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1 Introduction

In recent decades, many countries around the world have dramatically expanded their

transportation infrastructure (Fay et al., 2019). New highways, upgraded arterial roads,

and modern rail systems have extended the reach of national networks, shortened travel

times, and tightened economic integration across regions. These investments are typ-

ically motivated by their promise to unlock growth: by lowering trade and migration

costs, transport improvements can expand market access, facilitate labor mobility, and

accelerate the diffusion of ideas (Faber, 2014; Donaldson and Hornbeck, 2016; Donald-

son, 2018; Banerjee et al., 2020; Andersson et al., 2023). Yet, transport networks do

more than connect product and factor markets. They also serve as critical conduits for

accessing essential non-tradable services. One particularly important but underexplored

dimension is healthcare, where transport systems operate as vital links — timely access

to high-quality medical resources can be the difference between life and death (Dingel

et al., 2023).

In this paper, we study the impact of transportation infrastructure on health out-

comes through its role in improving access to healthcare services. We study this question

in the context of China for the following two main reasons. First, in recent decades,

China has witnessed the most rapid expansion of transportation infrastructure globally

(Egger et al., 2023). As illustrated in Panels (a) and (b) of Figure 1, between 2001 and

2018, the country’s road network more than tripled in length, growing from around 1.4

million kilometers to approximately 4.7 million kilometers, while its total railway network

expanded by about 2.2 times, from 59 thousand kilometers to 126 thousand kilometers.

This substantial growth in infrastructure has significantly enhanced regional connectivity

across the country. Specifically, Panel (c) shows that during the same period, the average

pairwise travel time across all prefecture-level city pairs declined by approximately 52%,

from 19.9 to 9.5 hours.1

Second, China has substantial spatial disparities in the distribution of healthcare re-

sources and, consequently, uneven access to care. Figure 2 illustrates the distribution of

1Throughout the paper, we refer to a prefecture-level city simply as a “city.”
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tertiary hospital beds across cities in 2018.2 As shown, more developed eastern provinces

had significantly greater numbers of tertiary hospital beds compared to their less devel-

oped western counterparts. When adjusted for population, the availability of tertiary

hospital beds per 10,000 population still varies from fewer than ten to more than two

hundred.3 Given the substantial spatial disparity in high-quality healthcare services, it is

important to understand the extent to which the development of the transport network

may facilitate access to care across locations, which further shapes both the overall level

and distribution of health outcomes in China.

(a) Road Network (b) Railway Network (c) City-Pair Travel Time

Figure 1: Transport Infrastructure and Travel Time in China (2001-2018)

Notes: Panels (a) and (b) plot the total lengths of road and railway networks, respectively, from 2001 to
2018 in China. Data Source: China Statistical Yearbook. Panel (c) plots the average travel time across
all city pairs over the same period. Data source: Ma and Tang (2024).

We draw on a unique administrative dataset that covers the universe of inpatient

admissions in 2017 and 2018 for one critically important disease category, cerebral-

cardiovascular diseases (CCVD), in Sichuan province, China. CCVDs are a leading cause

2Tertiary hospitals are the highest-level hospitals of the healthcare system. They are typically
large, comprehensive institutions with advanced medical equipment, specialized departments, and highly
trained staff, capable of providing the most sophisticated acute care and high-quality medical services.
Tertiary hospital bed counts are thus used as a proxy for high-quality healthcare capacity, distinguishing
them from secondary or primary hospitals that focus on more basic or community-level care.

3Appendix Figure A1 presents the distribution of tertiary hospital beds across cities in 2010. While the
number of tertiary hospital beds in each city—both in total and per 10,000 population—is substantially
lower in 2010 than in 2018, the spatial unevenness in their distribution is evident in both years.
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(a) Number of Tertiary Hospital Beds by Cities

(b) Number of Tertiary Hospital Beds per 10,000 Population by Cities

Figure 2: Spatial Distribution of Medical Resources in 2018

Notes: The figure displays the number of tertiary hospital beds and that adjusted for population across
cities in China in 2018. Data sources: 2019 Hospital Annual Report, China Health Commission. “No
data” indicate cities that are excluded because at least one required variable is missing or cannot be
reliably matched across sources. Administrative boundaries are shown at the prefecture level.
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of death in China, accounting for the highest disease-related mortality rate nationally,

and thus represent a salient setting for studying the mortality implications of healthcare

access. For CCVD patients, timely access to acute care is essential. Delays in treat-

ment can lead to rapid deterioration and irreversible health damage. As a result, patient

outcomes are highly sensitive to travel time.4 Our dataset records more than 600,000

admissions to hospitals in 21 cities in Sichuan. We further enrich these data by linking

them to annual hospital reports that document the availability of medical resources at

the city level, as well as to cross-city travel time measures compiled by Ma and Tang

(2024).

We uncover three key stylized facts that guide our understanding of CCVD patients’

travel behaviors. First, the availability of medical resources strongly shapes patient flows:

patients travel from locations with more limited medical resources to locations with more

abundant medical resources. Second, travel time is a critical barrier. Estimates from a

gravity equation specification show that a 1% increase in pairwise travel time is asso-

ciated with a roughly 2% reduction in the share of traveling patients. Finally, patient

characteristics interact with these frictions: higher-income individuals are more likely

to travel for care, particularly when facing severe health shocks, whereas lower-income

patients appear constrained even in serious cases. Together, these patterns highlight the

roles of medical resource availability and travel costs in shaping access to high-quality

care, as well as the importance of heterogeneity in income and severity when modeling

patient travel decisions.

Guided by the stylized facts, we develop a dynamic spatial model that captures how

individuals access healthcare services across a transportation network. In the model, in-

dividuals vary in their home location, income, and health status, while locations differ in

three key dimensions: the availability of medical resources (exogenous), the level of pa-

tient volume (endogenous), and their position within the transportation network. Health

4The data contain hospital admissions due to 1) cerebrovascular diseases (ICD-10: I63) which are
conditions caused by blood clots or blockages in the brain’s blood vessels that can lead to strokes and
related brain damage, and 2) coronary heart disease (ICD-10: I20) which refers to conditions caused by
reduced blood flow to the heart muscle, typically due to narrowed or blocked coronary arteries, which
can result in chest pain or heart attacks.
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outcomes, proxied by mortality and recovery probabilities, are jointly determined by a

location’s medical resources and its patient volume. In equilibrium, individuals experi-

encing a health shock with varying degrees of severity decide where to seek treatment

by weighing the expected effectiveness of care at alternative locations against the costs

of traveling. This framework allows us to evaluate how improvements in transportation

infrastructure influence the spatial allocation of patients and, ultimately, health outcomes

across regions.

We structurally estimate the key parameters of the model using an indirect inference

approach, matching model-generated moments to their empirical counterparts. Specifi-

cally, we target estimates of the impact of various determinants on the tendency to travel,

the distance elasticity in patients’ treatment location choices, and the impact of medical

resources and patient volumes on treatment outcomes. The model performs well in repli-

cating observed patterns in the data and produces robust estimates that capture the key

trade-offs individuals face when navigating healthcare access across space.

We extend our counterfactual analysis to the entire country. We simulate the impact

of transportation network improvements from 2010 to 2018. Using the structurally es-

timated model, we conduct counterfactual simulations to isolate the effect of enhanced

transport infrastructure while holding the distribution of medical resources and other

factors fixed at 2010 levels. Our findings suggest that the expansion of transportation

networks from 2010 to 2018 would have saved about 10,000 lives from CCVDs per year.

Improved connectivity enables faster access to high-quality care from remote areas, re-

sulting in a measurable reduction in the spatial disparity of health outcomes. However,

this convergence in regional health outcomes is largely driven by benefits accruing to

high-income individuals, who are more capable of overcoming the financial barriers to

seek out-of-city care. As a result, while geographic inequality in health has declined,

income-related disparities in health outcomes have widened, highlighting the regressive

distributional effects of transportation-led healthcare improvements in the absence of

targeted financial support.

This study contributes to both the urban economics and health economics litera-
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ture. While much of the urban economics literature focuses on the economic impacts

of transportation infrastructure through trade, labor mobility, and market competition

(Faber, 2014; Allen and Arkolakis, 2014; Donaldson, 2018; Banerjee et al., 2020; Asher

and Novosad, 2020; Allen and Arkolakis, 2022; Fang et al., 2025), our study adds to

a smaller but growing body of work on accessing critical non-tradable services such as

healthcare (Li, 2014; Dingel et al., 2023). Complementing this strand, a growing litera-

ture in health economics emphasizes the importance of travel costs in shaping healthcare

demand and outcomes (Ho, 2006; Ho and Pakes, 2014; Hackmann, 2019; Prager, 2020;

Fang et al., 2020). Our study contributes to this literature by studying not only the

aggregate health gains from improved transportation connectivity, but also their distri-

butional consequences. Based on a dynamic spatial model of hospital choice, we show

that shorter travel times reduce spatial disparities in health by encouraging cross-regional

healthcare utilization, yet simultaneously widen income-related health disparities by dis-

proportionately benefiting higher-income patients. Our findings underscore the impor-

tance of pairing transportation investments with means-tested subsidies to ensure more

equitable health benefits.

2 Institutional Background

2.1 Development of Transport Infrastructure in China

China’s transportation infrastructure underwent an unprecedented transformation start-

ing from the 1990s, characterized by massive investments in both highway and rail net-

works. Over the following three decades, the central government prioritized the construc-

tion of inter-provincial expressways and high-speed rail lines as part of its broader agenda

to integrate inland and coastal regions and to promote spatial equity. Notably, the ex-

pansion of the National Trunk Highway System (NTHS) brought many remote inland

regions into the national transportation network (Faber, 2014). As documented in Egger

et al. (2023), in 2000, the total length of China’s highway system was less than two-thirds

of the length of the US system; by 2014, however, China’s highway network had already
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grown to 183 percent of the total length of the US Interstate Highway System.

An equally remarkable, and perhaps more extensively studied, development is the in-

troduction of the high-speed rail (HSR) system. While the construction was at the trial

stages during the first decade of the 21st century, with only a few pilot lines in operation

(see the discussions in Ma and Tang, 2024), the pace of HSR expansion accelerated dra-

matically in the 2010s. By the end of that decade, the Chinese HSR system had become

the largest in the world, exceeding the second-largest system by a margin of 40 percent

(Egger et al., 2023). The network enabled efficient passenger mobility at unprecedented

speeds, especially between major urban centers, leading to a profound impact on the lo-

cal economy (Lin, 2017). While existing studies have primarily emphasized the economic

implications of transportation infrastructure, relatively little attention has been devoted

to its effects on medical access, thereby underscoring the novel contribution of our study.

2.2 Healthcare System in China

In China, public hospitals play a dominant role in the healthcare system, providing 85.3%

of outpatient services and 81.7% of inpatient services in 2018 (National Health Commis-

sion, 2019). Hospitals are classified in three tiers. Primary hospitals primarily provide

generalist clinical care and basic public health services, typically with fewer than 100

beds. Secondary hospitals, often equipped with 100 to 500 beds, provide comprehensive

healthcare services. Tertiary hospitals are usually general hospitals with more than 500

beds that provide the most sophisticated specialist services. They also play an impor-

tant role in medical education and research, and serve as prominent medical centers for

surrounding regions.

While hospitals at different tiers have designated functions, there is no gatekeeping

referral system to triage patients by medical severity, and patients typically seek hospital

care on a walk-in basis (Milcent, 2018). Tertiary hospitals do indeed charge higher prices

for their services compared to lower-tier hospitals, but the price differences are not sub-

stantial. Moreover, patients are reimbursed by public health insurance for care sought
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without referrals.5 As a result, despite accounting for only 7.7% of all hospitals in 2018,

tertiary hospitals provided 46% of inpatient care, amounting to 92.9 million inpatient

admissions (National Health Commission, 2019).

2.3 Inequality of Healthcare Resources

China’s healthcare system has long exhibited spatial disparity in healthcare resources—

including infrastructure, technology, and medical personnel—and, consequently, uneven

access to high-quality care. This disparity is not only due to regional differences in

population structure and healthcare demand, but more importantly, due to institutional

arrangements and economic reforms.

During China’s central planning period (1949–1978), healthcare infrastructure ex-

panded substantially but remained skewed towards urban areas (Burns and Huang, 2017).

Urban public health insurance schemes—the Government Insurance Scheme (GIS) for

public sector employees and the Labor Insurance Scheme (LIS) for state-owned enterprise

workers—secured high-quality, heavily subsidized healthcare resources for urban popula-

tions. Compared with urban areas, rural areas received far less government spending on

healthcare. The healthcare system in rural areas was based on the rural commune sys-

tem, which focused on promoting basic and preventive healthcare through various public

health campaigns—such as expanding nationwide immunization, and training indigenous

rural health workers (so-called bare-foot doctors). By the late 1970s, healthcare in rural

areas was mainly provided by bare-foot doctors and local clinics (Zhang and Kanbur,

2009).

Economic reforms since 1978 exacerbated healthcare inequality across regions. With

fiscal decentralization, local governments became increasingly responsible for funding

healthcare, resulting in significant regional variation in resource allocation (Milcent,

2018). Wealthier eastern provinces and urban areas could allocate more resources to

5Almost all residents in China are covered by public health insurance, which consists of two schemes:
urban employee basic medical insurance (UEBMI) and urban and rural residents basic medical insurance
(URRBMI). The first is a mandatory scheme for all employees and retirees (and their dependents) with
urban hukou; the second covers over 95% the remaining population in 2018. Data sources: https:

//www.gov.cn/xinwen/2019-03/02/content_5369865.htm
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healthcare infrastructure and professional training. In contrast, poorer western provinces

and rural areas lacked sufficient fiscal capacity to sustain healthcare investments. In

1980, urban areas had 4.57 hospital beds and 7.82 healthcare personnel per 1,000 people,

compared to just 1.48 beds and 1.81 personnel in rural areas; these gaps had increased

further by 2000.6

Since the 2009 healthcare reform, China has expanded public insurance coverage and

increased investment in healthcare infrastructure. However, regional disparities persist

due to uneven implementation. For example, public hospitals, which operate under strict

regulations, require lengthy approvals from multiple regulatory levels for infrastructure

investment and medical equipment procurement (Zhang, 2011). These processes heavily

rely on the local government’s fiscal capacity. Developed regions with more effective lo-

cal governance can expedite these processes, allowing hospitals to expand more quickly.

Conversely, hospitals in less developed regions often face significant challenges in obtain-

ing timely regulatory approval and adequate financial support. Consequently, hospitals

equipped with advanced medical equipment, more beds, and better-trained medical pro-

fessionals are predominantly concentrated in developed urban and eastern regions. For

instance, in 2018, Beijing had 47 tertiary hospitals per 10 million residents, whereas the

provincial-level average across the rest of China was 19 (National Health Commission,

2019).

3 Data

We use data from the fifth most populous province in China, Sichuan. Located in the

Southwest hinterlands, Sichuan covers a total area of 486,000 square kilometers with ap-

proximately 83 million residents as of 2024. Home to 21 cities, Sichuan is a large province:

its population is equivalent to that of Germany—exceeding that of the two largest states

combined in the U.S.. The province’s healthcare system and public health insurance

arrangements are broadly representative of those in China as a whole. The geography

6Data source: Comprehensive Statistical Data and Materials on 50 Years of New China (China State
Statistical Bureau, 2000).
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of Sichuan province can be divided into two distinct regions: the east and west. Eco-

nomically advanced cities are typically located in the east, owing to the Sichuan basin

characterized by its flat terrain and fertile soil (and thus able to support a large popu-

lation). On the contrary, less prosperous cities are located in the western mountainous

regions which are much less accessible. This province on a whole is landlocked and en-

closed by surrounding hills and mountains. As a result, transportation developments have

long been bottlenecks in the province before advancements in engineering technology.

Admission-Level Information. The patient admission-level information is drawn

from the hospital admission and discharge summary dataset, compiled by the Sichuan

Health Commission. This dataset includes comprehensive administrative hospitalization

records from Sichuan. It contains detailed inpatient records for all patients diagnosed

with CCVDs across all hospitals in the province for the years 2017 and 2018, including

demographic characteristics (such as age, gender, place of residence, and occupation) and

medical details (such as diagnosis, disease severity, procedure, and mode of discharge in

the form of recovery or death), as well as hospital identifier. We impute each patient’s

monthly income based on their occupation, age, and gender.7

Panel A of Table A1 presents summary statistics from the inpatient records. In our

sample, 45.7% of patients are female. Approximately 38.7% of cases are classified as

severe.8 We construct three commonly used measures of health outcomes: mortality,

recovery, and non-recovery within a 30-day window. Mortality is defined as an indicator

equal to 1 if a patient either (a) dies during hospitalization or (b) is readmitted within

30 days and subsequently dies during the second stay. This definition may underestimate

true mortality, as it does not capture deaths occurring outside the hospital. Recovery is

defined as an indicator equal to 1 if a patient is discharged and not readmitted within

30 days. The remaining cases—patients who are discharged, readmitted within 30 days,

and do not die during the second stay—are classified as non-recovered. Across the full

sample, 6% of patients died and 92.6% recovered during the sample period.

7Specifically, we impute income using the mean earnings of individuals in the same occupation–age-
gender group within the same province, where the mean earnings are estimated from the China Family
Panel Studies 2016 survey.

8Severity is defined based on admission labels indicating “critical” or “urgent” conditions.
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Hospital-Level Information. The hospital-specific information is from the 2018

hospital annual report, also obtained from the Sichuan Health Commission. This dataset

identifies hospital name, classification tier, ownership type, and the amount of medical

resources, such as the number of doctors, nurses, and inpatient beds. As summarized in

Panel B of Table A1, 8.9% of hospitals in Sichuan are classified as tertiary, 25.7% as sec-

ondary, and the remainder as primary or ungraded institutions. When combined with the

patient-level admission and discharge records described above, we find that despite rep-

resenting a small share of total hospitals, tertiary institutions account for 60% of CCVD

admissions in our sample. This concentration reflects their greater capacity to manage

complicated health conditions, with more specialized staff, advanced technology, and in-

frastructure. For example, tertiary hospitals have an average of 853 beds—substantially

more than lower-tier institutions. Given these advantages, we use the number of tertiary

hospital beds as our primary measure of local medical resources.

City-Level Information. The annual hospital report dataset also provides the

geographic location of hospitals, which allows us to aggregate the availability of medical

sources at the city level and assess its spatial variation. Panel B of Table A1 shows that

the average number of tertiary hospital beds per city is 9,230, with substantial variation

across locations (standard deviation is 10,600). Given the matched information on patient

hospitalization location, we find that on average, cities receive 15,860 CCVD patients per

year. By comparing hospital locations with patients’ places of residence, we find that

4.4% of CCVD patients in our sample received treatment in a city different from their

city of residence.

City-Pair-Level Information. Conditional on the distribution of medical re-

sources, travel costs also play a critical role in determining patient flows. To assess

the importance of travel costs, we link patient-level travel patterns with travel times be-

tween cities in Sichuan for relevant years. The travel time data are obtained from Ma and

Tang (2024), who carefully account for infrastructure quality when estimating road and

rail travel times. Panel D of Table A1 reports that the average road travel time between

city pairs is 4.4 hours, while the average rail travel time is 7.9 hours. When using the
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minimum of the two modes as the effective travel time, the mean is 4.3 hours.

4 Stylized Facts

In this section, we present three stylized facts that motivate our model of patients’ hospital

location choices.

4.1 Medical Resources

The majority of patients travel from areas with fewer medical resources to those with

more abundant ones, highlighting the role of healthcare resources in driving out-of-city

travel behaviors.9 Panel A of Figure 3 illustrates the relationship between the number

of tertiary hospital beds and the share of patients who seek hospital care outside their

city of residence. The figure indicates that patients residing in cities with fewer tertiary

hospital beds are more likely to travel for medical treatment. Panel B further shows

that these out-of-city patients are more likely to seek care in cities with more abundant

medical resources.

4.2 Travel Time

To isolate the effect of travel time, we estimate a standard gravity model in which the

share of patients traveling between city pairs is regressed on pairwise travel time, control-

ling for origin and destination fixed effects. As reported in Columns (1)-(3) of Table 1, a 1

percent increase in travel time is associated with a 1.92-2.05 percent decrease in the share

of patients traveling for hospital care, where the exact magnitude depends on whether

travel time is measured by rail, road, or the minimum of the two. When travel time

is instrumented using pairwise geographic distance, as reported in Columns (4)-(6), the

magnitudes of the estimated coefficients become slightly larger but remain qualitatively

consistent.

9We find that less than 6% of out-of-city patients in our sample travel from high-resource cities to
low-resource ones for hospital care.
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(a) Home city: share of out-of-city admissions
and number of tertiary hospital beds

(b) Destination city: share of cross-city admis-
sions and number of tertiary hospital beds

Figure 3: Medical Travel and Number of Tertiary Hospitals Beds

Notes: Panel (a) plots the share of out-of-city admissions among all patients from the home city
against the number of tertiary hospital beds in that city. Panel (b) plots the share of cross-city
admissions received by the destination city, among all cross-city admissions in the province,
against the number of tertiary hospital beds in the destination city. Each dot represents one
city. We plot the figure using the hospital annual report and hospital admission and discharge
summary datasets in 2018. Both panels focus on admissions for CCVD.

4.3 Severity and Income

In this section, we explore the impact of income and severity on a patient’s tendency

to travel out-of-city to seek hospital care. Figure 4 presents the relationship between

the monthly income (in logarithms) and the share of out-of-city hospital admissions (in

logarithms), stratified by disease severity. Conditional on severity, patients are grouped

into bins of 0.1 units in log income, and within each bin, we compute the share of

admissions that are out-of-city. The plotted dots represent these bin-level averages, with

red solid dots indicating severe cases and blue hollow dots indicating less severe cases.

The figure reveals a positive correlation between income and the likelihood of seeking care

outside the patient’s city of residence for both severity groups. Moreover, the slope of the

fitted line is notably steeper for severe patients, suggesting that higher-income individuals
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Table 1: Estimation results for the gravity equation

ln(Share of admissions outside the home city)

OLS IV

(1) (2) (3) (4) (5) (6)

ln(Minimum travel time) -2.031∗∗∗ -2.362∗∗∗

(0.278) (0.334)
ln(Travel time by rail) -1.919∗∗∗ -3.282∗∗∗

(0.290) (0.727)
ln(Travel time by road) -2.050∗∗∗ -2.529∗∗∗

(0.273) (0.303)

Origin-by-year FE Yes Yes Yes Yes Yes Yes
Destination-by-year FE Yes Yes Yes Yes Yes Yes
Observations 653 653 653 653 653 653

Notes: This table reports the regression results of a gravity equation in which we regress the share of patients
traveling between city pairs on pairwise travel time, controlling for origin and destination city fixed effects.
The number of observations used in the regressions (653) is smaller than the number of city-pair observations
in reported Table A1 (882), because 99 (88) city pairs have zero cross-city admissions in 2017 (2018), and
because Table A1 includes same-city pairs (i.e., a city paired with itself). Standard errors clustered at the
origin-by-destination-city level are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

with more severe conditions are particularly more likely to travel for medical care. This

pattern implies that income constraints may limit travel options for lower-income patients

even when faced with serious health conditions, while higher-income patients are more

responsive to medical need in their travel decisions.

5 A Model of Hospital Care Location Choice

Motivated by the empirical facts, we develop a dynamic discrete choice model to describe

patients’ hospital location choice decisions. The model incorporates spatial variation in

treatment quality and accounts for heterogeneity in patients’ income and disease severity.

We highlight the trade-off patients face between travel costs and expected treatment

outcomes when choosing where to seek care under dynamic health risks.

5.1 Model Setup

We study an infinite-horizon economy in discrete time, indexed by t = 0, 1, 2, . . ., with

a fixed set of cities indexed by k = 1, 2, . . . , K. Each city represents a distinct local
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Figure 4: Tendency to Medical Travel and Patient Characteristics

Notes: This figure plots patients’ tendency to seek out-of-city medical care by their monthly
income and severity in 2018. Conditional on severity, we divide admissions into bins of width
0.1 in ln(income). Within each bin, we calculate the share of out-of-city admissions, and plot
the values for severe (less severe) admissions in red (blue hollow) dots. The lines show fitted
values separately for each severity group.

healthcare market and is inhabited by a constant population of size Pk. We assume that

all individuals reside permanently in their home city k, but upon falling ill, they seek

hospital care either in their home city or in another city.10 Each individual i at time t is

described by two state variables: health status sit and productivity level zit.
11

Health Status. Health status sit is a discrete variable taking values in −1, 0, 1, . . . , S,

where s = −1 denotes death; s = 0 indicates good health; and s > 0 represents illness,

with larger values of s corresponding to greater severity.

Health status evolves stochastically over time. We use πs,s̄
kt to denote the probability

that an individual’s health status transitions from s in time t to s̄ in time t + 1. These

transition probabilities are specific to city k in time t. For example, a healthy individual

10We abstract from labor migration and focus on individuals’ location choice for hospital care.
11We broadly interpret “individuals” in our model as either individuals or households, acknowledging

that decisions about seeking hospital care are typically made at the family level, subject to the family’s
budget constraint.
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residing in city k faces a probability π0,s
kt of becoming sick with severity level s (s > 0). For

any patient with severity s (s > 0) who seeks hospital care in city k, regardless of whether

the patient resides in k or elsewhere, the mortality rate is πs,−1
kt , and the recovery rate is

πs,0
kt . We assume that greater severity leads to higher mortality rate and lower recovery

rate: πs′,−1
kt ≥ πs,−1

kt and πs′,0
kt ≤ πs,0

kt , ∀s′ > s > 0.

Productivity. A healthy individual’s productivity zit evolves over time according to

an AR(1) process in logarithmic form:

log zit = ρz log zi,t−1 + νt, νt ∼ N (0, σν) (1)

where ρz captures the autocorrelation of the productivity, νt is the productivity shock,

and σν its standard deviation.

Sickness with severity s (s > 0) reduces labor productivity by a factor δs ∈ (0, 1], so

that a sick individual’s productivity is only δszit. Higher severity leads to lower produc-

tivity, with δs
′ ≤ δs, ∀s′ > s > 0.

A healthy individual’s income is ωikt = wktzit, while a sick individual’s income is

ωs
ikt = δswktzit, where wkt is the wage rate for one efficiency unit of labor productivity in

city k at time t.

5.2 Individual Decisions

5.2.1 Healthy Individuals

Healthy individuals do not seek hospital care. Their behavior is passive: they earn

income, consume it fully in period t, and then transition either to another healthy state

or to an illness of severity s(s > 0) in t+ 1.12

The expected utility of a healthy individual i in city k at time t is

v0kt(zit) = u(wktzit) + βE

[(
1−

S∑
s=1

π0,s
kt

)
v0k,t+1(zt+1) +

S∑
s=1

π0,s
kt v

s
k,t+1(zt+1)

]
, (2)

12We assume that healthy individuals do not transition directly to death.

16



where the expectation E is taken over future productivity shocks. vsk,t+1(zi,t+1) is the

value function of the individual with health status s in time t+ 1 (s ≥ 0).

5.2.2 Sick Individuals

When an individual residing in city k becomes sick (i.e., s > 0), she chooses a destination

city l for hospital care. This decision depends on treatment quality, associated travel

costs, and location preferences across cities.

Treatment Quality. The treatment quality in city l is reflected by the recovery rate

(πs,0
lt ) and mortality rate (πs,−1

lt ) for inpatient cases in this city. We assume that these

rates are functions of local medical resources (mlt) and patient volume (plt). Greater

medical resources are expected to improve quality, whereas the effect of patient volume is

theoretically ambiguous: congestion may reduce effectiveness, while experience and learn-

ing effects from treating more patients may enhance treatment quality. We empirically

examine how treatment quality relates to mlt and plt using micro-level data, as discussed

in detail later.

Travel Costs. We consider two types of costs for medical travel from city k to l. The

first is a fixed monetary cost, denoted by λ > 0. We assume that this fixed cost is

uniform across cities. It primarily stems from non-geographical administrative barri-

ers that discourage patients from seeking hospital care out of their home city—such as

higher co-payment rates or reduced insurance coverage for certain procedures received

outside the local provider network. This cost directly reduces consumption. For a sick

individual i with severity s(s > 0), disposable income when receiving care in city l is

δswktzit − 1(l ̸= k) · λ. The second type of costs increases with travel distance. It cap-

tures transportation expenses, the opportunity cost of travel, emotional discomfort of

being far from home, and the loss of informal support from family and friends. Following

the urban economics literature (Stillwell et al., 2014; Bryan and Morten, 2019; Tombe

and Zhu, 2019), we assume that these distance-related costs reduce utility directly, and
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the associated disutility is denoted as τklt.
13

Idiosyncratic Preference. We follow the dynamic spatial literature, such as in Caliendo

et al. (2019) and Kleinman et al. (2023), and model the location choice as a dynamic

discrete choice problem. We allow for unobserved heterogeneity in individual preferences

for medical treatment across cities. In each period, individuals draw an independent and

identically distributed (i.i.d.) vector of idiosyncratic utility shocks across cities, {εl}Kl=1,

and the shocks follow a Type-I Generalized Extreme Value (GEV-I) distribution with

cumulative distribution function:

F (ε) = exp
{
− exp[−(ε+ γ̄)]

}
, (3)

where γ̄ is the Euler’s constant. The expression is equivalent to a Gumbel distribution

with location parameter −γ̄ and a shape parameter of 1.

Choice Set. Unlike standard dynamic discrete choice models, individuals’ choice sets

in our model vary by home city, income, and severity. This variation arises from the

feasibility constraints on disposable income: medical travel is feasible for an individual

only if disposable income after incurring the travel costs is strictly positive (i.e., δswktzit−

1(l ̸= k) · λ > 0). In addition, we impose a second constraint grounded in empirical

patterns observed in the data: individuals do not travel to cities with strictly worse

medical resources than those available in their home city k. That is, the medical resources

in the destination city l must satisfy ml ≥ mk. Taken together, we define the feasible

choice set for individual i in city k with severity s(s > 0) and productivity zit as:

Fs
kt(zit) ≡ {l ∈ K |ml ≥ mk and δswktzit − 1(l ̸= k) · λ > 0} , (4)

where K denotes the set of all possible destination cities indexed up to K.

Importantly, this choice set is guaranteed to be non-empty, as the home city k is

13The urban economics literature typically models migration costs that increase with travel distance
as disutilities rather than as direct monetary costs. We follow this convention to facilitate comparison
between our estimate of distance elasticity and those in the literature.
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always feasible for all individuals. By allowing individual-specific choice sets, the model

captures income-induced disparities in healthcare access and accounts for the sparsity of

patient flows between certain city pairs observed in the data.14 However, this flexible

setup also introduces subtleties in the recursive formulation of value functions, which we

discuss below.

Recursive Problem. We formulate the sick individual’s decision as a recursive prob-

lem. In each period, a sick individual i with severity s(s > 0), residing in city k, chooses

a destination city l for hospital care to maximize expected lifetime utility. Let vskt(zit)

denote the value function of the individual. The recursive problem is given by:

vskt(zit) = max
l∈Fs

kt(zit)

{
u(δswktzit − 1(l ̸= k) · λ)− τklt + κεl

+ E

[
β
[
πs,0
lt v

0
k,t+1(zi,t+1) +

(
1− πs,0

lt − πs,−1
lt

)
vsk,t+1(zi,t+1)

] ]
− ε̄skt(zit)

}
.

(5)

The individual’s flow utility at time t includes consumption utility, travel disutility, and

an idiosyncratic preference shock for city l. The parameter κ captures the importance

of preference shock relative to travel disutility in determining hospital choices; as will be

shown in Section 5.5, κ is the inverse of the distance elasticity of seeking hospital care. A

higher κ implies that hospital choices are more influenced by the preference shock and less

sensitive to travel disutility. The individual’s future value depends on the probabilities of

recovery, death, and remaining sick. Specifically, the individual recovers with probability

πs,0
lt and returns to the healthy value function; dies with probability πs,−1

lt , yielding zero

future utility ( v−1
k,t+1 = 0); or remains ill with probability 1 − πs,0

lt − πs,−1
lt .15 This value

function specification yields a multinomial logit form for location choice, providing closed-

form expressions for expected choice values.

The last term in Eq. (5) corrects the utility drift due to the variability of the choice

14Approximately 20% of city pairs have zero observed patient flows in the data.
15For tractability, we assume that individuals who remain ill stay at the same severity level s(s > 0),

but the model can be flexibly extended to allow transitions across different severity levels without altering
the baseline framework.
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set Fs
kt(zit) across individuals. While this variability helps capture the role of income in

location choices, it also causes the value function vskt(zit) to vary mechanically with the

size of the choice set. Intuitively, in discrete choice models, individuals value the number

of choices—the more choices, the higher the ex-ante utility. In our context, this feature

implies that with a large enough K, individuals might even prefer being sick, due to the

additional utilities derived from the preference shocks. Recall that healthy individuals

are passive and do not draw any ε shocks. To address this issue, we adjust the sick

individual’s value function by subtracting ε̄skt(zit) = κ · logF s

kt (zit), where F
s

kt (zit) is the

cardinality of the choice set Fs
kt(zit). ε̄

s
kt(zit) represents the expectation of εl conditional

on city l being the optimal choice within the feasibility set. Appendix B.1 provides more

mathematical details.

Figure 5 presents the timeline of the sick individual. At the beginning of the time

period t, the individual observes the realization of idiosyncratic preference shocks {εl}Kl=1

and the distribution of medical resources (mlt) across all potential destination cities,

while forming expectations about patient volumes (plt) in these cities. Based on this

information and expectation, the individual selects a city l for hospital care. She then

incurs the fixed monetary cost λ, consumes the residual income δswktzit − 1(l ̸= k) · λ,

and experiences travel disutility τklt. At the end of the period, the treatment outcome

is realized, and the individual transitions to one of the three states in the next period:

recovery (returning to health), continued illness, or death (exiting the model). The entire

model can be represented as a Markov process over S + 2 health states, as detailed in

Online Appendix Section B.3.

5.3 Aggregation

Law of Motion for Population. We now describe the evolution of the population

across health states and productivity levels in each city. Let Ls
kt(zt) denote the number of

individuals whose home city is k at time t, with health status s and productivity level zt.

For notational simplicity, we suppress the individual index i in the subscript whenever

doing so does not create confusion.
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Observe {εl} and {mlt};
form expectations about {plt}

Select treatment
city l

Incur travel cost λ and consume
δswktzit − 1(l ̸= k)λ;

experience travel disutility τklt

Realize treatment outcome
Remain ill
(si,t+1 = s)

Recovery
(si,t+1 = 0)

Death
(si,t+1 = −1)

Start of period t

End of period t

Transition to period t+ 1

Figure 5: Timeline of Sick Individual’s Decision and Health Transition at Time t

Healthy population in home city k at time t, L0
kt(zt), consists of three groups: (i)

healthy individuals at t − 1 who remain healthy; (ii) sick individuals who sought care

either inside or outside home city at t−1 and recover by time t; and (iii) healthy newborns

who replace deceased individuals. Here, we assume that each deceased individual at time

t− 1 is immediately replaced by a healthy newborn in the same city at the beginning of

time t.16 This ensures a constant total population and facilitates a stationary analysis.

Accordingly, the law of motion for the healthy population is given by:

L0
kt(zt) =

(
1−

S∑
s=1

π0,s
kt

)∫ ∞

0

L0
k,t−1(zt−1)g(zt|zt−1)dG(zt−1)︸ ︷︷ ︸

Persistently Healthy

+

∫ ∞

0

S∑
s=1

K∑
l=1

πs,0
l,t−1µ

s
kl,t−1(zt−1)L

s
k,t−1(zt−1)g(zt|zt−1)dG(zt−1)︸ ︷︷ ︸

Newly Recovered

+

∫ ∞

0

S∑
s=1

K∑
l=1

πs,−1
l,t−1µ

s
kl,t−1(zt−1)L

s
k,t−1(zt−1)g(zt|zt−1)dG(zt−1)︸ ︷︷ ︸

Newborns Replacing Deceased

. (6)

16This assumption is plausible in our context because the population size in Sichuan province remained
relatively stable over the two years in our sample. Although we assume that all newborns are healthy,
they could alternatively follow any exogenous health distribution without affecting our analysis.
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In the equation, g(zt|zt−1) is the density of zt conditional on its previous realization zt−1.

The term µs
kl,t−1(zt−1) denotes the probability that a sick individual with severity s > 0

chooses city l for hospital care at time t−1, which satisfies
∑K

l=1 µ
s
kl,t−1(zt−1) = 1. As will

be shown in the model solution (Section 5.5), this probability depends on the individual’s

productivity draw at time t− 1.

The sick population originating from city k with severity s > 0 at time t, Ls
kt(zt),

consists of two components: (i) newly sick individuals who transition from the healthy

state at t−1, and (ii) existing sick individuals who remain ill. Formally, the law of motion

is

Ls
kt(zt) =

∫ ∞

0

π0,s
kt L

0
k,t−1(zt−1)g(zt|zt−1)dG(zt−1)︸ ︷︷ ︸

Newly Sick

+

∫ ∞

0

K∑
l=1

µs
kl,t−1

(
1− πs,−1

l,t−1(zt−1)− πs,0
l,t−1(zt−1)

)
Ls
k,t−1(zt−1)g(zt|zt−1)dG(zt−1)︸ ︷︷ ︸

Stay Sick

.

(7)

The healthy and sick populations together constitute the total population of the city,

which remains constant over time:

∫ ∞

0

L0
kt(zt) +

S∑
s=1

Ls
kt(zt)dG(zt) = Lk (8)

Congestion. The total number of patients seeking care in city l at time t is endoge-

nously determined by the aggregation of incoming sick individuals from all origin cities:

plt =

∫ ∞

0

S∑
s=1

K∑
k=1

µs
klt(zt)L

s
kt(zt)dG(zt) (9)

This endogenous congestion variable plays a crucial role in determining health outcomes,

as it affects both recovery and mortality rates.
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5.4 Equilibrium

Given a sequence of city-specific fundamentals—including wage rates wkt, medical re-

sources mkt, and initial populations Lk—as well as a fixed monetary travel cost λ and

bilateral travel disutility τklt, a sequential equilibrium consists of time paths for value

functions vskt(zt) and population distributions Ls
kt(zt) such that:

1. Individuals choose cities for hospital care by solving dynamic problems. In partic-

ular, sick individuals with severity s > 0 choose a city l to maximize their expected

utility, as defined in Eq. (5), subject to the distribution of patient volumes across

cities ({plt}Kl=1).

2. Rational expectations are imposed such that individuals’ beliefs about the law of

motion for population and the distribution of patient volumes are consistent with

the aggregate dynamics implied by individual decisions. That is, in equilibrium,

Eqs. (6)-(9) must hold when evaluated using the endogenous choice probabilities

µs
klt(zt) derived from the individual-level optimization problems.

Steady State. With time-invariant city fundamentals and travel costs {ωk,mk, Lk, λ, τkl},

the steady state of the economy consists of constant value functions and population distri-

bution {vsk(z), Ls
k(z)} that satisfy the definition of a sequential equilibrium. In this steady

state, we can analyze long-run implications of counterfactual changes in transportation

networks or medical resources allocations.

5.5 Solution

To solve the model, we focus on the sick individual’s dynamic problem described in

Eq. (5). Since the idiosyncratic preference shocks εl follow a GEV-I distribution, we can

derive closed-form expressions for city choice probabilities, conditional on the feasibility

constraints of the choice set. Specifically, for a sick individual residing in city k, with

severity s(s > 0) and productivity level zt, the probability of choosing city l for hospital
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care is:

µs
klt(zt) =


exp[v(δswktzt−1(l ̸=k)·λ)−τklt+βW s

kl,t+1(zt+1)]
1/κ

∑
l′∈Fs

kt
(zt)

exp
[
u(δswktzt−1(l′ ̸=k)·λ)−τkl′t+βW s

kl′,t+1
(zt+1)

]1/κ if l ∈ Fs
kt(zt)

0 otherwise

. (10)

In the above equation, we useW s
kl,t+1(zt) to denote the individual’s expected continuation

value conditional on choosing destination l:

W s
kl,t+1(zt) = E

[
πs,0
lt v

0
k,t+1(zt+1) +

(
1− πs,0

lt − πs,−1
lt

)
vsk,t+1(zt+1)

]
, (11)

where the expectation E is taken with respect to both preference shocks and productivity

shocks in the future. 1/κ in Eq. (10) is the distance elasticity of seeking hospital care

out-of-city: a higher κ implies less sensitivity to travel disutility and greater willingness

to travel out-of-city for care.

Following the urban and trade literature (see, e.g., Ahlfeldt et al., 2015; Donaldson

and Hornbeck, 2016; Donaldson, 2018), we interpret the denominator of Eq. (10),

Φs
kt(zt) =

∑
l′∈Fs

kt(zt)

exp
[
u(δswktzt − 1(l′ ̸= k) · λ)− τkl′t + βW s

kl′,t+1(zt+1)
]1/κ

, (12)

as the “medical access” for individuals residing in city k with severity s(s > 0) and

productivity zt. Appendix B.2 and Appendix C.1 provide additional details and the full

algorithm for solving the model in steady state.

5.6 Remarks

Before quantifying model parameters, we make two remarks. First, unlike predominantly

static frameworks in prior works (Ho and Pakes, 2014; Hackmann, 2019), our dynamic

model recognizes that patients face sequential treatment choices as their health and in-

come status evolve stochastically over time. By incorporating forward-looking behavior,

we capture how patients weigh not only immediate treatment outcomes but also the con-

tinuation value of accessing high-quality care under ongoing uncertainty. At the aggregate
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level, the dynamic model allows congestion at treatment destinations to feed back into fu-

ture treatment quality and subsequently, patients’ location choices and health outcomes.

These mechanisms are essential for understanding how infrastructure investments gener-

ate health benefits through multiple reinforcing channels over time, revealing equilibrium

effects that static models would miss.

Second, we do not explicitly model the supply side of the market. We incorporate

healthcare prices into patients’ cost functions. Moreover, in balancing healthcare supply

and demand, prices can be substituted by patients’ waiting times. Waiting times, which

are determined by the interaction of medical resources and patient volume in the desti-

nation city, affects the production of treatment quality. Although waiting times are not

explicitly modeled in our framework due to the lack of data, Appendix B.4 details how

they influence treatment quality and how we capture this channel using observed medical

resources and patient volumes. This provides the microfoundation for our parameteri-

zation of treatment outcomes as functions of medical resources and patient volumes in

Section 6.2.1. Therefore, in our model—as in Dingel et al. (2023)—prices do not play an

active role in equilibrium; instead, the market clears through endogenous adjustments in

treatment quality.

6 Quantification

Based on the model solution in steady state, we now quantify key parameters of the

model. Each city is defined as a prefecture-level administrative region within Sichuan

province, resulting in 21 cities in total, and each time period corresponds to one month.

6.1 Calibration

We first calibrate a list of parameters based on empirical evidence grounded in the liter-

ature.

Fixed Costs of out-of-city care (λ). This parameter governs the feasibility of medical

travel: a larger λ implies fewer individuals can afford to seek care outside their home city.
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We calibrate λ = 0.0005 to match the average cardinality of choice sets observed in the

data. 17

Time Discount Factor (β). We set the monthly discount factor at β = 0.981/12 ≈

0.9983, corresponding to an annual real discount rate of 2%. This assumption is standard

in dynamic models of intertemporal choice and reflects a moderate degree of impatience

among patients.

Severity Level (s(s > 0)). Based on the hospital admission and discharge summary

data, we categorize sick individuals into two severity levels (S = 2), distinguishing be-

tween less severe (s = 1) and severe (s = 2) patients.

Income Loss Due to Illness (δs). The parameter δs captures the proportional re-

duction in income associated with illness of severity level s(s > 0). Using the hospital

admission and discharge summary data, we find that patients—regardless of severity—

spend approximately one-third of their working days in the hospital. Since this share does

not vary significantly across severity types, we calibrate δs = 1
3
for all s, implying that

being hospitalized results in a two-thirds reduction in income over the hospitalization

period.

Disease Incidence Probabilities (π0,s). We compute monthly disease incidence prob-

abilities as the number of admission cases with CCVD conditions in our sample divided

by the total population. The probabilities are stratified by severity level:18 π0,1 = 0.00354
24

and π0,2 = 0.00223
24

.

Wage Rates (wkt). We impute wkt using the city-level average income.

17We compute the average cardinality in the data as follows. Conditional on an origin city k, the
cardinality of choice sets is the number of destination cities that we observe non-zero patient flows. The
average cardinality is then the mean across all origins, calculated as

∑K
l=1

∑K
k=1 1(pkl > 0)/K.

18The incidence probability of CCVDs varies widely across populations, depending on numerous factors
including age, sex, ethnicity, and pre-existing health conditions. For example, the estimated incidence
rate is about 92 cases per 100,000 persons per year in Japan (Liu et al., 2025), while over 1,000 per
100,000 in the UK (Conrad et al., 2024).
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Persistence of Income Process (ρsz). We do not estimate ρz directly from our data

but instead adopt values from Fan et al. (2010), who estimate the income process in

China. They find that the persistence parameter at the yearly level is 0.917, which

corresponds to ρz = 0.9171/12 ≈ 0.99 at the monthly level.

Standard Deviation of Productivity Shocks (σν). According to Eq. (1), the vari-

ance of log z in the stationary distribution satisfies

Var(log z) = ρ2z Var(log z) + σ2
ν ,

which rearranges to

σν =
√

(1− ρ2z)× Std(log z).

Thus, the standard deviation of productivity shock depends on the persistence of shocks,

ρz, and the cross-sectional dispersion of log z.

We measure the dispersion of log z using the dispersion of income, since individual

income ωikt = wktzit, and any constant scaling of income does not affect the dispersion

of log income:

Std
(
log(ωikt

wkt
)
)
= Std

(
log(ωikt)− log(wkt)

)
= Std(log(ωikt))

for any wkt > 0. From our individual-level data, we compute the standard deviation of log

income as 1.62719. Plugging this value into the formula yields σν =
√

1− ρ2z × 1.62719.

Utility Function. We assume a Constant Relative Risk Aversion (CRRA) utility func-

tion of the form

u(c) =
c1−ϱ − 1

1− ϱ
, c ≥ 0,

and set ϱ = 2, following standard practice in the macroeconomics literature (see, e.g.,

Mendoza, 1991; Aguiar and Gopinath, 2007).
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6.2 Indirect Inference

Conditional on the calibrated parameters, we then estimate the remaining key parameters

using indirect inference. These include: (i) the inverse distance elasticity of medical travel

(κ); (ii) the parameters governing the relationship between travel disutility (τklt) and

travel distance; and (iii) the parameters linking recovery and mortality rates ({πs,0
lt , π

s,−1
lt })

to medical resources and patient volume. We specify the functional form of τklt and

{πs,0
lt , π

s,−1
lt } below.

6.2.1 Parameterization

Travel Disutility. We parameterize travel disutility as

τklt =

exp (η0 + η1Dklt) , if l ̸= k

0 if l = k
, (13)

where Dklt is the observed passenger travel time between cities k and l at time t that we

take from Ma and Tang (2024). The parameters {η0, η1} determine how travel disutility

scales with intercity distance. They play a central role in quantifying the deterrent effect

of travel time on medical travel decisions.

Recovery and Mortality Rates. The probability of recovery or death for a patient

seeking care in city l at time t depends on both the quantity of medical resources mlt

and congestion of patient plt in l. We parameterize the relationships using a multinomial

logistic specification:

πs,0
lt =

exp [γs,0(mlt, plt)]

1 + exp [γs,0(mlt, plt)] + exp [γs,−1(mlt, plt)]
, (14)

πs,−1
lt =

exp [γs,−1(mlt, plt)]

1 + exp [γs,0(mlt, plt)] + exp [γs,−1(mlt, plt)]
, (15)
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where γs,0(·) and γs,−1(·) are log-linear in mlt and plt:

γs,0(mlt, plt) = γsH1 + γsH2 log (mlt) + γsH3 log (plt) , (16)

γs,−1(mlt, plt) = γsD1 + γsD2 log (mlt) + γsD3 log (plt) . (17)

The above specifications allow medical resources and patient volume to impact treatment

outcomes in a nonlinear way. We measure mlt as the total number of beds in tertiary

hospitals, which is observed directly from the hospital annual reports. The patient volume

plt is endogenously determined in the model (Eq. (9)).

6.2.2 Parameter Identification and Estimation

κ and {η0, η1}

We identify these parameters through two auxiliary regressions derived from the model-

implied gravity equation. Taking logs on both sides of Eq. (10), we arrive at the gravity

equation of estimation:

log µs
klt(zt) =

β

κ
W s

kl,t+1(zt) +
1

κ
u (δswktzt − 1(l ̸= k) · λ)︸ ︷︷ ︸

extensive margin

−1

κ
exp (η0 + η1Dklt)︸ ︷︷ ︸

intensive margin

−Φs
kt(zt).

(18)

In the above equation, the term δswktzit − 1(l ̸= k)λ determines whether the individual

seek care outside the home city—extensive margin of medical travel—since out-of-city

care is feasible only when disposable income after paying the fixed cost remains positive.

Conditional on this feasibility, the distance-related disutility between cities k and l, τklt =

exp(η0+η1Dklt), affects the probability of choosing destination city l for hospital care—the

intensive margin.

According to Eq. (18), variation in the extensive margin of medical travel induced by

income conditional on disease severity helps identify κ.19 Based on this observation, we

19In dynamic equilibrium, the value functions summarized by the W and the Φ affect the choice
probability. As both terms are also functions of severity, we control for severity in the auxiliary regressions
to alleviate concerns of omitted variable bias.
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specify the first auxiliary regression in indirect inference, which is an individual-level

linear probability model that relates the probability of seeking out-of-city care to income

and severity:

1(l ̸= k|s)i = αout
1 + αout

2 log (Incomeik) + αout
3 sik + αout

4 log (Incomeik) sik + νik, (19)

where the dependent variable equals 1 if individual i in city k seeks out-of-city care and 0

otherwise. We use the coefficients {αout
1 , αout

2 , αout
3 , αout

4 } as moment conditions to identify

κ . The regression results are reported in Online Appendix Table A2.

Conditional on identifying κ, variation in the intensive margin with travel time (Dklt)

helps identify η0 and η1. We therefore derive the second auxiliary regression, which

is the reduced-form gravity equation that captures the relationship between patient flows

to travel time:

log µkl = αpair
1 + αpair

2 log (Travel Timekl) + αpair
3

ml

mk

+ αpair
4

pl
pk

+ FEl + FEk + νkl, (20)

where µkl is the share of patients from city k seeking hospital care in city l. The regression

is conducted at the city-pair level. We control for the relative medical resources and

patient volume between the destination and the home cities, as well as the fixed effects

for both cities. The coefficients {αpair
1 , αpair

2 , αpair
3 , αpair

4 } serve as the moment conditions

to identify {η0, η1}. The regression results are reported in Online Appendix Table A3.

γsH(·) and γsD(·)

As shown in Eqs. (14)-(17), the parameters of γsH(·) and γsD(·) map the destination-specific

treatment outcomes to medical resources (mlt) and patient volume (plt) in the destination

city. To capture these relationships empirically, we estimate the third set of auxiliary

regressions at the individual level:

1 (s̄ = 0|s, l)i = αsH
1 + αsH

2 log (ml) + αsH
3 log (pl) + νsHil (21)

1 (s̄ = −1|s, l)i = αsD
1 + αsD

2 log (ml) + αsD
3 log (pl) + νsDil . (22)
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In Eq. (21), the dependent variable equals one if patient i with severity s(s > 0) recovers

after receiving care in city l, and zero otherwise; in Eq. (22), it equals one if the patient

passes away and zero otherwise. The regressions are estimated separately for each severity

level s(s > 0). We employ the coefficients {αsH
1 , αsH

2 , αsH
3 } and {αsD

1 , αsD
2 , αsD

3 } as the

moment conditions in indirect inference. Corresponding regression results are reported

in Online Appendix Table A4.

In total, we have 15 (= 3 + 3 × 2 + 3 × 2) parameters to be estimated, collected in

Θ = {κ, η0, η1, γsH(·) , γsD(·) }, and we use 20 (= 4 + 4 + 3 × 2 + 3 × 2) moment conditions

for indirect inference. Let A = {αout
(·) , α

pair
(·) , α

sH
(·) , α

sD
(·) } denote the vector of coefficients in

the auxiliary regressions, and let Ãr(Θ) denote the corresponding coefficients obtained

from the r-th simulation, with r = 1, . . . , R. The indirect inference estimator solves the

following minimization problem:

min
Θ

[
A− 1

R

R∑
r=1

Ãr(Θ)

]′
W

[
A− 1

R

R∑
r=1

Ãr(Θ)

]
, (23)

where W is the diagonal weighting matrix in which the ith diagonal equals the inverse

of the squared standard errors of the ith elements in A. In our implementation, we draw

and simulate the same number of patients as in the reduced-form estimation, and set

R = 100. Appendix C.3 provides more technical details on the estimation procedure.

6.2.3 Estimation Results

The estimation yields precise structural parameter estimates, as summarized in Table 2.

Figure (A2) in the Online Appendix assesses the model’s fit, showing that the targeted

moments are matched closely overall.

The results indicate that CCVD patients are highly sensitive to travel disutility in

medical travel. The estimate of κ = 0.249 implies a semi-elasticity of travel probability

with respect to travel disutility (τklt) of −1/κ ≈ −4 (see Eq. (18)). Under this elasticity,

increasing τklt from the 25th to the 75th percentile of the 2010 transportation network

would reduce the probability of out-of-city medical travel to essentially zero.20 This

20On the 2010 transportation network, the 25th percentile of τkl across all city pairs is 3.15 and the
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Table 2: Estimation Results

name value s.e. note

κ 0.249∗∗∗ 0.030 inverse travel elasticity

η0 0.062 0.052 travel cost function, intercept

η1 0.144∗∗∗ 0.031 travel cost function, slope

γ1H
1 1.735∗∗∗ 0.063 recovery rate, intercept, s = 1

γ1H
2 0.133∗∗∗ 0.022 recovery rate, slope on ml, s = 1

γ1H
3 −0.288∗∗∗ 0.050 recovery rate, slope on pl, s = 1

γ2H
1 0.958∗∗∗ 0.071 recovery rate, intercept, s = 2

γ2H
2 0.102∗∗∗ 0.027 recovery rate, slope on ml, s = 2

γ2H
3 −0.314∗∗∗ 0.076 recovery rate, slope on pl, s = 2

γ1D
1 −3.088∗∗ 1.543 mortality rate, intercept, s = 1

γ1D
2 −2.488∗∗∗ 0.868 mortality rate, slope on ml, s = 1

γ1D
3 0.749 0.942 mortality rate, slope on pl, s = 1

γ2D
1 −4.113∗∗∗ 0.374 mortality rate, intercept, s = 2

γ2D
2 −1.044∗ 0.612 mortality rate, slope on ml, s = 2

γ2D
3 −1.102∗∗∗ 0.150 mortality rate, slope on pl, s = 2

Notes: This table reports the results of the indirect inference. The asymptotic standard errors
are computed using formulas reported in Online Appendix C.3. 1/κ is the elasticity of travel
probability with respect to travel costs. {η0, η1} are the parameters of the travel cost function.
{γsH(.) } are the parameters governing the recovery rate as a function of medical resources (ml)

and patient volume (pl). Similarly, {γsD(.) } are the parameters governing the mortality rate as a
function of the same variables.

estimated elasticity is higher than the estimates of labor migration elasticity documented

in the literature.21 This is because we focus on CCVD patients. They face steep increases

mental and physical discomfort from additional travel time, and many CCVD conditions

progress rapidly, making their travel decisions very sensitive to travel time.

The remaining parameter estimates in Table 2 align well with intuition and established

medical patterns. Travel disutility increases with travel time (η1 > 0). Better medical

resources raise recovery rates (γ1H2 > 0 and γ2H2 > 0) and reduce mortality rates (γ1D2 < 0

and γ2D2 < 0) for both less severe (s = 1) and severe (s = 2) CCVD cases. We also find

negative impacts of patient congestion on recovery: conditional on medical resources,

75th percentile is 11.50, implying ∆ logµkl ≈ −(1/κ)(11.50 − 3.15) = −33.53. This change in log µkl

corresponds to multiplying µkl by e−33.53 ≈ 2.8× 10−15, effectively driving the probability of out-of-city
medical travel to zero.

21For example, Tombe and Zhu (2019) estimated the labor migration elasticity to be around 1.5 using
the Chinese data; Stillwell et al. (2014)’s estimation based on the European data is between 1.4 and 2.2;
Bryan and Morten (2019) estimated the elasticity to be 2.7 using Indonesian data.
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higher patient volumes reduce the recovery rate (γ1H3 < 0 and γ2H3 < 0). The impacts on

mortality are more nuanced. For less severe cases, higher patient volumes tend to increase

mortality (γ1D3 > 0), though the effect is statistically insignificant. In contrast, for severe

CCVD cases, greater patient volumes are associated with lower mortality (γ2D3 < 0),

which may reflect learning-by-doing or agglomeration effects in specialized care, or the

prioritization of treating the most severe patients in hospitals.

A comparison between the model estimates of γsH(·) and γsD(·) and the estimated coeffi-

cients (αsH
(·) and αsD

(·) ) in the third set of auxiliary regressions (Online Appendix Table A4)

shows that their signs do not necessarily coincide, even though both sets of parameters

relate treatment outcomes to medical resources and patient volumes. For instance, our

model estimates indicate that greater patient congestion increases mortality rates for less

severe cases (γ1D3 > 0), whereas the auxiliary regression in Eq. (22) shows a negative

correlation between patient volumes and mortality (α1D
3 < 0). This discrepancy arises

because the auxiliary regressions capture only the correlations between patient volumes

and treatment outcomes in equilibrium, not the causal effect of congestion. Patient vol-

ume plt affects treatment quality, but it is also endogenously determined by individuals’

city choices, which in turn depend on the treatment quality of each destination city. Our

model explicitly accounts for this endogenous determination of plt, allowing us to separate

the causal effects of patient volumes on treatment outcomes from the sorting of patients

across cities. These causal effects are captured by γsH3 and γsD3 .

7 Quantitative Results

Based on these structural parameters, we can quantitatively evaluate the impacts of

transportation networks on healthcare outcomes through counterfactual analysis.

We extend the counterfactual analysis to all cities in China. Implementing the anal-

ysis does not require individual-level data; instead, based on our model, we only need

four sources of information: 1) the city-level population, 2) the city-level average income,

3) the city-level medical resources, and 4) the travel distance between cities. We obtain
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population data from the Chinese Population Census, income data from the China City

Statistical Yearbooks, the number of tertiary hospital beds from the China Health Com-

mission, and transportation networks from Ma and Tang (2024). The counterfactual

sample includes 263 cities, the largest common set across all four data sources. This

sample accounts for roughly 96 percent of the national population and 98 percent of eco-

nomic output between 2010 and 2018. Figure A3 in the Online Appendix maps the cities

included in our counterfactual analysis.

Our analysis examines the impacts of changes in transportation networks between

2010 and 2018, during which the average travel time across all city pairs declined from 14.6

to 9.5 hours. We conduct two complementary exercises. In the first, which we refer to as

the “2010 base”, we solve the baseline steady state using all the information in 2010. We

then compute a counterfactual steady state in which only the transportation network is

updated to its 2018 configuration, while all other inputs—including city-level population

and medical resources, as well as individuals’ income levels—remain at their 2010 values.

The differences between the counterfactual and the baseline equilibrium inform us about

the impacts of better transportation connection if all the other conditions were held at

the 2010 levels. In the second exercise, denoted as “2018 base”, we first compute a steady

state in which the transportation network is fixed at its 2010 configuration, while all other

inputs take their 2018 values. We then compute a steady state using all the fundamental

variables observed in 2018. The difference between these two equilibria evaluates the

impact of the same transportation improvements conditional on the 2018 fundamentals.

In the rest of the section, we present the results of both exercises side-by-side.

Expected Mortality. Throughout the counterfactual analyses, our key variable of

interest is the expected mortality rate for CCVD patients. For sick individuals with

productivity z residing in city k, we define their expected mortality rate, denoted by ϖkz,

as

ϖkz =

∑S
s=1

∑K
l=1 µ

s
kl(z)π

s,−1
l Ls

k(z)∑S
s=1 L

s
k(z)

. (24)
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The numerator in this equation is the expected number of deaths among all sick in-

dividuals with productivity z in city k, considering the equilibrium patient flows to all

possible destination cities. The denominator is the total number of sick individuals in the

city. This expected mortality rate ϖkz summarizes how transportation networks affect

health outcomes. By altering travel times, changes in transportation networks modify

patients’ destination choices (µs
kl(z)); these choice adjustments, in turn, affect both the

mortality risks patients face at different treatment locations (πs,−1
l ) and the evolution of

the sick population in city k (Ls
k(z)). Therefore, ϖkz serves as a sufficient statistic for

evaluating the equilibrium impacts of counterfactual changes in transportation networks

on mortality.

Based on the expected mortality rate ϖkz for each city-productivity group, we define

the national average mortality rate for CCVD patients as

ϖ =
∑
k

∑
z

ξkzϖkz, (25)

where the weight assigned to group (k, z) is its share in the total patient population across

cities,

ξkz =

∑S
s=1 L

s
k(z)∑

k′,z′,s′ L
s′
k′(z

′)
.

We further define the average expected mortality rate for city k (averaged over produc-

tivity levels) as

ϖk =
1

ξk

∑
z

ξkzϖkz,

where ξk =
∑

z ξkz is the marginal weight for city k. Similarly, the average expected

mortality rate for productivity group z (averaged over all cities) is

ϖz =
1

ξz

∑
k

ξkzϖkz,

where ξz =
∑

k ξkz is the marginal weight for individual with productivity z. These

measures allow us to investigate the health impacts of transportation networks nationally,

by city, and by income group.
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7.1 Aggregate Impacts

Improvements in connectivity substantially reduce the expected national mortality rate

by enabling more patients to receive out-of-city care. Table 3 summarizes the results. The

first row reports the results for the “2010 base”. Upgrading the transportation network

from its 2010 to 2018 configuration lowers the national expected mortality rate (ϖ) by

3.08 percent, equivalent to around 9.88 thousand lives saved per year. Using a value of

statistical life of 4.76 million RMB, this amounts to approximately 47 billion RMB in

2019 nominal terms.22

To benchmark this effect, we compare it with the health gain from expanding medical

resources over the same period. From 2010 to 2018, the average number of tertiary hos-

pital beds per city increases from 3,930 to 9,209.23 Holding the transportation network

and all other fundamentals at their 2010 levels, our simulation shows that increasing the

number of tertiary hospital beds in each city from their 2010 to 2018 levels would save

approximately 230.8 thousand lives per year.Thus, improved access to existing medical

resources via better connectivity accounts for about 9.88/230.8 ≈ 4.3% of the mortality

reduction achieved by expanding resources. Given that these health gains arise as unin-

tended benefits of infrastructure investment, their magnitude is economically meaningful.

To understand the total mortality decline driven by transportation improvements,

we further examine mortality changes for three patient groups. As shown in Table 3

Column (3), the largest decline comes from “induced travelers”—patients who switch

from home-city care to out-of-city care due to improved connectivity.24 By gaining access

to cities with better treatment quality, mortality reduction of this group amounts to 9.01

thousand lives saved per year in the “2010 base”. For “never-travelers”—patients who

consistently receive care in their home city under both the 2010 and 2018 transportation

networks—the mortality change depends on how local patient volumes shift. Cities with

net patient outflows see reduced patient congestion and lower mortality, while those

22Our model is calibrated at a monthly frequency; yearly results are obtained by multiplying monthly
impacts by 12. The value of statistical life is based on estimates from Cao et al. (2023).

23As shown in Appendix Figure A4, tertiary hospital bed capacity increases in all cities between the
two years, and the increases are larger in cities that had fewer beds initially.

24Our simulation results suggest that transportation improvements increase out-of-city patient flows
by roughly 75 percent.
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Table 3: The Aggregate Impacts of Transportation on Mortality

∆ Mortality (thousands) ∆ VSL

%∆ Mortality Total
Induced-
traveler

Never-
traveler

Always-
traveler (billion ¥)

(1) (2) (3) (4) (5) (6)

Reduce τ , 2010 base -3.08 -9.88 -9.01 -0.85 -0.01 47.01
Reduce τ , 2018 base -2.01 -1.82 -2.17 0.35 0.00 8.65

Notes: This table reports the impacts of transportation network expansion on aggregate mor-
tality. Each row represents the result of a counterfactual exercise. Column (1) reports the
percentage changes in total mortality. Columns (2) to (5) report the changes in mortality level
in one year. Patients who seek care out-of-city only when transportation networks are im-
proved are labeled as “induced-traveler”. Patients who always choose to receive hospital care in
their home city in both the baseline and the counterfactual equilibria are referred to as “never-
traveler”. Patients who always seek hospital care out-of-city are “always-traveler”. Column (6)
reports the “value of statistical life” (VSL) of the yearly changes in total mortality (Column
(2)) in the unit of billion Chinese RMB.

receiving net inflows face increased congestion and consequently higher mortality. On net,

“never-travelers” experience a reduction of 0.85 thousand deaths per year (Column (4)).

Similarly, for “always-travelers”—patients who always seek out-of-city care regardless of

transportation improvements—the mortality change is determined by congestion changes

in their destination cities. In the “2010 base”, their mortality declines slightly by 0.01

thousand deaths per year (Column (5)).

As shown in the second row of Table 3, the health gains from improved connectivity

are much smaller in the “2018 base”: the same transportation improvements reduce ϖ

by only 2.01 percent, corresponding to 1.82 thousand fewer deaths per year—just 18%

of the effect estimated in the “2010 base.” A key reason for this attenuation is the

expansion of medical resources between 2010 and 2018. As the number of tertiary beds

increases nationwide, especially in cities that were initially poorly endowed (see Appendix

Figure A4), patients are more likely to receive high-quality care locally. Consequently,

the demand for medical travel falls, moderating the mortality-reducing effects of better

connectivity.
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(a) 2010 Base (b) 2018 Base

Figure 6: Decomposition of the Changes in the Variance of Expected Mortality Rates

Notes: This figure decomposes the change in the variance of mortality rate before and after
the improvement in transportation networks into three additive components: between-location
variance, between-income variance, and a residual interaction term, according to the decompo-
sition formula in Eq. (26). The “Total variance” bar represents the overall change in variance.

7.2 Distributional Effects

In addition to the aggregate impacts, we study how improved connectivity alters the

distribution of health outcomes across cities and across income groups. We measure the

inequality in mortality using the variance of expected mortality rates, where a higher

variance reflects greater disparity in mortality. The overall variance can be additively

decomposed into three terms:

Var (ϖ) ≡
∑
k

∑
z

ξkz (ϖkz −ϖ)2

=
∑
k

ξk(ϖk −ϖ)2︸ ︷︷ ︸
Between-city variance

+
∑
z

ξz(ϖz −ϖ)2︸ ︷︷ ︸
Between-income variance

+
∑
k

∑
z

ξkz (ϖkz −ϖk −ϖz +ϖ)2︸ ︷︷ ︸
Residual (interaction) variance

.

(26)

The first term measures variation in mortality across cities; the second measures variation

across income groups; and the third is a residual component capturing the interaction

between city-level and income-level variation. Appendix D.1 provides the decomposition

details.

Figure 6 reports the changes in total mortality variance and its three components
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(a) 2010 Base (b) 2018 Base

Figure 7: The Spatial Impacts of Transportation Networks on Mortality Rates

Notes: The horizontal axis is the normalized changes in medical access as defined in Eq. (12).
The normalization enforces that the average changes across cities is equal to unity. The vertical
axes in both panels are the percentage changes in mortality rate. The size of the circle represents
the changes in out-of-city care probability: a larger circle indicates a larger increase in the
probability of out-of-city care. Each dot represents a city.

when the transportation network improves from 2010 to 2018. The left panel reports

results under the “2010 base” scenario, which shows that the total mortality variance

declines by 8.2 basis units, or 5.4 percent. This overall reduction is driven primarily

by a 10.4-basis-unit reduction in between-city variance, indicating spatial convergence in

mortality. However, the between-income variance of mortality within cities rises slightly.

Results under the “2018 base” scenario exhibit a similar pattern.

The reduction in between-city variance arises because the improved transportation

network enables patients in initially underserved cities to access better medical resources

outside their home cities. Figure 7 plots, for each city, the normalized change in medical

access against the percentage change in mortality, with marker size indicating the increase

in out-of-city care probability. The negative slope indicates that cities experiencing larger

improvements in access also exhibit larger reductions in mortality, and the size gradient

shows that these health gains are accompanied by greater out-of-city patient flows.

The between-income variance increases, because the health gains due to improved

connectivity are strongly regressive: benefits are concentrated among higher-income in-

dividuals who are better able to overcome the financial barriers associated with seeking
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(a) 2010 Base (b) 2018 Base

Figure 8: The Impacts of Transportation Network on Mortality Rate, by Income Groups

Notes: This figure shows the percentage changes in the expected mortality rates by income group
due to the improvements in transportation networks from 2010 to 2018. The counterfactual
simulation changes the transportation network to the year 2018 while keeping the other inputs
the same as in the corresponding base year. The y-axis is x′/x− 1, where x′ is the variable of
interest in the counterfactual simulation, and x is the same variable in the corresponding base
year.

out-of-city care.25 Figure 8 reveals that the mortality reductions are far from evenly

distributed across income groups.26 Under the “2010 base” scenario, mortality among

the highest-income group (Group 7) declined by more than 8 percent, well above the

national average, while mortality for the poorest income groups remained virtually un-

changed. Under the “2018 base” scenario, the disparity is even starker: mortality rates

for low-income individuals increases slightly, likely because those who remain in cities at-

tracting large inflows of medical “migrants” face increasingly congested hospital systems.

These findings underscore the importance of complementing infrastructure investments

with policies that improve healthcare affordability and capacity for low-income popula-

tions, to ensure that connectivity gains translate into equitable health outcomes.

25The evidence is consistent with findings in Dingel et al. (2023) that in the United States, patients
with low socioeconomic status are less likely to travel longer distances to obtain high-quality healthcare.

26We discretize the income process into seven grid points using the methods introduced in Tauchen
(1986). The choice of 7 grid points balances computational burden and approximation accuracy, con-
sistent with common practice in the macroeconomics literature (e.g, Silos (2006); Heer and Maussner
(2009))
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8 Conclusion

This paper studies how the expansion of transportation infrastructure has affected health-

care access and health outcomes, focusing on mortality from CCVDs. Using compre-

hensive administrative records covering the universe of hospital admissions for CCVD

patients in China’s Sichuan province, we estimate a dynamic spatial model to quantify

how medical resource availability, travel costs, and patient heterogeneity shape treatment-

seeking behavior and subsequent health outcomes. We then combine the estimated model

with national data on population, healthcare capacity, and transportation network devel-

opment to conduct counterfactual analyses, assessing the extent to which transportation

infrastructure improvements have contributed to changes in CCVD mortality nationwide.

Our analysis yields the following key insights. First, improvements in transportation

infrastructure enable faster access to high-quality medical facilities from underserved

areas, leading to reductions in mortality. We estimate that, conditional on a fixed dis-

tribution of medical resources in 2010, the expansion of China’s transport network from

2010 to 2018 would have saved approximately 10,000 lives per year from CCVDs alone.

Second, while better transport reduces spatial inequality in access to care, the benefits

are distributed unevenly across income groups. High-income individuals, better able to

overcome the fixed financial costs of out-of-city care, capture a disproportionate share

of the gains. As a result, geographic convergence in health outcomes has coincided with

widening income-related disparities.

These findings carry important policy implications. A long-standing policy debate

concerns the potential misallocation of medical resources, stemming from the unequal

distribution of healthcare capacity and the resulting disparities in access and outcomes

(Finkelstein et al., 2021). Expansion of the transport network offers an efficient way to

facilitate the “export” of high-quality hospital care to underserved areas while preserving

scale economies in the healthcare sector (Trogdon, 2009; Dingel et al., 2023). We quan-

tify the role of transportation networks in China, while emphasizing that transportation

infrastructure and healthcare policy are complementary levers: without financial mech-

anisms that reduce the costs of traveling for care, improved connectivity may reinforce
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existing socioeconomic inequalities. Targeted interventions, such as insurance reforms

and means-tested travel subsidies, could help ensure that the health benefits of improved

connectivity are more broadly shared.
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A Additional Tables and Figures

Table A1: Summary Statistics

Mean SD

Panel A. Admission-level variables

Female 0.457 0.498
Monthly income 8,353.027 6,450.316
Severe 0.387 0.487
Recovery 0.926 0.261
Mortality 0.065 0.247
Seeking out-of-city treatment 0.044 0.205
Number of admissions 611,575

Panel B. Hospital-level variables

Tertiary hospitals

Number of beds 853.665 676.303
Number of observations 227

Secondary hospitals

Number of beds 217.880 186.449
Number of observations 652

Primary or ungraded institutions

Number of beds 71.740 90.731
Number of observations 1,656

Panel C. City-level variables

Number of tertiary hospital beds (10,000) 0.923 1.060
Number of admissions with CCVD (10,000) 1.586 1.562
Population (10,000) 466.056 291.599
Number of observations 42

Panel D. City-pair-level variables

Travel time by road (hours) 4.389 2.932
Travel time by railway (hours) 7.855 6.951
Minimum travel time (hours) 4.272 2.924
Probability of medical travel between the city pair 0.048 0.197
Number of observations 882

Notes: “Severe” is a dummy variable equal to 1 if the admission is labeled as “critical” or “urgent” at
admission, and 0 otherwise. In particular, “critical” admissions often involve life-threatening situations
such as acute myocardial infarction, respiratory failure, or severe stroke; “urgent” admissions include
acute exacerbations of chronic illnesses or sudden onset conditions like high fever. ”Seeking out-of-city
treatment” equals 1 if the patient’s residence is outside the hospital’s city, and 0 otherwise. Recovery
equals 1 if the admitted patient is not readmitted within 30 days after discharge, and 0 otherwise.
Mortality equals 1 if the patient dies during this admission or within 30 days after discharge, and 0
otherwise.
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Table A2: Auxiliary Regression Results (I)

Seeking out-of-city treatment

ln(Income) 0.008∗∗∗

(0.000)
Severe -0.008∗∗∗

(0.002)
Severe × ln(Income) 0.002∗∗∗

(0.000)
Constant -0.024∗∗∗

(0.002)

Observations 611,575

Notes: This table reports the regression results of Eq. (19). ”Seeking out-of-city treatment” equals 1
if the patient’s residence is outside the hospital’s city, and 0 otherwise. “Severe” is a dummy variable
equal to 1 if the admission is labeled as “critical” or “urgent” at admission, and 0 otherwise. In partic-
ular, “critical” admissions often involve life-threatening situations such as acute myocardial infarction,
respiratory failure, or severe stroke; “urgent” admissions include acute exacerbations of chronic illnesses
or sudden onset conditions like high fever. Standard errors clustered at the individual level are reported
in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A3: Auxiliary Regression Results (II)

ln(Share of admissions outside the home city)

(1) (2)

ln(Minimum travel time) -2.031∗∗∗ -2.012∗∗∗

(0.278) (0.279)
Diff. in tertiary hospital beds 0.042∗∗∗

(0.006)
Diff. in tertiary hospital patients -0.017∗∗∗

(0.002)
Constant -5.135∗∗∗ -5.187∗∗∗

(0.312) (0.318)

Origin-by-year FE Yes Yes
Destination-by-year FE Yes Yes
Observations 653 653

Notes: This table reports the regression results of Eq. (20). In Columns (2), we additionally control for
the difference in numbers of tertiary hospital beds (and patients) between the patient’s home city and
the destination city, and this difference is measured as the ratio of the number in the destination city to
that in the home city. Standard errors clustered at the home-city-by-destination-city level are reported
in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A4: Auxiliary Regression Results (III)

Recovery Mortality

(1) (2) (3) (4)

ln(Number of tertiary beds) 0.005∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.046∗∗∗

(0.002) (0.002) (0.001) (0.002)
ln(Number of admissions with CCVD) -0.013∗∗∗ -0.009∗∗∗ -0.012∗∗∗ -0.071∗∗∗

(0.001) (0.002) (0.001) (0.002)
Constant 0.879∗∗∗ 0.889∗∗∗ -0.009∗∗ -0.172∗∗∗

(0.006) (0.007) (0.004) (0.007)

Severe No Yes No Yes
Observations 374,095 236,564 373,594 235,690

Notes: Columns (1)-(2) report the regression results of Eq. (21), and Columns (3)-(4) report the results
of Eq. (22). Recovery equals 1 if the admitted patient is not readmitted within 30 days after discharge,
and 0 otherwise. Mortality equals 1 if the patient dies during this admission or within 30 days after
discharge, and 0 otherwise. Standard errors clustered at the individual level are reported in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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(a) Number of Tertiary Hospital Beds by Cities

(b) Number of Tertiary Hospital Beds per 10,000 Population by Cities

Figure A1: Spatial Distribution of Medical Resources in 2010

Notes: The figure displays the number of tertiary hospital beds and that adjusted for population across
cities in China in 2010. Data sources: 2011 Hospital Annual Report, China Health Commission. “No
data” indicate cities that are excluded because at least one required variable is missing or cannot be
reliably matched across sources. Administrative boundaries are shown at the prefecture level.
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Figure A2: Goodness of Fit under Indirect Inference

Notes: This figure assesses goodness of fit under the indirect inference procedure. Each marker
corresponds to a targeted moment condition used in estimation. The horizontal axis reports
the model-implied moment computed from simulated data based on the estimated parameters,
and the vertical axis reports the corresponding empirical moment from observed data. The red
dashed line is the 45-degree line (perfect fit).
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Figure A3: Geographic Coverage of the National City Sample

Notes: The map displays China’s prefecture-level cities used in the national analysis sample.
Shaded areas (“In sample”) indicate cities for which we observe the full set of variables required
for the national panel, constructed as the largest common set across the medical resource dataset
and the China City Statistical Yearbooks. Hatched areas (“No data”) indicate cities that are
excluded because at least one required variable is missing or cannot be reliably matched across
sources. Administrative boundaries are shown at the prefecture level.
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Figure A4: Changes in City-Level Tertiary Hospital Beds, 2010–2018

Notes: The figure plots, for each prefecture-level city in the national sample, the natural loga-
rithm of tertiary-hospital bed counts in 2010 (x-axis) against the corresponding value in 2018
(y-axis). Each point represents one city. The red dashed line is the 45-degree line; points above
(below) the line indicate cities in which tertiary-bed capacity increased (decreased) between
2010 and 2018. Bed counts are measured as the total number of beds in tertiary hospitals
located in the city.
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B Model Details

B.1 Choice Set

As discussed in the main text, the choice set of an individual, Ωs
kt(zit), changes with

home location, income, and health status. As is well-known in the literature of discrete

choice, the cardinality of the choice set affects the expected value — a larger choice set

implies a higher utility. Technically, the relationship arises because the expected value

conditional on a location being chosen is strictly positive. This introduces a technical

concern: because of this selection bias, sick individuals’ value functions may be artificially

inflated, leading to the paradoxical result that being sick appears more valuable than

being healthy (vskt(zit) > v0kt(zt)).

To address this, we subtract the conditional mean to eliminate the influence of extreme

value shocks on value functions. In general, with K choices, the location parameter of

maxKl=1(κεl) is −γ̄κ + κ lnK and the scale parameter is κ. Therefore, the conditional

mean is ε̄ = κ lnK. As it will be clear later, the size of the choice set is not always K,

and it depends on the home location, severity, and income of the patient; therefore, the

conditional mean is not a constant but a function of {k, s, z}.27

The recursive formulation is then revised to be:

vskt(zit) = max
l

{
u(δswktzit − 1(l ̸= k) · λ)− τklt

+ E
[
β
[
πHs
lt v

0
kt(zi,t+1) +

(
1− πHs

lt − πDs
lt

)
vskt(zi,t+1)

]
+ κεl − ε̄skt(zt)

]}
.

(A1)

The final term ε̄skt(zt) represents the inclusive value or expected maximum utility over all

possible destination hospitals, integrating over the distribution of idiosyncratic shocks.

B.2 Model Solution

In this section, we derive the solution to a sick individual’s expected value function, which

is central for solving the model in steady state.

We define the expected value function for an individual, denoted by V s
kt(zt), which cap-

tures the individual’s maximum expected lifetime utility at time t. For a sick individual,

27Similar issues also exist in other dynamic discrete choice models, such as in ACM(2010), CDP(2019),
and KLR(2023). In these cases, the conditional expectation of the extreme value shocks is innocuous
because it only affects the level of the value function and none of the policy function. In our case,
however, the relative value of sickness affects one’s valuation of health and, subsequently, the value of
treatment.
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the expected value function is

V s
kt(zt) = Eε[v

s
kt(zt)], (A2)

where the expectation is taken with respect to preference shocks at time t. For a healthy

individual, who simply consume current income and face future health and productivity

shocks, the expected value function satisfies

V 0
kt(zt) = u(wktzt) + β

∫ ∞

0

[(
1−

S∑
s=1

π0,s
kt

)
V 0
k,t+1(zt+1) +

S∑
s=1

π0,s
kt V

s
k,t+1(zt+1)

]
dG(zt+1|zt).

(A3)

Given V s
kt(zt), we can rewrite the expected continuation value, W s

kl,t+1(zt) (defined in

Eq. (11)) as follows:

W s
kl,t+1(zt) =

∫ ∞

0

Eε′

[
πHs
lt v

0
kt(zt+1) +

(
1− πHs

lt − πDs
lt

)
vskt(zt+1)

]
dG(zt+1|zt) (A4)

=

∫ ∞

0

[
πs,0
lt V

0
kt(zt+1) +

(
1− πs,0

lt − πs,−1
lt

)
V s
kt(zt+1)

]
dG(zt+1|zt). (A5)

where the expectation Eε′ in the first line is only taken with respect to future preference

shocks. G(zt+1|zt) is the conditional cumulative distribution function for the productivity

shock in the next period.

To derive the solution for V s
kt(zt), we further define a term ζklt(zt) as follows:

ζklt(zt) = u(δswktzt − 1(l ̸= k) · λ)− τklt + βW s
kl,t+1(zt) + κεl − ε̄skt(zt).

The preference shock εl follows a GEV-I distribution with location parameter γ̄ and a

scale parameter of 1. Since ζklt(zt) is a linear transformation of εl, it also follows a GEV-I

distribution but with a location parameter u(δswktzt−1(l ̸= k) ·λ)− τklt+βW s
kl,t+1(zt)−

κγ̄ − ε̄skt(zt) and a scale parameter of κ. Thus, the expected value function for a sick

individual in Eq. (A2) is

V s
kt(zt) = κ log

 ∑
l∈Fs

kt(zt)

exp

(
u(δswktzt − 1(l ̸= k) · λ)− τklt + βW s

kl,t+1(zt)

κ

)− ε̄skt(zt)

= κ log Φs
kt(zt)− κ log F̄ s

kt(zt). (A6)

Recall that F̄ s
kt(zt) is the cardinality of set Fs

kt(zt), and ε̄
s
kt(zt) = κ log F̄ s

kt(zt) corrects for

the utility drift induced by the size of the choice set. When medical travel is infeasible

(Fs
kt(zt) = k), F̄ s

kt(zt) = 1, and the correction term vanishes.
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B.3 Markov Representation of Health Transitions

The entire model can be represented as a Markov process over S + 2 health states.
Transition probabilities depend not only on the individual’s current state but also on
their treatment choice. Let Πkl denote the transition matrix for an individual residing
in location k who receives treatment in location l. Then the state transitions evolve as
follows:

start = -1 0 1 · · · S − 1 S

end = -1 1 0 πD1
lt · · · πD,S−1

lt πD,S
lt

0 0 1−
∑S

s=1 π
Is
kt πH1

lt · · · πH,S−1
lt πH,S

lt

1 0 πI1
kt 1− πD1

lt − πH1
lt · · · 0 0

...
...

...
...

. . .
...

...

S − 1 0 πI,S−1
kt 0 · · · 1− πD,S−1

lt − πH,S−1
lt 0

S 0 πI,S
kt 0 · · · 0 1− πD,S

lt − πH,S
lt

(A7)

This transition structure formalizes the stochastic evolution of health, governed both by

environmental risk and by the individual’s treatment choice.

B.4 Microfoundation for Treatment Outcomes

This appendix derives the multinomial logit specifications in Eqs. (14)-(17) from a model

in which hospitals within a city produce treatment quality that stochastically determines

patient outcomes.

We model treatment outcomes through a two-stage process. First, city l produces

treatment quality qsl for patients with severity s, which depends on medical resources,

patient volume, and waiting times. Second, individual patients experience idiosyncratic

health shocks that, combined with treatment quality, determine whether they recover,

die, or remain sick.

Medical Service Production and Waiting Times

City l produces treatment quality for patients with severity s according to:

q̄sl = As ·
(
ml

pl

)α

· pβl , (A8)

where As is a baseline quality parameter for severity s, ml denotes medical resources,

and pl denotes patient volume. This specification captures two key mechanisms behind

treatment quality production. The first mechanism is resources per patient, captured by

(ml/pl)
α with α > 0. Cities with more resources per patient can provide higher-quality

care through better equipment, more staff attention per patient, and enhanced diagnostic

capabilities. The second mechanism is learning-by-doing, captured by the patient volume

term pβl . When β > 0, treating more patients generates expertise as medical staff gain
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experience with specific conditions. The net effect of patient volume is captured by

(β − α), which reflects the balance between learning effects and resource dilution.

The effective treatment quality received by patients, denoted as qsl , is different from q̄sl
due to waiting times. We model qsl as a mixture of treated and untreated states, where the

waiting time determines the relative weight of each state. Upon arrival at city l, a patient

with severity s enters a queue for specialized treatment. During the waiting period, the

patient receives only baseline care, experiencing untreated quality qs0. Once treatment

begins, the patient receives the full benefits of the medical resources and expertise in city

l, experiencing treated quality q̄sl . For tractability, we model the waiting time, Wl, as

affecting the relative weights between the untreated quality and the treated quality as

follows:

qsl = q̄sl · exp(−δWl) + qs0 · [1− exp(−δWl)]. (A9)

In the equation above, when waiting time approaches 0, the effective quality received by

the patient approaches the treatment quality: limWl→0 qls = q̄sl . Conversely, the effective

quality approaches the untreated quality as Wl → ∞. When untreated quality is sub-

stantially lower than treated quality (qs0 ≪ q̄sl ), which is realistic for severe cardiovascular

conditions requiring specialized tertiary care, we can approximate:

qsl ≈ q̄sl · exp(−δWl). (A10)

The parameter δ > 0 governs the rate of quality degradation: larger δ indicates that

delays are more costly.

We specify the waiting time as a log-linear function of medical resources and patient

volume:

Wl = w0 + wm log(ml) + wp log(pl), (A11)

where wm < 0 indicates that more resources reduce waiting times, and wp > 0 indicates

that more patients increase waiting times. This specification allows waiting times to

respond proportionally to percentage changes in resources and volume, consistent with

queuing theory where waiting times depend on capacity utilization rates. Substituting

Eqs. (A11) and (A8) into Eq. (A10),

qls = As ·
(
ml

pl

)α

· pβl · exp[−δ(w0 + wm logml + wp log pl)]

= As ·mα
l · p−α

l · pβl · exp(−δw0) · exp(−δwm logml) · exp(−δwp log pl)

= As exp(−δw0) ·mα
l ·m−δwm

l · pβ−α
l · p−δwp

l

= As exp(−δw0) ·mα−δwm
l · pβ−α−δwp

l . (A12)
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Taking logarithms,

log qsl = logAs − δw0 + (α− δwm) log(ml) + (β − α− δwp) log(pl). (A13)

The expression above highlights how medical resources and patient volume affect the

effective treatment quality received by a patient. Better resources increase both treatment

quality (α) and reduce waiting time (δwm). Similarly, higher patient volume increases

learning through β, dilutes the resources per patient through −α, and increases waiting

time through δwp.

Patient-Level Outcomes

Individual patient i experiences idiosyncratic health shocks {ν0i , ν−1
i , νsi } with s > 0,

which are independently drawn from a Type-I Extreme Value distribution. These shocks

capture patient-specific factors that affect treatment response, such as genetic differences,

comorbidity, and unmeasured baseline health status. Patient i recovers if treatment

quality combined with the recovery shock exceeds the values for death and staying sick:

qsl + ν0i > max{qsl + ν−1
i , νsi }. Similarly, the patient dies if qsl + ν−1

i > max{qsl + ν0i , ν
s
i },

and remains sick if νsi > max{qsl + ν0i , q
s
l + ν−1

i }.
The distribution assumption for patient health shocks yields multinomial logit prob-

abilities of treatment outcomes. Specifically, the probability of recovery is:

πs,0
l =

exp(ψs,0qsl )

1 + exp(ψs,0qsl ) + exp(ψs,−1qsl )
, (A14)

where ψs,0 > 0 measures how responsive recovery probabilities are to treatment quality

for patients with severity s. The probability of death is:

πs,−1
l =

exp(ψs,−1qsl )

1 + exp(ψs,0qsl ) + exp(ψs,−1qsl )
, (A15)

where ψs,−1 < 0 indicates that higher treatment quality reduces mortality for patients

with severity s. The probability of remaining sick is 1 − πs,0
l − πs,−1

l . We define the

outcome-specific indices as:

γs,0(ml, pl) = ψs,0qsl (A16)

γs,−1(ml, pl) = ψs,−1qsl . (A17)

Substituting the log quality from Eq. (A13), we have

γs,0(ml, pl) = ψs,0[logAs − δw0 + (α− δwm) log(ml) + (β − α− δwp) log(pl)]

= ψs,0(logAs − δw0) + ψs,0(α− δwm) log(ml) + ψs,0(β − α− δwp) log(pl).
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Similarly,

γs,−1(ml, pl) = ψs,−1(logAs − δw0) + ψs,−1(α− δwm) log(ml) + ψs,−1(β − α− δwp) log(pl).

Defining the reduced-form parameters

γsH1 = ψs,0(logAs − δw0), γsH2 = ψs,0(α− δwm), γsH3 = ψs,0(β − α− δwp)

γsD1 = ψs,−1(logAs − δw0), γsD2 = ψs,−1(α− δwm), γsD3 = ψs,−1(β − α− δwp),

we obtain the log-linear specifications

γs,0(ml, pl) = γsH1 + γsH2 log(ml) + γsH3 log(pl) (A18)

γs,−1(ml, pl) = γsD1 + γsD2 log(ml) + γsD3 log(pl). (A19)

Substituting these into Eqs. (A14) and (A15) yields

πs,0
l =

exp[γs,0(ml, pl)]

1 + exp[γs,0(ml, pl)] + exp[γs,−1(ml, pl)]
,

πs,−1
l =

exp[γs,−1(ml, pl)]

1 + exp[γs,0(ml, pl)] + exp[γs,−1(ml, pl)]
.

The four equations above are exactly Eqs. (14)-(17) in the main text.

C Numerical Details on Simulation and Estimation

C.1 Algorithm for Solving the Steady State

Assume that we know the parameters {γs(·)}, the conditional CDF G(·), and the location

fundamentals {ωk,mk, λ}. Start with a guess of the expected value functions, {V s
k (z)},

and a vector of patient distribution {pl}. We iterate as follows:

1. Compute the recovery and the mortality rates of each location, {πHs
l , πDs

l } using

equations (14) and (15).

2. Compute the value of treatment, {W s
kl(z)}, using equation (A5).

3. Compute the travel probability, {µs
kl(z)}, using equation (10).

4. Compute the steady state {Ls
k(z)} by iteratively calling equations (6) and (7) until

convergence.

5. Update {pl} using equation (9).

6. Update {V s
k } using equation (A6).
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7. Update {V 0
k } using equation (A3).

Repeat the above steps until convergence. To numerically implement the above algorithm,

we discretize the AR(1) income shock, log(zit), into 7 grid points following Tauchen

(1986).

Technical Notes on Computation The value of option l should be computed as:

exp
[
u(δswktzt − 1(l ̸= k) · λ)− τklt + βW s

kl,t+1(zt)
]1/κ

= exp

[
u(δswktzt − 1(l ̸= k) · λ)− τklt + βW s

kl,t+1(zt)

κ

]

= exp

[
u(δswktzt − 1(l ̸= k) · λ)− τklt

κ

]
× exp

[
βW s

kl,t+1(zt)

κ

]
.

The denominator in the choice probabilities, Φs
kt(z), conditional on the origin k, should

be computed as the inner product of the following two vectors:

Φs
kt(z) =

〈{
exp

[
u(δswktzt − 1(l′ ̸= k) · λ)− τklt

κ

]}
l′∈Fs

kt(zt)

,

{
exp

[
βW s

kl,t+1(zt)

κ

]}
l′∈Fs

kt(zt)

〉
.

The advantage of this formulation is that in both cases, one term does not depend on

W s
kl,t+1(z), and therefore can be computed prior to the fixed point iteration, saving com-

putational time.

C.2 Details of the Simulations

Simulation Procedure The data sample we observe contains N cases spanning over

24 months. In the case of Cerebro-cardio, N = 610, 642, and in the case of cancer,

N = 199, 664. We draw Nm new patients each month to simulate the sample in the

model. New patients are identified by their home location, severity, and initial income

shocks. The location and severity distributions follow the observed distributions in the

data. The income shock follows the stationary distribution of zt derived from the Tauchen

discretization.

We simulate the model for T +24 months and discard the first T months of simulation

to eliminate the potential biases introduced by the initial distribution of patients. In a

simulation of month t, the pool of patients includes the remaining patients from the

previous period t − 1 and the new patients drawn in period t. For each patient in the

pool at location k, severity s(s > 0), and income shock z, we use the steady state

policy function, µs
kl(z), to simulate their treatment location l. We then use the steady

state {πHs
l , πDs

l } to simulate their treatment outcome. In the last step, we remove the

recovered and deceased patients from the pool and move on to the next period with the

remaining patients.
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Simulation Length and Sample Size The number of new patients to be simulated

each month, Nm, and the length of the pre-simulation, T , depend on the parameters of

interest γHs
(·) and γDs

(·) through the recovery and the mortality rates. As a result, we need

to determine these two parameters for every guess of the input parameters, Θ.

Denote the average stay rate for severity s(s > 0) as π̄s = 1
K

∑K
l=1

(
1− πHs

l − πDs
l

)
.

It is straightforward to see that at period t of the simulation, the pool patients at severity

s(s > 0) equals to

πIs∑S
s′=1 π

Is′

[
Nm + π̄sNm + (π̄s)2Nm + · · ·+ (π̄s)t−1Nm

]
= π̃IsNm

1− (π̄s)t

1− π̄s
.

In the expression above, π̃Is = πIs∑S
s=1 π

Is
is the fraction of new patients with severity

s(s > 0), and therefore, π̃IsNm is the number of new patients in period t. The term
1−(π̄s)t

1−π̄s ≥ 1 captures the relative weight of remaining old patients in the cross-sectional

pool at period t. If patients exit the pool quickly so that π̄s → 0, then, 1−(π̄s)t

1−π̄s → 1, so the

cross-section pool contains mostly new patients. Conversely, a higher π̄s implies that a

patient requires more time to recover; therefore, the cross-section pool of patients would

contain a higher fraction of remaining patients. In a simulation, a higher π̄s subsequently

implies that more periods are needed to reach a stable cross-section pool of patients.

We first pick the simulation length T so that the number of cases starting from period

T is stable, defined as the relative variations in the pool size between T and T + 1 is

smaller than a pre-set threshold, εN :

(π̄s)T − (π̄s)T+1

1− (π̄s)T
< εN

(1 + εN)(π̄s)T − (π̄s)T+1 < εN

(π̄s)T
[
(1 + εN)− π̄s

]
< εN

T log(π̄s) < log

[
εN

(1 + εN)− π̄s

]

T (s) ≈
log
[

εN

(1+εN )−π̄s

]
log(π̄s)

.

The value of T depends on severity s(s > 0) through π̄s. We set T to be the nearest integer

to maxs∈S{T (s)}. The pre-simulation length ensures that after period T , the number of

patients each month is approximately constant at
∑S

s=1 π̃
IsNm

1−(π̄s)T

1−π̄s . In practice, we

set εN = 0.0001.

Given that we observe N
24

total cases each month in the data, we set Nm to the integer
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closest to:

N

24
= Nm

S∑
s=1

π̃Is1− (π̄s)T

1− π̄s

Nm =
N

24

[
S∑

s=1

π̃Is1− (π̄s)T

1− π̄s

]−1

.

Bounding the Treatment Probability During the estimation process, the mini-

mization algorithm might evaluate certain parameters of {γHs
(·) } and {γDs

(·) } that lead to

extreme values of {πHs
l , πDs

l }. If πHs
l → 0 or πDs

l → 1, computing the stationary pop-

ulation distribution across {(k, z, s)} could be time consuming for the reasons discussed

above. As the limit cases of zero recovery rate and 100 percent mortality rate are em-

pirically irrelevant, we set the lower bound of the recovery rate to be 1 percent and the

upper bound of the mortality rate to be 99 percent. We verified that these bounds are

not binding in the final estimates.

C.3 Details of the Indirect Inference

Estimating the structural parameters via indirect inference involves numerically mini-

mizing a high-dimensional objective function as defined in Eq. (23). To minimize the

objective function, we apply a mixture of particle swarm optimization (PSO) with pat-

tern search (PS). We apply PSO first to search over a wide range of the parameter space,

and then switch to PS after convergence in PSO to speed up the optimization process.

We compute the asymptotic standard errors following the methods outlined in Cameron

and Trivedi (2005). In particular:

V̂ar (Θ) =
(
Ĝ′WĜ

)−1

Ĝ′WΣ̂WĜ
(
Ĝ′WĜ

)−1

. (A20)

In the equation above, Ĝ is the estimated gradient matrix, in which the ith row and

the jth column is the partial derivative of the ith element of vector A with respect to

the jth parameter, evaluated at the estimated Θ. We numerically compute the gradient

matrix using a two-sided difference approximation. W is the weighting matrix, and Σ̂ is

an estimate of the variance-covariance matrix of the moment conditions. In our text, Σ̂

is a diagonal matrix that contains the squared standard errors of the coefficients in the

auxiliary regressions. Note that as we set W =
(
Σ̂
)−1

, equation (A20) simplifies to:

V̂ar (Θ) =
(
Ĝ′Σ̂−1Ĝ

)−1

, (A21)

which we use to estimate the standard errors as reported in the main text.
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D Supplements to Counterfactual Analysis

D.1 Variance Decomposition

In this section, we provide the details on decomposing the variance of the expected

mortality rates. As we carry out all the analysis in steady state, we omit the time

subscript for expositional ease. Recall that we define the expected mortality rate of

individuals in location k, income shock z as:

ϖkz =

∑S
s=1

∑K
l=1 µ

s
kl(z)π

Ds
l Ls

k(z)∑S
s=1 L

s
k(z)

. (A22)

The numerator in the equation represents the total expected mortality in location k,

type z, considering the expected patient flows to all possible treatment locations. The

denominator is the total patient population in location k, type z. We are interested in

understanding the variance of the expected mortality rate across locations and income

types.

To carry out the variance decomposition, first denote the national average mortality

rate as:

ϖ =
K∑
j=1

ωkzϖkz, (A23)

where the weight for cell (k, z) is ωkz =
∑S

s=1 L
s
k(z)/

∑
k′,z′,s′ L

s′

k′(z).

The variance of the expected mortality rate can then be decomposed into three terms:

Var (ϖ) =
∑
k,z

ωkz (ϖkz −ϖ)2 = VarK +VarZ +VarKZ .

1. The first term,

VarK =
K∑
k=1

ωk (ϖk −ϖ)2 , (A24)

is the between-location variance. In this expression, ωk =
∑

z ωkz is the marginal

weight of location k, and ϖk =
1
ωk

∑
z ωkzϖkz is the average mortality in location k

across income groups.

2. The second term is the between-income group variance:

VarZ =
Z∑

z=1

ωz (ϖz −ϖ)2 , (A25)

where ωz =
∑

k ωkz is the marginal weight for type z, and ϖz = 1
ωz

∑
k ωkzϖkz is
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the average mortality by income group z.

3. The last term is the residual:

VarKZ =
∑
k

∑
z

ωkz (ϖkz −ϖk −ϖz +ϖ)2 . (A26)

The details of the decomposition are as follows. First note that:

ϖkz −ϖ = (ϖk −ϖ) + (ϖz −ϖ) + (ϖkz −ϖk −ϖz +ϖ) .

Squaring both sides:

(ϖkz −ϖ)2 = (ϖk −ϖ)2 + (ϖz −ϖ)2 + (ϖkz −ϖk −ϖz +ϖ)2

+ 2(ϖk −ϖ)(ϖz −ϖ)

+ 2(ϖk −ϖ)(ϖkz −ϖk −ϖz +ϖ)

+ 2(ϖz −ϖ)(ϖkz −ϖk −ϖz +ϖ).

The first line contains the three main terms in the decomposition, while the rest are the

cross-terms. Notice that summing over all k, z with weights ωkz, the cross-terms vanish.

The First Cross Term To be specific, the first term, summed over (k, z):∑
k

∑
z

ωkz (ϖk −ϖ) (ϖz −ϖ)

equals zero. To see this, begin by rewriting the sum as:∑
k

∑
z

ωkz (ϖk −ϖ) (ϖz −ϖ) =
∑
k

(ϖk −ϖ)
∑
z

ωkz (ϖz −ϖ)

Now consider the inner sum:∑
z

ωkz (ϖz −ϖ) =
∑
z

ωkzϖz −ϖ
∑
z

ωkz =
∑
z

ωkzϖz −ϖ · ωk.

Thus, the full expression becomes:

∑
k,z

ωkz (ϖk −ϖ) (ϖz −ϖ) =
∑
k

(ϖk −ϖ)

(∑
z

ωkzϖz −ϖ · ωk

)
=
∑
k

(ϖk −ϖ)
∑
z

ωkzϖz −ϖ
∑
k

(ϖk −ϖ)ωk.
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The second term is zero because:∑
k

(ϖk −ϖ)ωk =
∑
k

ωkϖk −ϖ
∑
k

ωk = ϖ −ϖ = 0.

Now focus on the first term:∑
k

(ϖk −ϖ)
∑
z

ωkzϖz =
∑
k

∑
z

ωkz (ϖk −ϖ)ϖz =
∑
z

ϖz

∑
k

ωkz (ϖk −ϖ) .

Next, consider:∑
k

ωkz (ϖk −ϖ) =
∑
k

ωkzϖk −ϖ
∑
k

ωkz =
∑
k

ωkzϖk −ϖ · ωz.

Then the total becomes:

∑
z

ϖz

(∑
k

ωkzϖk −ϖ · ωz

)
=
∑
z

∑
k

ωkzϖkϖz −ϖ
∑
z

ωzϖz.

Since: ∑
z

ωzϖz = ϖ and
∑
k,z

ωkzϖkϖz =
∑
k

ϖk

∑
z

ωkzϖz,

this expression reduces to: ∑
k,z

ωkzϖkϖz −ϖ2.

Now expand the first term:

∑
k,z

ωkzϖkϖz =
∑
k,z

ωkz

(
1

ωk

∑
z′

ωkz′ϖkz′

)(
1

ωz

∑
k′

ωk′zϖk′z

)

=
∑
k,z

ωkz

ωkωz

(∑
z′

ωkz′ϖkz′

)(∑
k′

ωk′zϖk′z

)
.

Now observe that the factor
∑

z′ ωkz′ϖkz′ is independent of z; similarly the factor
∑

k′ ωk′zϖk′z

is independent of k. So we can reorder the sums:

∑
k,z

ωkzϖkϖz =

(∑
k

1

ωk

∑
z′

ωkz′ϖkz′

∑
z

ωkz ·
1

ωz

∑
k′

ωk′zϖk′z

)

=

(∑
k

∑
z′

ωkz′ϖkz′

)(∑
z

∑
k′

ωk′zϖk′z

)
= ϖ ·ϖ = ϖ2.
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Thus: ∑
k,z

ωkzϖkϖz = ϖ2.

Hence, the first cross-term cancels:∑
k,z

ωkz(ϖk −ϖ)(ϖz −ϖ) = 0.

The Second Cross Term We begin with the expression:∑
k,z

ωkz (ϖk −ϖ) (ϖkz −ϖk −ϖz +ϖ) .

Distribute the first factor and expand the second:

=
∑
k,z

ωkz (ϖk −ϖ)ϖkz −
∑
k,z

ωkz (ϖk −ϖ)ϖk

−
∑
k,z

ωkz (ϖk −ϖ)ϖz +
∑
k,z

ωkz (ϖk −ϖ)ϖ.

Now evaluate each term separately. The first term is:∑
k,z

ωkz (ϖk −ϖ)ϖkz =
∑
k

(ϖk −ϖ)
∑
z

ωkzϖkz =
∑
k

(ϖk −ϖ) · ωk ·ϖk.

The second term is:∑
k,z

ωkz (ϖk −ϖ)ϖk =
∑
k

(ϖk −ϖ)ϖk

∑
z

ωkz =
∑
k

(ϖk −ϖ)ϖk · ωk.

Thus, the two terms cancel out, and the first line equals zero. The third term is:

∑
k,z

ωkz (ϖk −ϖ)ϖz =
∑
z

ϖz

∑
k

ωkz (ϖk −ϖ) =
∑
z

ϖz

(∑
k

ωkzϖk −ϖ · ωz

)
.

Now note that:∑
z

ϖz

∑
k

ωkzϖk =
∑
k,z

ωkzϖkϖz,
∑
z

ϖz ·ϖ · ωz = ϖ
∑
z

ωzϖz = ϖ2.

From earlier derivation: ∑
k,z

ωkzϖkϖz = ϖ2.
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So Term 3 equals ϖ2 −ϖ2 = 0. The last term is also zero:

∑
k,z

ωkz (ϖk −ϖ)ϖ = ϖ
∑
k

(ϖk −ϖ)
∑
z

ωkz = ϖ
∑
k

ωk (ϖk −ϖ) = ϖ

(∑
k

ωkϖk −ϖ

)
= 0.

Each of the four terms in the expansion cancels. Therefore,∑
k,z

ωkz (ϖk −ϖ) (ϖkz −ϖk −ϖz +ϖ) = 0.

The Third Cross Term The third term is also zero by symmetric reasoning as above.∑
k,z

ωkz(ϖz −ϖ)(ϖkz −ϖk −ϖz +ϖ) = 0.

Therefore, to sum up, all the cross terms are zero once summed over (k, z):∑
k,z

ωkz(ϖk −ϖ)(ϖz −ϖ) = 0,∑
k,z

ωkz(ϖk −ϖ)(ϖkz −ϖk −ϖz +ϖ) = 0,∑
k,z

ωkz(ϖz −ϖ)(ϖkz −ϖk −ϖz +ϖ) = 0.

Thus, we obtain the exact additive decomposition:

Var(ϖ) =
∑
k

ωk(ϖk −ϖ)2︸ ︷︷ ︸
Between-location variance

+
∑
z

ωz(ϖz −ϖ)2︸ ︷︷ ︸
Between-income variance

+
∑
k,z

ωkz (ϖkz −ϖk −ϖz +ϖ)2︸ ︷︷ ︸
Residual (interaction) variance

.
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