty core.  

Precisely, the maximal payoff, core and optimal firms are respectively given in (7), 

(10) and (12), and the balancing vector for each set of optimal firms in (12) specifies their 

shadow values or proportions of inputs received from the owners. 

Theorem 2 provides a method to estimate the bounds of transaction costs (or merging 

costs) for each firm or coalition S, using the approach introduced by the author (Zhao 2009). 

For simplicity, let the merging costs for monopoly be τN>0 and that for all sub-coalitions be 

zero in our game (1). Because the owners now can only split [v(N)-τN] and mgp = mnbp 

remains unchanged, monopoly formation now requires: 

(13) [v(N)-τN] ≥ mnbp, 

so τN ≤ [v(N)-mnbp] (τN > [v(N)-mnbp]) holds for a successful (failed) monopoly formation. 

  Thus, the difference between v(N) and mnbp serves as an upper (lower) bound of 
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monopoly’s transaction costs below (above) which monopoly formation is possible 

(impossible), which can be empirically estimated. 

5.  The NTU Coase theorem 

This section studies the efficient payoffs and efficient firms in an NTU coalitional 

economy. An NTU coalitional economy (also called NTU bargaining economy, NTU 

coalitional game, and NTU game in characteristic form) is defined as 

(14) Γ = {N, V(.)}, 

which specifies, for each S∈N , a non-empty set of payoffs V(S) in RS, the Euclidean space 

whose dimension and coordinates are the number of players in S and their payoffs.  Let 

∂V(S)  = { y∈V(S) | there is no x∈ V(S) such that x>>y},  

denote the (weakly) efficient set of each V(S), where vector inequalities are defined by:  x ≥ y  

⇔  xi ≥ yi,  all i;  x > y ⇔  x ≥ y and x ≠ y; and x >> y ⇔ xi > yi, all i. 

Scarf (1967b) introduced the following two assumptions for (14): (i) each V(S) is 

closed and comprehensive (i.e., y∈ V(S), u∈ RS and u≤ y imply u∈ V(S)); (ii) for each S, 

{y∈ V(S)|yi≥ ∂V(i)>0, all i∈S} is non-empty and bounded, where ∂V(i)=Max{xi|xi∈V(i)}.  

Under these two assumptions, each ∂V(S) is closed, non-empty and bounded.   

Given S∈ N , a payoff vector u∈ Rn
+ is blocked by S if S can obtain a higher payoff for 

each of its members than that given by u, or precisely if there is y∈ V(S) such that y >> uS = 

{ui|i∈S} or uS∈V(S)\∂V(S).  A payoff vector u∈∂V(N) is in the usual core if it is unblocked 

by all S ≠ N, so the usual core of (14) can be given as 

(15) C0(Γ)  = { u∈∂V(N) | uS∉V(S)\∂V(S), all S≠N }. 

Balanced NTU games can be defined geometrically as below. For each S≠N, let ~v(S)= 
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V(S)×R−S⊂Rn, where R−S=∏i∈Ν \SR
i. For each minimal balanced collection B∈B in (5), let  

(16) GP(B) =∩S∈B
~v(S), and GP = ∪

B∈BGP(B)  

denote the payoffs generated by B and the set of generated-payoffs. Note that GP(B) is 

simplified to GP(B)=∏S∈BV(S) when B is a partition. Similar to the TU case, we only need to 

consider minimal balanced collections because non-minimal balanced collections don’t 

generate additional payoffs. Now, we are ready to define the efficient generated-payoffs 

(EGP) and efficient payoffs (EP), which are the NTU counterparts of mgp and mp in (6)-(7). 

 Definition 2: Given game (14) and its GP in (16), its EGP and EP are given by 

(17) EGP =∂GP = {y∈GP|∃ no x∈GP such that x>>y}, and 

(18) EP = EP(Γ)=∂ (GP∪V(N))= {y∈GP∪ V(N) | ∃ no x∈GP∪ V(N) with x>>y}. 

Readers are encouraged to visualize the generated-payoffs in the following example, 

which are illustrated in Figure 1.  

F ig u re  1 .  The  gene ra ted  payoffs in E xa mple  2 , w he re  B 1=  {1, 2, 3},   
B 2 =  {12, 3},  B 3 =  {13, 2},  B 4 =  {23, 1 },  an d B 5 =  {12, 13,  23} .  

 

x2  

x1  

x3  

 (2  , 2, 2) 
 

(c)  GP( B 3)  
 

x2  
 

x1  
 

x3  
 

(2, 1 , 2) 
 

(a ) GP( B 1)  

x2  
 

x1  
 

x3  
 

(1 ,1 ,1) 
 

x2  

x1  

x3  

(1 , 2, 3) 

(2, 1 , 2) 
 

(3 , 2, 1) 
 

(d )  GP( B 5)   (e ) GP( B 1)∪ GP (B 2)∪ GP( B 3)  
∪ GP(B 4 )  

x2  

x1  

x3  

(1 , 2, 3) 

(3, 2 , 1) 
 

(b )  
GP( B 2)∪ GP(B 4 )   

x2  

x1  

x3  

(1 , 2, 3) 

(f)  GP( B 2)∪ GP (B 3 ) ∪ GP( B 4)∪ GP (B 5)  

(3 , 2 , 1) 
 

 (2  , 2, 2) 
 

 



 13 

Example 2: n=3, V(i)= {xi |xi ≤ 1}, i = 1,2,3; V(12)={(x1, x2)|(x1, x2)≤ (3,2)}, V(13) 

={(x1,x3)|(x1,x3)≤(2,2)},V(23)={(x2,x3)|(x2,x3)≤(2,3)},V(123)={x|x1+x2+x3≤5}.  Let B i, i = 

1,2,3,4, be as in Example 1, and B5  ={12,13,23}. Then, GP(B1)={x|x≤(1,1,1)}, GP(B2) 

={x|x≤(3,2,1)}, GP(B3)={x|x≤(2,1,2)}, GP(B4)={x|x≤(1,2,3)}, and GP(B5)={x|x≤(2,2,2)}. 

    F ig u re  2 .  Ba la nced a nd unba la nced  ga m es.  
 

x2  
 

x1  
 

x3  
 

(2 , 2, 2 )  
 

(0 , 7, 0 )  
 

(7 , 0, 0 )  
 

 (0 , 0, 7 )  
 

(1 , 2 , 3) 
 

x2  
 

x1  
 

x3  
 

(0 , 5, 0 )  
 

(5 , 0, 0 )  
 

 (0, 0, 5)  
 

a =  (1 , 2, 3) 
b =  (2 , 2, 2) 
c  =  (3 , 2 , 1) 
 

(1 , 2 , 2) 
 

 c 
 

(3 , 2 , 0) 
 

(b) A n unba la nced  ga me   (a) A ba la nced  ga me   

(3 , 2, 1 )  
 

  b  
 

 a  
 

(2 ,2 ,1 ) 
 

(0 , 2 , 3) 
 

 

Now, the game (14) is balanced if GP(Γ)⊂ V(N) or if for each balanced B, u∈V(N) 

must hold if uS∈V(S) for all S∈B.  To see a balanced game geometrically, visualize that one 

is flying over a city. Treat the generated-payoffs GP as trees and buildings in the city and the 

grand coalition’s payoff V(N) as clouds. Then, a game is balanced if one sees only clouds and 

unbalanced if one sees at least one building or tree top above the clouds. In Figure 2b for 

Example 2, one sees three building tops above the clouds so the game is unbalanced. In 

Figure 2a for Example 3, one sees only clouds so the game is now balanced. 

Example 3: Same as Example 2 except V(123)={x|x1+x2+x3≤7}. 

Note that the collection B5 = {12, 13, 23} in Example 2 generates new payoffs that 

are outside of those generated by the four partitions and are better than v(N), see the 



 14 

difference between [e] and [f] in Figure 1.  Needless to say, it is the discovery of such new 

and better payoffs that gives rise to our mathematical versions of the Coase theorem. 

Recall that a payoff vector u is unblocked by S if u∈ [V(S)\∂V(S)]C× R−S⊂ Rn or if 

uS∉V(S)\∂V(S), where the superscript C denotes the complement of a set. The following 

concept of minimum no-blocking frontier is the NTU counterpart of mnbp in (8): 

 Definition 3:  Given game (14), the set of payoffs unblocked by all S≠N (UBP) and 

the minimum no-blocking frontier (MNBF) are given, respectively, as 

(19) UBP = UBP(Γ) = ∩
S ≠ N{[V(S)\∂V(S)]C×R−S}⊂ Rn, and 

(20) MNBF =MNBF(Γ)=∂UBP ={y∈UBP|∃ no x∈UBP such that x<<y}. 

It is easy to see that each payoff vector on or above MNBF is unblocked by all S≠N, 

and the usual core can be given as C0(Γ)=UBP∩∂V(N)=MNBP∩∂V(N). Similar to the TU 

case, MNBF represents sub-coalitions’ power to block the grand coalition’s proposals. 

Theorem 3 below shows that sub-coalitions’ blocking power and producing ability are also 

dual to each other in coalitional NTU games, which is the NTU counterpart of Theorem 1. 

Theorem 3: Given game (14), its minimum no-blocking frontier and efficient 

generated-payoffs have a non-empty intersection. 

To put it differently, the NTU counterpart of mnbp = mgp in game (1) is 

(21)  Z = Z(Γ) = MNBF∩ EGP≠ ∅. 

It is straightforward to verify a, b, c∈ Z in Example 2 (see Figure 2b), where a={1,2,3}, 

b={2,2,2}, and c={3,2,1}, so Z≠∅  holds in the example. 

Recall that EGP⊆ V(N) holds in balanced games. Then, MNBF∩EGP≠ ∅ implies 

MNBF∩∂V(N)= C0(Γ) ≠ ∅  in balanced games. Hence, the above duality implies Scarf’s core 
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theorem (1967b). The above duality also implies two new existence theorems on the usual 

core,  which are summarized in the following lemma: 

Lemma 2:  Given game (14), the following three claims hold:  

(i) its usual core is non-empty if it is balanced (Scarf 1967b);  

(ii) its usual core is non-empty if and only if the grand coalition has enough to 

guarantee no blocking; and  

(iii) its usual core is non-empty if players can’t produce better payoffs than the grand 

coalition’s payoff. 

 

    F ig u re  3 .   T he us ua l core a nd  the new co re : pa yo ffs in the us ua l 
   co re are b lue- co lored , a nd  pa yo ffs in the new co re are red- co lored .  
 

x2  
 

x1  
 

(0 , 7, 0 )  
 

(7 , 0, 0 )  
 

 (0 , 0, 7 )  
 

(1 , 2 , 4) 
 

x2  
 

x1  
 

x3  
 

(0 , 5, 0 )  
 

(5 , 0, 0 )  
 

 (0, 0, 5)  
 

a =  (1 , 2,  3) 
b =  (2 , 2,  2) 
c  =  (3 , 2 , 1) 
 

d=(1 , 2 , 2) 
 

 c 
 

(3 , 2 , 0) 
 

   (a ) T h e  u s u a l co re  o f E xa mp le  2  a re  d  =  
(1 ,2 ,2 )  an d  e  = (2 ,2 ,1 ), th e  n ew co re  is  th e  
s eg men t o f th e  edg e  lin k in g   a , d ,  b , e ,  c .  
 

 a  
 

  e =(2 ,2 ,1) 
 

(0 , 2 , 3) 
 

x3  

 b  
 

(1 , 4 , 2) 
(2 , 3 , 2) 

(2 , 4 , 1) 
(4 , 2 , 1) 

( b)  T h e  u s u a l co re  o f E xa mp le  3.  
 

 

The above results in (i) and (iii) can be precisely stated in one argument: C0(Γ)≠∅  if 

GP⊂ V(N), and the result in (ii) can be precisely stated as: C0(Γ)≠∅ ⇔ there exists x∈∂V(N) 

and y∈ MNBF such that x≥ y.  

Due to the generality of non-transferable utilities, the above NTU core results are 

more general than the earlier TU results in at least three aspects: I) the usual NTU core is no 

longer convex, as shown in Figure 3 for Examples 2-3; II) balancedness is only sufficient and 
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no longer necessary for a non-empty usual NTU core, see a non-empty usual NTU core in an 

unbalanced game in Figure 3a for Example 2; and III)  “players can’t produce better payoffs 

than V(N)” is no longer necessary for a non-empty usual NTU core. 

Recall that Z(Γ) in (21) is the set of unblocked and efficient generated-payoffs. Let 

(22)   Z(Γ)*= Z(Γ)∩[V(N)\∂ V(N)]C 

denote the subset of Z(Γ) that are also unblocked by the grand coalition N. Now, let the set of  

minimal balanced collections that generate Z(Γ) and Z(Γ)*  be denoted respectively by  

(23)   D0(Γ)={B∈B |GP(B)∈Z(Γ)}, and 

(24)   D1(Γ)= {B∈D0(Γ)|GP(B)∈Z(Γ)*}. 

Note that D0(Γ) is the NTU counterpart of the minimal set B0(Γ)={B∈B|gp(B)=mgp} in (11). 

Then, replacing the grand coalition’s payoff V(N) with the efficient payoffs EP in (18) yields 

the following new NTU core C(Γ) and set of efficient firms D*(Γ) : 

(25)           C(Γ) = { u∈EP(Γ) | uS∉V(S)\∂V(S), all S ⊆ N } 

           =
0

0

0 0
*

( )     if ( ) ( )
( )    if ( )  or if ( ) ( ) ( )  

( ) ( )    if ( ) ( ) and ( )

C    GP V N
Z     V N GP\ GP V N GP\ GP,GP V N ,C

C Z   V N GP\ GP,GP V N C ,

Γ Γ
Γ Γ

Γ Γ Γ

⎧ ⊂
⎪

⊂ ∂ ⊄ ∂ ⊄ = ∅⎨
⎪

∪ ⊄ ∂ ⊄ ≠ ∅⎩

 

(26)  D*(Γ) =
( )

( ) ( ) ( )
( )

0 0

1 0

{ } if

( )  if  or if ( )  

{ } ( ) if  and ( )

N         GP( ) V N

D  V N GP\ GP V N GP\ GP,GP V N ,C

N D V( N ) GP\ GP,GP V N C ,

Γ

Γ Γ

Γ Γ

⎧ ⊂
⎪

⊂ ∂ ⊄ ∂ ⊄ = ∅⎨
⎪ ∪ ⊄ ∂ ⊄ ≠ ∅⎩

 

where C0(Γ), GP(Γ), Z(Γ), Z(Γ)* , D0(Γ)  and DI(Γ)  are, respectively, the usual core in (15), 

generated payoffs in (15), unblocked and efficient generated-payoffs in (21), efficient 

generated-payoffs that are also unblocked by grand coalition in (22),  collections supporting 

Z(Γ) in (23), and collections supporting Z(Γ)*  in (24). 
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In words, the new NTU core or simply the NTU core is characterized in three cases, it 

is equal to: (i) the usual core if the game is balanced; (ii) the set of unblocked and efficient 

generated-payoffs if players can produce better payoffs than V(N) or if players can not 

produce better payoffs than V(N) and the game is unbalanced with an empty usual core; and 

(iii) the union of the usual core and a subset of the second case if players can not produce 

better payoffs than V(N) and the game is unbalanced with a non-empty usual core.  Figure 3a 

illustrates the difference between the usual NTU core (i.e., points d and e) and new NTU core 

(i.e., the segment of the edge linking all three peaks) in Example 2. 

Note that efficient firms in (26) are defined according to the three cases of the core in 

(25). There are five sets of efficient firms6 in Example 2: {N}, B2={12,3}, B3={13,2}, 

B4={23,1}, and B5={12,13,23}.  Now, our NTU Coase theorem, comprising the above 

answers, can be stated as: 

Theorem 4:  In coalitional NTU economy (14) without transaction costs, owners will 

produce the efficient payoffs by allocating inputs to efficient firms based on firms’ shadow 

values, and will choose an efficient payoff vector from the non-empty NTU core. 

Precisely, the efficient payoffs, core payoffs and efficient firms are given in (18), (25) 

and (26), respectively. Analogous to the TU case, the strong conclusion of NTU Coase 

theorem results from the advantages of utilizing generated-payoffs: in the usual NTU core, 

players just choose from ∂V(N); whereas in the newly defined NTU core, players choose from 

the game’s efficient payoffs, which in general are better than ∂V(N).  

6.  Conclusion and discussion 

                                                 
6  Keep in mind that efficient payoffs here are only weakly efficient. The payoff (2, 1, 2) is only weakly 

efficient, it is not efficient in the sense of Pareto because it is Pareto-dominated by (2, 2, 2). 
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The above analysis has explored the possibility that owners in a coalitional economy 

sometimes could produce better payoffs than the monopoly payoff. It has revealed that a 

firm’s shadow value is equal to its balancing weight and has represented the major aspects 

and main insights of the Coase theorem by two mathematical theorems in coalitional 

economies.  

By modeling non-market allocation of resources as a coalitional economy or 

bargaining economy, the paper not only has advanced coalition formation from partitions to 

minimal balanced collections but also has advanced the study of the Coase theorem in three 

areas. First, our two versions of the Coase theorem (i.e., Theorems 2 and 4) show that it is 

sometimes socially optimal for firms to shut down parts of their operations and for workers 

to have two or more part-time jobs. This conclusion, previously unreported, will provide a 

new line of argument in studying labor theory, production theory, and other related fields in 

economics. 

Second, our two versions show precisely how the size of transaction costs in each 

merger or coalition could prevent or allow its formation, and this provides a two-step 

procedure for empirically estimating the size of transaction costs involved in each previous or 

future application of the Coase theorem: 1) identify the merger (or the parties in the  

transaction problem under investigation) and convert it into a coalitional economy, and 2) 

compute its minimum no-blocking payoff (mnbp). The difference between the merger’s 

payoff and its mnbp is the estimated upper (lower) bound of transaction costs below (above) 

which the optimal outcome predicted by the Coase theorem holds (fails). 

Finally, our two versions have the potential to open doors for applying the Coase 

theorem to an endless range of future studies, not only to both TU and NTU transaction 

problems but also to all non-transaction problems that are modeled by coalitional games. 
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Appendix 

Proof of Theorem 1:   For each S≠N, let eS = (x1, …, xn)′∈ Rn
+ be its incidence vector or the 

column vector such that xi = 1 if i∈S and xi = 0 if i∉S, and e = eN = (1, …, 1)′  be a column 

vector of ones.  Then, the dual problem for the minimization problem (8) is the following 

maximization problem:  

(27) Max  {ΣS≠NyS v(S) | yS ≥ 0 for all S≠N; and ΣS≠NyS eS ≤  e}. 

We will show that (27) is equivalent to the maximization problem (6).  First, we show 

that the inequality constraints in (27) can be replaced by equation constraints. 

Let Ay≤ e and y≥0 denote the constraints in (27), where A = An×(2
n

-2) = [eS | S≠Ν ] is 

the constraint matrix, and y is the (2n-2) dimensional vector whose indices are the proper 

coalitions. Let the rows of A be a1, …, an, and for each feasible y, let T = T(y) = {i | ai⋅y <1} 

be the set of loose constraints, so N\T = {i | ai⋅y =1}  is the set of binding constraints.   

If T(y) ≠ ∅, let z be defined as:  zS = yS+(1- ai⋅y) if S = {i}, for each i∈T, and zS = yS if 

S ≠ {i} for all i∈ T.  One sees that z > y and T(z) =∅.  Hence, for any y with T(y) ≠ ∅, there 

exists z≥ 0, Az = e such that ΣS≠NyS v(S)≤  ΣS≠NzS v(S).  Hence, the feasible set of (27) can be 

reduced to {z | z≥ 0, Az = e}, without affecting the maximum value. So the maximization 

problem in (27) is equivalent to the following problem:   

(28) Max  {ΣS≠NyS v(S) | Ay = e, and y ≥ 0 }. 

Next, we establish the one-to-one relationship between the extreme points of (28) and 

the minimal balanced collections. Note that for each feasible y in (28), B(y) = {S | yS  > 0} is a 

balanced collection. Let y be an extreme point of (28). We now show that B(y)={S | yS  > 0} is a 

minimal balanced collection.   

Assume by way of contradiction that B(y) is not minimal, then there exists a balanced 

subcollection B’⊂ B(y) with balancing vector z.  Note that zS > 0  implies  yS > 0.  Therefore, for 

a sufficiently small t>0 (e.g., 0<t≤ ½, and t≤ Min {yS /|zS -yS| | all S with yS≠ zS}), one has 

w = y – t(y-z) ≥ 0, w’ = y + t(y-z) ≥ 0.   

Ay = e and Az = e lead to Aw = e and Aw’ = e.  But y = (w+w’)/2 and w ≠ w’ contradict the 

assumption that y is an extreme point.  So B(y) must be minimal.   

Now, let B = {T1, ..., Tk} be a minimal balanced collection with a balancing vector z.  
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We need to show that z is an extreme point of (28).  Assume again by way of contradiction 

that z is not an extreme point, so there exists w ≠ w’ such that z = (w+w’)/2.  By w≥ 0, w’≥ 0, 

one has 

{S | wS >0} ⊆ B ={S | zS >0}, and {S | w 'S >0} ⊆ B ={S | zS >0}. 

The above two expressions show that both w and w’ are balancing vectors for some 

subcollections of B.  Because B is minimal, one has w = w’ = z, which contradicts w ≠ w’.  

Therefore, z must be an extreme point of (28).           

Finally, by the standard results in linear programming, the maximal value of (28) is 

achieved among the set of its extreme points, which are equivalent to the set of the minimal 

balanced collections, so (28) is equivalent to Max {ΣS∈B ySv(S)}, subject to the requirements 

that N∉ B and B is a minimal balanced collection with the balancing vector y.   This shows 

that (27) is equivalent to the maximization problem (6) for mgp, which completes the proof 

for Theorem 1.         Q.E.D 

Proof of Lemma 1:  Given Theorem 1, it is straightforward to show parts (i-iii). Note that 

part (i) was first proved using Min{Σi∈Nxi |x∈X(v(N)), Σi∈Sxi≥v(S), all S⊆ N}.  Q.E.D 

Proof of Theorem 2:  Discussions before the theorem serve as a proof.  Q.E.D 

Our proof for Theorem 3 uses the following lemma on open covering of the simplex 

ΔN = X(1) = {x∈ Rn
+|Σ i∈Nxi

 = 1}. 

Lemma 3 (Scarf 1967a, Zhou 1994):   Let {CS}, S≠N, be a family of open subsets of ΔN that 

satisfy ΔN\{i}={x∈ΔN | xi
 = 0}⊂C{i} for all i∈N, and ∪S≠NCS = ΔN, then there exists a balanced 

collection of coalitions B such that ∩S∈BCS ≠ ∅. 

Proof of Theorem 3:   Let UBP be the set of unblocked payoffs in (19), and EGP be the 

boundary or (weakly) efficient set of the generated payoff in (17).  We shall first show that 

UBP∩ EGP ≠ ∅.   

For each coalition S≠ N, let WS = {Int V(S)×R−S}∩EGP be an open (relatively in EGP) 

subset of EGP, where Int V(S) = V(S)\∂V(S) is the interior of V(S).  For each minimal 

balanced collection of coalitions B, we claim that   
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(29)  ∩S∈BWS = ∅ 

holds.  If (29) is false, there exists y∈ EGP and y∈ Int V(S)×R−S for each S∈ B.  We can now 

find a small t >0 such that y+te∈ Int V(S)×R−S for each S∈ B, where e is the vector of ones.  

By the definition of generated payoffs in (17), y+te∈ GP(B) = ∩S∈ B{V(S)×R−S}⊂  GP, which 

contradicts y∈ EGP.  This proves (29). 

Now, suppose by way of contradiction that UBP∩ EGP = ∅.  Then, EGP⊂  UBPC, 

where superscript C denotes the complement of a set.  The definition of WS and    

UBPC = {∩S≠N{[V(S)\∂V(S)]C×R−S}}C =∪S≠N{Int V(S)×R−S} 

together lead to ∪S≠NWS = EGP, so {WS}, S≠N, is an open cover of EGP.  

 Because the set of generated payoffs is comprehensive and bounded from above, and 

the origin is in its interior (by ∂V(i)>0, all i), the following mapping from EGP to ΔN:  

  f: x → x/Σ xi, 

 is a homeomorphism.  Define CS = f(WS) for all S⊆ N, one sees that {CS}, S≠N, is an open 

cover of ΔN = f(EGP). 

For each i∈N, ∂V(i)>0 leads to EGP∩ {x∈Rn | xi =0}⊂ W{i} , which in turn leads to 

ΔN\{i}={x∈ΔN | xi
 = 0} = f(EGP∩ {x∈Rn | xi =0}) ⊂ C{i} = f(W{i}).  Therefore, {CS}, S≠N, is an 

open cover of ΔN satisfying the conditions of Scarf-Zhou open covering theorem, so there 

exists a balanced collection of coalitions B0 such that 

∩ S∈B0 CS ≠ ∅, or ∩ S∈B0 WS ≠ ∅,  

which contradicts (29).  Hence, UBP∩ EGP ≠ ∅. 

For each x∈ UBP∩EGP, we claim x∈ MNBF.  If this is false, we can find a small τ >0 

such that x-τe∈UBP.  Let B∈ B be the minimal balanced collection of coalitions such that 

x ∈ GP(B) = ∩S∈ B{V(S)×R−S}.  Then, x-τe ∈ Int V(S)×R−S for each S ∈ B, which contradicts 

x-τe ∈ UBP.   Therefore, MNBF∩EGP = UBP∩EGP ≠ ∅ .        Q.E.D 

Proof of Lemma 2 and Theorem 4:  The discussions preceding the lemma and theorem 

serve as their proofs.           Q.E.D 
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