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1 Introduction

The proper specification of underlying asset volatility dynamics is a key element of an op-

tion valuation framework. A growing body of literature advocates for the use of empirically

grounded properties in option pricing models. These studies use observed (realized) quan-

tities to update volatility, such that volatility is no longer latent. This modeling approach

leads to more precise measurement and forecasting of asset volatility, and the theoretical and

empirical justifications for constructing reliable realized variance measures based on intraday

high-frequency observations are given by Andersen et al. (2001a), Andersen et al. (2001b), and

Andersen et al. (2003), among others. Recent studies, such as Corsi et al. (2013), Christof-

fersen et al. (2014), and Christoffersen et al. (2015), jointly model the dynamics of returns and

realized variances under circumstances of option pricing and verify that this type of option

valuation model is superior to models optimized only on returns.

The aforementioned studies focus exclusively on total daily returns and do not distin-

guish information pertaining to trading periods from that pertaining to non-trading periods.

However, a halt in trading may result in a price information process that differs from that

resulting from continuous trading. As total daily (close-to-close) returns rely only on the

last tick price on an exchange for each trading day, close-to-close returns are not capable of

effectively reflecting news that arrives during market closure.

For instance, before opening, European investors submit orders based on information re-

vealed in U.S. stock markets, and trading is performed at a single price that clears the market.

This means that the opening price of the exchange reflects accumulated overnight information

from oversea markets (see, for example, Taylor (2007), Tsiakas (2008), and Chan et al. (1996)).

Another strand of literature finds that extended futures trading (usually 24h-trading, except

on weekends) contains information that is useful for explaining subsequent overnight spot

returns. Hasbrouck (2003) shows that S&P 500 E-mini futures, which are traded overnight

when the underlying stock market is closed, account for approximately 90% of the movement

of the S&P 500 index. Similarly, Craig et al. (1995) find close links between implied changes

and actual overnight changes in the Nikkei index. It is clear from both of the above strands

of literature that overnight information from overseas stock markets and futures markets is

crucial for explaining observed patterns in opening price reactions and unobserved patterns
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during non-trading periods.

Figure 1 plots the averaged 1-minute returns and variances of the S&P 500 index from

market open to close. It is not surprising to find that the largest 1-minute variance for a

trading day occurs when the market opens, as this variance reflects the opening price reaction

to information accumulated overnight from futures markets and overseas stock markets. The

figure shows that a standard U-shaped pattern exists (Hong and Wang (2000)). The closing

variances, although tending to be higher than those earlier in the day, are not so dramatic as

the opening variances.

Figure 1 Opening Price Reaction to Accumulated Overnight Information

Notes: Figure 1 presents the averaged 1-minute returns and 1-minute variances (computed by 1-minute squared

returns) of the S&P 500 index during trading hours. This sample covers the period from July 2, 2003 to

December 18, 2019.

Moreover, macroeconomic and corporate announcements released during non-trading hours

can be predictive of opening price, asset return and volatility (see, for example, Chan and

Marsh (2022), Jiang et al. (2012), Akey et al. (2022), and Hu et al. (2021)). Moshirian

et al. (2012) examine the impact of corporate news announcements released overnight on price

discovery during the pre-opening period in the Australian Securities Exchange and find that

prices respond immediately to overnight news upon the commencement of trading. Boudoukh
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et al. (2019) find that fundamental information in firm-level announcements accounts for

49.6% of overnight idiosyncratic volatility (vs. 12.4% of trading-hour idiosyncratic volatility).

Furthermore, Atilgan (2014) obtains evidence that compared with volatility spreads on non-

earnings-announcement days, volatility spreads on earnings-announcement days1 are more

predictive of stock returns.

To show the immediate reactions of asset returns and variances to overnight news releases,

we consider the most important U.S. macroeconomic announcement, the nonfarm payroll

employment release. The nonfarm payroll employment is one of the most important an-

nouncements for all markets and it is often referred to as the “king” of announcements by

market participants (for example, see Andersen and Bollerslev (1998) and Andersen et al.

(2007)). Nonfarm payroll employment is released at 8:30 Eastern Standard Time (EST) when

the futures markets are open but the equity markets are closed. Figure 2 plots the averaged

1-minute returns and variances of the S&P 500 E-mini futures in the period ranging from 1

hour before to 1 hour after the announcement. As can be seen, there is a sharp increase in

both returns and variances immediately after the announcement, revealing an instantaneous

market reaction to information incorporated into overnight announcements. The variances

from the announcement time to the market opening time are higher than those before the

announcement.

1Del Corral et al. (2003) find that nearly 93% of announcements are made during non-trading hours.
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Figure 2 Instantaneous Market Reaction to Information in Overnight Macroeconomic An-
nouncements

Notes: Figure 2 presents the averaged 1-minute returns and 1-minute variances (constructed by the square of

1-minute returns) of the S&P 500 E-mini futures on days that the U.S. Bureau of Labor Statistics announced

the unemployment rate. The sample covers the period from July 2, 2003 to December 18, 2019. Unemployment

announcement dates are obtained from the website of the U.S. Bureau of Labor Statistics (http://www.bls.gov).

The effect of market closure on stock (index) returns has been considered extensively in

the literature. For example, weekend returns are lower than weekday returns (see, for exam-

ple, French (1980), Gibbons and Hess (1981), and Keim and Stambaugh (1984)). Moreover,

returns over trading periods are more volatile than returns over non-trading periods (see, for

example, Fama (1965), French and Roll (1986), Oldfield and Rogalski (1980), and Amihud

and Mendelson (1991)). The aforementioned studies examine the difference between the na-

ture of overnight returns and that of intraday returns and have been extended to incorporate

overnight information to enhance the accuracy of volatility forecasting (see, for example, Tsi-

akas (2008), Linton and Wu (2020), and Dhaene and Wu (2020)) and to manage risk within

VaR models (Taylor (2007)).

However, few studies consider the influence of market closure on option pricing. Boes

et al. (2007) model the overnight change in the stock prices by a single jump in addition

to a standard affine model that allows for stochastic volatility and random jumps during
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the day, and find that both overnight and intraday jumps are important for option pricing.

Jones and Shemesh (2018) suggest that widespread and highly persistent option mispricing is

driven by the incorrect treatment of stock return variance during periods of market closure.

Muravyev and Ni (2020) find a remarkable day–night pattern: overnight average delta-hedged

option returns are negative, whereas intraday average delta-hedged option returns are slightly

positive. Wang et al. (2022) integrate overnight returns, intraday returns, and intraday realized

volatility within an augmented autoregressive volatility model, in which overnight returns and

intraday returns are assumed to be independent.

Building on these insights, this paper develops an option valuation model in which the

underlying asset price features specific overnight and intraday variance dynamics. Our mod-

eling framework explicitly prices options with distinct dynamics for overnight and intraday

variations. To stress the difference in information, we use alternative model-free empirical

measures driving overnight and intraday volatilities, respectively.

We find, for the SPX market over two separate periods, that both overnight and intraday

volatilities are important for option pricing. Our new proposed model, the Bisected Realized

GARCH, performs well in matching the historical and risk-neutral distributions of S&P 500

index returns. Specifically, when the Bisected Realized GARCH model is optimized on a

dataset of S&P 500 index options, realized overnight and intraday variances, and returns,

the model exhibits significantly better performance than various popular specifications. In

particular, the overnight component accounts for an out-of-sample gain of 7.24% in pricing

accuracy, relative to simply modeling total daily returns. This indicates that the overnight

component should be taken into account when hedging risks during market closure.

One of the main contributions of this paper is a new and flexible option pricing model that

can accommodate distinct overnight and intraday variance dynamics in the underlying asset

price process. An important feature of this model is that the dynamics of overnight and intra-

day variances are governed by their nonparametric empirical proxies. Since these proxies are

constructed in discrete time, our model contributes to the discrete-time family. The applica-

tion of multivariate Edgeworth-Sargan density enables us to derive analytical approximations

for option valuation formulas comprising several nested option-pricing specifications. This

feature facilitates the estimation procedure, allows for a direct comparison between nested

models, and avoids the need to resort to simulation techniques.
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The remainder of this paper is organized as follows. Section 2 presents the theoretical

background and empirical implementation of overnight and intraday volatility. Section 3

introduces our option pricing model. Section 4 describes the physical estimation. In Section

5, we specify the risk-neutralization procedure and derive analytical approximations for option

valuation formulas. In Section 6, we evaluate empirical option pricing performance. Section 7

concludes.

2 Overnight and Intraday Volatility

This section outlines the theoretical background and empirical implementation of computing

overnight and intraday components of the total daily variation. Hansen and Lunde (2005) con-

struct overnight and intraday volatility with close-to-open return and intraday high-frequency

data, which we describe first.

2.1 Realized Overnight and Intraday Volatility

For trading periods, high-frequency trades or quotes are ready to construct realized intraday

variance,

RVOC,t =

NOC,t∑
j=1

r2
OC,tj

, (1)

where rOC,tj , RVOC,t, and NOC,t are high-frequency returns, realized variances, and the num-

ber of observations during the open-to-close (OC in short) period. rOC,tj = logSOC,tj −

logSOC,tj−1
, t < tOC,1 < tOC,2 < · · · < tNOC,t < t + 1 are the time at which (trade or quote)

prices are available.

To incorporate overnight information, Hansen and Lunde (2005) use close-to-open (here-

after CO) returns when constructing the total realized variance:

RVt = r2
CO,t +RVOC,t, (2)

where rCO,t denotes the overnight return, computed as the log-difference between the open

price of trading day t and the close price of the previous trading day:

rCO,t = logOpent − logCloset−1. (3)
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Due to market closure, only two price observations are available to compute overnight return

and variance.

In existing studies, it has been proved that most of the S&P 500 price discovery occurs in

the S&P 500 E-mini futures market (Hasbrouck (2003)). Consequently, during non-trading

hours of stock market, high-frequency price observations of its 24h-traded futures counterpart

provide accurate measures of returns and variances. Heston and Nandi (2000) use S&P 500

futures prices to imply out S&P 500 index levels. Hu et al. (2021) calculate the realized

volatility as the root of the sum of squared log returns of the S&P 500 E-mini futures sampled

at 1-minute frequency, to further capture the uncertainty risk caused by macro-announcement

during non-trading period. Craig et al. (1995) show that information during non-trading hours

of stock market is efficiently reflected by its 24h-traded derivatives counterpart.

In light of this, we use overnight high-frequency prices of S&P 500 E-mini futures to imply

out S&P 500 index levels during market closure, and construct implied overnight realized

measures. The basic idea is that, the futures’ price (F ), is determined by its maturity (τ),

risk-free rate (r), and the underlying spot price (S):

F = Serτ , (4)

thus, high-frequency index returns during non-trading hours can be implied by its 24h-traded

futures counterpart (which matures at time T )

rStj = logStj − logStj−1

= log
(
Ftje

−r(T−tj)
)
− log

(
Ftj−1

e−r(T−tj−1)
)

= logFtj − logFtj−1
+ r(tj − tj−1)︸ ︷︷ ︸

≈0

≈ rFtj ,

(5)

which can be applied to construct the realized overnight variance:

RVCO,t =

NCO,t∑
j=1

(
rFCO,tj

)2

, (6)

where rCO,tj = logFCO,tj − logFCO,tj−1
, tCO,1 < · · · < tCO,NCO,t are the time at which high-

frequency future prices are available during overnight period.

Since realized measures constructed using high-frequency data promote volatility forecast-

ing accuracy (see Andersen et al. (2003) for example), the implied overnight realized measures
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may contribute to better volatility forecasts of the underlying index, and thus to more accurate

option prices.

2.2 Empirical Implementation

Following Hansen et al. (2022), the empirical measures of overnight and intraday variations

on trading day t are given by

RVCO,t =

NCO,t∑
j=1

(
rCO,tj

)2
, (7)

RVOC,t =

NOC,t∑
j=1

(
rOC,tj

)2
, (8)

where NCO,t and NOC,t are the number of 5-minute overnight and intraday returns on trading

day t, respectively. 5-minute returns are computed using the last tick price in each 5-minute

interval. S&P 500 E-mini futures data come from TickData, and intraday realized variances

are from the Realized Library of Oxford-Man.

2.3 Distinct Dynamics of Overnight and Intraday Volatilities

Figure 3 plots the series of total daily return and realized volatility (Graph A and B), overnight

return and realized volatility (Graph C and D), and intraday counterparts (Graph E and F),

from July 2, 2003 to December 18, 2019. We could see large swings in returns and high level

of daily volatility during 2008 financial crisis. Comparing with Graph E and F, Graph C and

D show rapidly growing importance of overnight variations after 2013, with averagely higher

level of overnight volatility relative to the intraday counterpart. Besides, Graph D and F

not only display synchronicity, but also show different dynamic patterns and evolution tracks

of overnight and intraday volatility. For example, overnight periods are significantly more

volatile than trading hours after 2018.

Table 1 reports summary statistics of returns and RV series, providing a straightforward

access to distinct patterns and properties during trading and non-trading hours. Importantly,

overnight variances have a higher persistence compared with intraday variances, indicated by

a larger AR(1) coefficient for RVCO. In addition, overnight variances are averagely larger and

more volatile than intraday variances. The above empirical regularities will help us to check

the fitness of our model.
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Figure 3 S&P 500 Returns and Realized Volatilities

Notes: Figure 3 presents the time trends of S&P 500 returns and volatilities. Specifically, we plot daily returns, r (Graph A); daily

realized volatilities,
√
RV (Graph B); overnight returns, rCO (Graph C); overnight realized volatilities computed using S&P 500

E-mini futures prices,
√
RVCO (Graph D); intraday returns, rOC (Graph E); and intraday realized volatilities,

√
RVOC (Graph

F). The sample period is from July 2, 2003 to December 18, 2019.
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To sum up, different dynamic patterns of overnight and intraday variances provide sup-

portive evidence for separate dynamic specifications. Thus, building a model that can accom-

modate distinct overnight and intraday variance dynamics is our next task.

Table 1 Summary Statistics of Historical Series

Summary Statistics of Historical Series

Series Mean (%) Median (%) Std. Dev (%) Skewness Kurtosis AR(1)

Return 7.2338 17.4072 17.7054 -0.3411 14.5768 -0.0867
Ovenight Return 2.2316 1.5509 3.3020 -0.4827 15.3239 -0.0445
Intraday Return 5.0022 15.1867 16.6365 -0.3176 15.3239 -0.0953
Realized Variance 22.0311 17.8777 15.2674 3.2678 19.8691 0.8414
Overnight Realized Variance 17.0182 13.3917 13.7093 3.6059 24.5662 0.8219
Intraday Realized Variance 12.3200 9.6300 9.4408 3.7296 26.3739 0.7197

Notes: Table 1 reports summary statistics of returns and realized variances. Sample mean, median, and standard deviation
are annualized and presented in percentages. AR (1) notes the first-order autocorrelation coefficient. The sample covers from
July 2, 2003 to December 18, 2019.

3 Modeling Overnight and Intraday Volatility

In this section, we develop an option pricing framework in which the underlying asset price

features specific overnight and intraday variance dynamics. In our modeling framework, the

dynamics of overnight and intraday variances are driven by their model-free realized measures

constructed using high-frequency historical returns. The timely arrived overnight information

and accurate description of overnight and intraday patterns lead to better volatility forecasts

of the underlying index, and thus increase option pricing accuracy.

3.1 Key Objectives

In order to develop an option pricing model capturing distinct dynamics of overnight and in-

traday volatilities, following Hansen et al. (2022), we separate total daily return into overnight

and intraday components:

rt = rCO,t + rOC,t, (9)
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where rCO,t and rOC,t denote the overnight and intraday return on trading day t, respectively.

Thus, the total daily variance, ht, is expressed as

ht = dCO,thCO,t + dOC,thOC,t + 2ρt
√
dCO,thCO,tdOC,thOC,t, (10)

where hCO,t and hOC,t denote the overnight and intraday variance, respectively. Following

Hansen et al. (2022), dCO,t and dOC,t are categorical variables capturing time-varying patterns

of overnight and intraday variances. ρt is the correlation of rCO,t and rOC,t. To obtain accurate

volatility forecasts of the underlying index, dynamics of hCO,t, hOC,t, and ρt are key objectives

of our discussion.

3.2 Return Equations

Under the framework of GARCH option pricing models (Duan (1995) and Christoffersen et al.

(2013)), we consider the following specification:

rj,t = rj + λj
√
dj,thj,t −

1

2
dj,thj,t +

√
dj,thj,tzj,t, (11)

where j = {CO,OC}, rjs are corresponding risk-free returns, and dj,ts are categorical variables

capturing time-varying patterns of overnight and intraday variances. Equation (11) enables us

to interpret λCO and λOC as compensations for overnight and intraday volatility risk exposures,

respectively. zj,ts are stochastic terms following a bivariate joint normal distribution

zt =

 zCO,t

zOC,t

 i.i.d∼ N

 0

0

 ,

 1 ρt

ρt 1

 , (12)

where ρt is the correlation of zCO,t and zOC,t.

3.2.1 Mapping the Correlations

Instead of modeling the conditional correlation, ρt, that is subject to ρt ∈ [−1, 1], we will

model %t that varies freely in R. Following Hansen et al. (2014) and Archakov and Hansen

(2020), we use the Fisher-Z transformation and relate to %t as:

%t = arctanh ρt =
1

2
log

(
1 + ρt
1− ρt

)
. (13)

It is straightforward to find that the inverse transformation is also available in a closed form,

because ρt = (e2%t − 1)/(e2%t + 1).
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The corresponding empirical quantities of correlations, Yt, are subjected to the same trans-

formation, and yt is the empirical measure that we use to update the dynamics of %t:

yt = arctanhYt. (14)

3.3 Incorporating Realized Measurements

Measurement equations describe the contemporaneous measurement relationship between la-

tent variables and the corresponding observed empirical quantities:

logRVj,t = ξj + φj(log dj,t + log hj,t) + δ(zj,t) + σvjvj,t, (15)

yt = ξ̃ + φ̃%t + σṽṽt. (16)

δ(zj,t) is a leverage function that captures dependencies between return and volatility

innovations. This dependency is known to be empirically important, and is referred to as the

leverage effect (Black (1976), Christie (1982), and Engle and Ng (1993)). Motivated by findings

in Hansen et al. (2012) and Hansen and Huang (2016), a second-order Hermite polynomial is

sufficient for capturing the asymmetry dependence between return and volatility innovations,

we focus on a parsimonious leverage function written as a second-order Hermite polynomial

in this paper, i.e.

δ(zj,t) = δ1zj,t + δ2(z2
j,t − 1). (17)

This choice is convenient because it ensures that E(δ(zj,t)) = 0, for any distribution with

E(zj,t) = 0 and V ar(zj,t) = 1. The second-order Hermite polynomial form is also convenient

in the derivation of option pricing formula and quasi-likelihood analysis.

The measurement equations involve the error terms, ut = (vCO,t, vOC,t, ṽt)
′. Following

Archakov and Hansen (2020), we specify ut to be

ut =


vCO,t

vOC,t

ṽt

 i.i.d∼ N




0

0

0

 ,


1 ρvCO,vOC ρvCO,ṽ

ρvCO,vOC 1 ρvOC ,ṽ

ρvCO,ṽ ρvOC ,ṽ 1


 , (18)

and independent of zt,

corr(zt,ut) = 0. (19)
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RVCO,t, RVOC,t, and yt are the observed realized measurements of the latent variables,

hCO,t, hOC,t, and %t, respectively, and these will be used to inform the model about time

variation in the latent variables.

3.4 Dynamic Equations

We are now ready to specify the dynamic equations that describe how latent variables depend

on past observables. Following Huang et al. (2017), we use GARCH dynamics, where the

information provided by realized measures at trading day t is used to update the forecast

of latent variables on t + 1. The dynamics for overnight and intraday variances and the

transformed correlations are as follows:

log hj,t+1 = ωj + βj log hj,t + τ(zj,t) + γj(logRVj,t − log dj,t), (20)

%t = ω̃ + β̃%t−1 + γ̃yt−1, (21)

where τ(zj,t) is also a leverage function.

4 Estimation on the Underlying Asset

4.1 Quasi Maximum Likelihood Estimation

We estimate the models using Quasi Maximum Likelihood Estimation (QMLE). Under the

Gaussian specification, the log-likelihood for returns at time t+ 1 conditional on observations

at time t can be written as

lnLP
t (rj,t+1) = −1

2
ln (2π vart [rt+1])− (rj,t+1 − Et [rj,t+1])2

2 vart [rj,t+1]
. (22)

Similarly, the log-likelihood for realized variances at time t+ 1 conditional on observations at

time t is given by

lnLP
t (RVj,t+1) = −1

2
ln (2π vart [RVj,t+1])− (RVj,t+1 − Et [RVj,t+1])2

2 vart [RVj,t+1]
, (23)

where j ∈ {CO,OC}. Thus, the log-likelihood function for returns and realized variances is

given by summing the log likelihoods over all the observations, yielding

lnLP =
T∑
t=1

∑
j∈{CO,OC}

lnLP
t (rj,t+1) +

T∑
t=1

∑
j∈{CO,OC}

lnLP
t (RVj,t+1) . (24)
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4.2 Nested Models

Before the empirical estimation, we discuss special cases of interest that are nested by the new

proposed option pricing model. In the following empirical studies, we compare the performance

of the Bisected Realized GARCH model to these nested specifications and other popular

models.

4.2.1 The Realized GARCH Model

One of the main contributions of this paper is a new option pricing model that can accommo-

date distinct overnight and intraday variance dynamics in the underlying asset price process.

To achieve that, we have separate dynamic specifications for overnight and intraday variances.

If the patterns and properties of the overnight components are ignored, and simply model

total daily variations, return equation will become

rt+1 = r + λ
√
ht+1 −

1

2
ht+1 +

√
ht+1zt+1, (25)

where r denotes the risk-free return, and zt are i.i.d. N (0, 1). Similarly, dynamic equation

and measurement equation will become

log ht+1 = ω + β log ht + τ(zt) + γσut, (26)

logRVt = ξ + φ log ht + δ(zt) + σut. (27)

Again, the model specifies corr(zt, ut) = 0. This specification is identical to the log-linear

Realized GARCH (RG) model by Hansen et al. (2012) and Huang et al. (2017).

4.2.2 The EGARCH model

The realized measurements constructed by high-frequency data are used to inform the model

about time variation in the latent variables. Furthermore, if the dynamics of all latent variables

are only driven by daily observables, the dynamic equation become

log ht+1 = ω + β log ht + τ(zt),

which is precisely the EGARCH model (EG) by Duan et al. (1997) and Duan et al. (2006).
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4.3 Full Sample Estimation

Following Hansen et al. (2022), we use dCO,t to explicitly capture the announcement effect

of important macroeconomic releases on overnight volatilities. In our empirical study, we

focus on the most important U.S. macroeconomic announcement, namely the nonfarm payroll

employment release. The nonfarm payroll is among the most significant of the announcements

for all of the markets, and it is often referred to as the “king” of announcements by market

participants; see, e.g., Andersen and Bollerslev (1998). Since these news announcements are

released at 8:30 Eastern Standard Time (EST) when the futures markets are open, but the

equity markets closed, we set dCO,t to θ on announcement days, otherwise dCO,t = 1, that is,

dCO,t =

 θ, announcement day

1, otherwise
(28)

and dOC,t ≡ 1.

Table 2 reports the estimation results under P measure. We compare the new proposed

model to nested specifications discussed in Section 4.2 as well as popular settings, the Gen-

eralized Affine Realized Volatility (GARV) model by Christoffersen et al. (2014) and the

Heston-Nandi GARCH (HNG) model by Heston and Nandi (2000). For each estimation, we

report the coefficients, and the corresponding standard errors are presented in parentheses.

To allow for a direct comparison, we also include log likelihoods, L, and volatility persistence,

πP. The sample period is from July 2, 2003 to December 18, 2019.

For all models, the estimates of λ are positive and statistically significant, indicating pos-

itive volatility risk compensations for both trading and non-trading hours. Moreover, for the

BRG and the RG model, the estimates of τ and δ describe the leverage effect, which is in line

with previous studies (see Hansen et al. (2012) and Hansen et al. (2014) for example).

Table 2 provides supportive evidence for distinct dynamics in overnight and intraday

volatilities. The volatility persistence, πP, is higher for overnight period, which is consistent

with the higher AR(1) coefficients of overnight variance reported in Table 1. The volatility

persistence estimates are all above 0.96, which is in line with the established empirical results.

Besides, the coefficients of the “OC” components of the BRG model exhibit high similarity

with the parameters of the RG model using close-to-open returns to update overnight varia-

tions (i.e. RVt = r2
CO,t+RVOC,t). This similarity further confirms that r2

CO contains only little

overnight information, and thus we need realized measures constructed using high-frequency
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Table 2 Full Sample Estimation Under P Measure

Estimation on Historical Returns and Realized Measurements

Parameters BRG RG GARV HNG EG

CO OC

ω 0.1584 -0.0134 -0.0287 9.19E-07 -0.1256
(0.0132) (0.0083) (0.0163) (1.14E-05) (0.0106)

λ 0.2620 0.3479 0.3467 0.4935 0.5436 0.4673
(0.0158) (0.0161) (0.0050) (1.61E-04) (0.0183) (0.0161)

β 0.6433 0.7077 0.9704 0.9692 0.6061 0.9860
(0.0056) (0.0137) (0.0044) (0.0002) (0.0031) (0.0034)

τ1 -0.0706 -0.0467 -0.1088 9.42E-11 1.54E-06 0.1522
(0.0056) (0.0059) (0.0071) (8.76E-13) (5.21E-09) (0.0122)

τ2 0.0002 0.0199 0.0516 473.9283 505.0916 -0.8489
(0.0005) (0.0031) (0.0038) 2.3032 (2.7838) (0.0813)

γ 0.3345 0.2360 0.2606
(0.0141) (0.0121) (0.0129)

ξ 0.3716 -0.0576 -0.0171
(0.0367) (0.0291) (0.0346)

φ 1.0038 1.1178 1.1743 1.50E-06
(0.0368) (0.0242) (0.0263) (1.10E-08)

δ1 -0.0268 -0.1194 -0.1193 5.97E-07
(0.0080) (0.0093) (0.0092) (3.46E-11)

δ2 0.0710 0.0836 0.0962 538.5526
(0.0033) (0.0047) (0.0051) (1.47E-02)

σ 0.4831 0.5557 0.5485 0.5194
(0.0053) (0.0063) (0.0060) (2.13E-03)

κ 0.4423
(2.15E-07)

θ 1.0506 0.3535
(0.0304) (5.37E-03)

ρ 0.3636
(0.0154)

log h1 -2.4867 -1.9583 0.0655 0.0130 0.6581 -0.0361
(0.4299) (0.4078) (0.3212) (3.93E-04) 0.0635 0.4587

πP 0.9791 0.9715 0.9704 0.9692 0.9970 0.9860

L -12299 -7650 -8007 -6171 -1454

Notes: Table 2 reports estimation results under P measure. The Bisected Realized GARCH (BRG) model is estimated

on close-to-open returns, open-to-close returns, close-to-open realized variances, and open-to-close realized variances. The

Realized GARCH (RG) model and the Generalized Affine Realized Volatility (GARV) model are estimated on close-to-close

returns and daily realized variances. The Heston-Nandi GARCH (HNG) model and the EGARCH (EG) model are estimated

on close-to-close returns. We report the estimated coefficients, and the corresponding standard errors are presented in

parentheses. Note that for GARV and HNG model, the parameters ω can be inferred by E[h̄].



18

data from contemporaneous futures trading to timely and accurately incorporate overnight

market information. In addition, the macroeconomic announcements released during non-

trading hours lead to a higher overnight volatility, indicated by θ > 1.

5 Risk Neutralization and Option Valuation

5.1 Risk Neutralization

To derive the option valuation formula, we need to obtain the dynamics under the risk neutral

measure. Following Christoffersen et al. (2010), we apply the exponentially affine stochastic

discount factor (SDF) as below to derive the dynamics under Q measure.

Zt+1 =
exp(νCO,tzCO,t+1 + νOC,tzOC,t+1 + θCO,tvCO,t+1 + θOC,tvOC,t+1 + θ̃tṽt+1)

Et[exp(νCO,tzCO,t+1 + νOC,tzOC,t+1 + θCO,tvCO,t+1 + θOC,tvOC,t+1 + θ̃tṽt+1)]
,

The non-arbitrage conditions, namely that the expectations of returns under Q measure

equal to the risk-free returns rj in the corresponding period, yield

EQt [exp(rj,t+1)] = exp(rj), j ∈ {CO,OC}. (29)

Note that Zt+1 builds the relationship between P measure and Q measure,

Et[Zt+1 exp(rj,t+1)] = EQt [exp(rj,t+1)], j ∈ {CO,OC}, (30)

we have

Et[Zt+1 exp(rj,t+1)] = exp(rj), j ∈ {CO,OC}. (31)

Then we consider the risk-neutral moment generating function (MGF) and the sufficient

condition to derive the model under Q measure. The moment generating function of the five

random shocks can be written as

EQt [exp(s1zCO,t+1 + s2zOC,t+1 + s3vCO,t+1 + s4vOC,t+1 + s5ṽt+1)]

= Et[Zt+1 exp(s1zCO,t+1 + s2zOC,t+1 + s3vCO,t+1 + s4vOC,t+1 + s5ṽt+1)]
(32)

We maintain the nature of the model by mapping innovations from physical measures to

risk-neutral measures, as follows:

z∗CO,t+1 = zCO,t+1 + λCO, (33)
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z∗OC,t+1 = zOC,t+1 + λOC , (34)

v∗CO,t+1 = vCO,t+1 − χ1, (35)

v∗OC,t+1 = vOC,t+1 − χ2, (36)

ṽ∗t+1 = ṽt+1 − χ3, (37)

where χ1, χ2, χ3 are risk compensations.

Now we are ready to obtain the dynamic model under Q measure. Similar to the Bisected

Realized GARCH model under P measure, the model under Q measure also consists of return

equations (1* to 3*), dynamic equations (4* to 6*), and measurement equations (7* to 9*).

z∗t and u∗t are independently normally distributed under Q measure.

rt = rCO,t + rOC,t, (1*)

rCO,t = rCO −
1

2
dCO,thCO,t +

√
dCO,thCO,tz

∗
CO,t, (2*)

rOC,t = rOC −
1

2
dOC,thOC,t +

√
dOC,thOC,tz

∗
OC,t, (3*)

log hCO,t = ωCO + βCO log hCO,t−1 + τ(z∗CO,t) + γCO(logRVCO,t−1 − log dCO,t−1), (4*)

log hOC,t = ωOC + βOC log hOC,t−1 + τ(z∗OC,t) + γOC(logRVOC,t−1 − log dOC,t−1), (5*)

%t = ω̃ + β̃%t−1 + γ̃ỹt−1, (6*)

logRVCO,t = ξ∗CO + φCO(log dCO,t + log hCO,t) + δ(z∗CO,t) + σvCOv
∗
CO,t, (7*)

logRVOC,t = ξ∗OC + φOC(log dOC,t + log hOC,t) + δ(z∗OC,t) + σvOCv
∗
OC,t, (8*)

yt = ξ̃∗ + φ̃qt + σṽṽ
∗
t . (9*)

The above risk neutralization process is detailed in Appendix A.

5.2 Multivariate Approximation Density

Due to the log-linear specification, models under the Realized GARCH framework do not have

an analytical moment generating function (MGF). Following Huang et al. (2017), we apply

the analytical approximation method to derive an option pricing formula for the Bisected

Realized GARCH model. Furthermore, the Bisected Realized GARCH model accommodate

distinct dynamics in overnight and intraday components, therefore we resort to a multivari-

ate approximation approach. Following Jarrow and Rudd (1982), Duan et al. (1997), and

Duan et al. (2006), we consider the multivariate version of the Edgeworth expansion, the
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multivariate Edgeworth-Sargan density, to analytically approximate the joint density of the

cumulative close-to-open and open-to-close returns. According to Perote (2004), the multi-

variate Edgeworth-Sargan density shows better performance than many other densities (for

example, the multivariate Student-t density) in fitting financial data.

Specifically, the joint density of z = (zCO, zOC)′ can be approximated by

p(zCO, zOC) = φ(zCO, zOC) + g(zCO)g(zOC)(q(zCO) + q(zOC)), −∞ < zCO, zOC < +∞ (38)

where φ(zCO, zOC) is a zero-mean bivariate normal density with a covariance matrix

Σφ =

 σ2
zCO

σzCO,zOC

σzCO,zOC σ2
zOC

 ,

and its marginal densities are g(zCO) and g(zOC). In addition,

q(zCO) =

SCO∑
s=2

wCO,sHs(vCO), q(zOC) =

SOC∑
s=2

wOC,sHs(vOC)

are linear combinations of the first Sj Hermite polynomials of g(zCO) and g(zOC), where

vCO = zCO
σzCO

and vCO = zOC
σzOC

. We follow Huang et al. (2017) and keep only cumulants below

fourth-order in our expansion.

5.3 Option Valuation Formula

Under the risk neutral measure, the European call option price is given by

e−rTEQ
0 (max(ST −K), 0) = e−rT

∫∫
D

(ST −K)p̃(z)dz (39)

where T denotes the maturity of the option and K is the strike price. p̃(z) describes the joint

PDF of normalized cumulative overnight and intraday return under Q measure. ST denotes

the price of underlying asset at time T , whose randomness comes from z completely.

ST = S0 exp(RCO,T +ROC,T )

= S0 exp(µCO − σCOzCO + µOC − σOCzOC)
(40)

where Rj,T is the cumulative return under Q measure, µj and σ2
j are the corresponding mean

and variance, respectively.

Rj,T =
T∑
t=1

(
rj −

1

2
dj,thj,t +

√
dj,thj,tz

∗
j,t

)
, (41)
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µj = EQ0 [Rj,T ], σ2
j = EQ0 [R2

j,T ]− (EQ0 [Rj,T ])2. (42)

The variable of integration, z, is the normalized cumulative return under Q measure, whose

joint density can be approximated by the multivariate Edgeworth-Sargan density discussed in

Section 5.2.

Proposition 1. The price of a European call option matures at time T is given by

Capprox = C+κCO,3ACO,3+κOC,3AOC,3+(κCO,4−3)ACO,4+(κOC,4−3)AOC,4+κ2
CO,3ACO,6+κ2

OC,3AOC,6,

where

C = S0e
∆σΦ(D′; Σ)−Ke−rTΦ(D; Σ),

ACO,3 =
1

6
S0e

δσσCO

(
σ2
COΦ(D′′; Σ0) +

σ2
CO

σ2
(2σ − d)φ(d)

)
,

AOC,3 =
1

6
S0e

δσσOC

(
σ2
OCΦ(D′′; Σ0) +

σ2
OC

σ2
(2σ − d)φ(d)

)
,

ACO,4 =
1

24
S0e

δσσCO

(
σ3
COΦ(D′′; Σ0) +

σ3
CO

σ3
(d2 − 1− 3σ(d− σ))φ(d)

)
,

AOC,4 =
1

24
S0e

δσσOC

(
σ3
OCΦ(D′′; Σ0) +

σ3
OC

σ3
(d2 − 1− 3σ(d− σ))φ(d)

)
,

ACO,6 =
1

72
S0e

δσσCO

(
σ5
COΦ(D′′; Σ0) +

σ5
CO

σ5
(3− 6d2 + d4 + 5σ(d− (d− σ)(σd− 2)− (d− σ)3))φ(d)

)
,

AOC,6 =
1

72
S0e

δσσOC

(
σ5
OCΦ(D′′; Σ0) +

σ5
OC

σ5
(3− 6d2 + d4 + 5σ(d− (d− σ)(σd− 2)− (d− σ)3))φ(d)

)
.

(43)

The expressions and notations are given in Appendix B.

Proof. See Appendix C.

6 Option Pricing Performance

To examine whether overnight variance dynamics and implied overnight realized measures help

to improve option pricing accuracy, in this section, we compare the option pricing performance

of the Bisected Realized GARCH model to a set of benchmarks. We first describe the option

dataset, and then estimate models to obtain coefficients which will be used to conduct out-

of-sample evaluations. Finally, we compare the pricing performance across models in different

out-of-sample windows.
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6.1 Option Dataset

We use daily close prices of European options on the S&P 500 index. Option data are from

OptionMetrics and VIX data are from CBOE. The sample period covers from July 2, 2003 to

December 18, 2019. Following Christoffersen et al. (2014), we use out-of-the-money (OTM)

put and call options with positive trading volume and with maturity between 15 and 180 days,

and out-of-money put option prices are converted to in-the-money call option prices using the

put-call parity. For each maturity quoted on each Wednesday and Thursday, we use the six

most liquid strike prices, which finally yields a sample of 74,848 option contracts.

Table 3 presents summary statistics, and the option data are sorted by moneyness (Panel

A), maturity (Panel B), and the VIX level (Panel C). In each panel, we report the number

of contracts, the average option price, the average Black-Scholes implied volatility, and the

average bid-ask spread in dollars.

In Panel A, the measure of moneyness is the Black-Scholes delta defined as

∆ = Φ

(
ln(S0/K) + rT + 1/2(IV MKT )2T/365

IV MKT
√
T/365

)
, (44)

where Φ(·) stands for the normal cumulative distribution function (CDF), r is the annualized

risk-free rate, T is maturity, and IV MKT is the annualized implied Black-Scholes volatility

computed using the market price of the option. A few empirical regularities emerge at this

point. We observe that the deep out-of-the-money (OTM) puts, i.e., contracts with deltas

exceeding 0.7, are relatively expensive. The implied volatility for those options, 20.42%, is

higher compared with 15.07% for options with delta between 0.4 and 0.5, and 13.08% for

options with delta below 0.3. The data provide supportive evidence for the smirk pattern

across moneyness.

In Panel B, the option data are sorted by calendar days to maturity. We observe that

options with longer maturities are generally more expensive, which is in line with previous

findings, see Christoffersen et al. (2014), among others.

Panel C reports results sorted by the VIX level. As expected, option prices, implied

volatilities, and dollar spreads increase with VIX. We conclude from Panel C that most of our

sample days come from mild periods, with VIX levels less than 25%.

The full dataset includes three subsamples. Data on Wednesdays from July 2, 2003 to

December 30, 2015 (in-sample) are used to estimate models, and obtain coefficients which will
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Table 3 Summary Statistics of the S&P 500 Index Option Data

S&P 500 Index Option data (2003-2019)
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Panel A. By Moneyness
Number of contracts 10,218 5,639 8,844 13,372 8,813 27,962 74,848
Average price 11.2995 22.0336 36.1877 52.9316 76.7431 174.0350 90.9878
Average implied volatility 13.0793 13.9505 15.0700 16.4939 17.6432 20.4244 17.2715
Average bid-ask spread 1.0713 1.3280 1.5645 1.7116 1.5371 1.0729 1.3188
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Panel B. By Maturity
Number of contracts 15,581 23,155 13,355 9,988 6,954 5,815 74,848
Average price 42.8841 74.2270 97.1204 121.4386 148.0314 152.0155 90.9878
Average implied volatility 14.6657 16.6491 18.3513 19.3903 18.9056 18.6584 17.2715
Average bid-ask spread 0.7992 1.1160 1.5509 1.7245 1.6927 1.8414 1.3188
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Panel C. By VIX Level
Number of contracts 36,003 22,588 8,712 3,728 1,503 2,314 74,848
Average price 86.8972 94.8711 97.6983 94.7407 97.4913 81.1917 90.9878
Average implied volatility 13.1344 17.4413 21.9962 25.2239 29.7880 41.2515 17.2715
Average bid-ask spread 0.9354 1.3614 1.7218 2.0618 2.5252 3.3691 1.3188

Notes: This table reports summary statistics of the S&P 500 index option data sorted by moneyness (Panel A), maturity
(Panel B), and the VIX level (Panel C). In Panel A, moneyness is measured by delta computed from the Black-Scholes model.
In Panel B, DTM denotes calendar days to maturity. In Panel C, VIX level stands for CBOE Volatility Index. Option data
are from OptionMetrics and VIX data are from CBOE. The sample period is from July 2, 2003 to December 18, 2019. We
keep data on Wednesdays and Thursdays, and option prices were preprocessed following Christoffersen et al. (2014).
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be used to compare the out-of-sample option pricing performance across models. We conduct

the out-of-sample evaluations in two different windows. The first is Thursdays from July 3,

2003 to December 31, 2015, and the second is Wednesdays from January 6, 2016 to December

18, 2019.

Table 4 describes the subsamples. For each subsample, we sort data by moneyness and

maturity, and report the number of options as well as the average of implied volatilities in

each category. Similar to the full sample, one-third to a half of option contracts are deep

out-of-money puts (i.e. ∆ > 0.7), and options with maturity less than 60 days account for

over a half for each subsample. Among different subsamples, the market volatility is lower

after 2016. To be more specific, the average of implied volatilities on Wednesdays after 2016

is 0.1466, which is 21.18% lower than that from 2003 to 2015.

6.2 The Joint Likelihood Function

Following a large body of the derivatives literature (see Trolle and Schwartz (2009) and Kan-

niainen et al. (2014), among others), we minimize the vega-weighted RMSE (VWRMSE) in

the option-based Gaussian likelihood component:

VWRMSE =

√√√√ 1

N

N∑
n=1

(
PMKT
n − PMOD

n

BSV MKT
n

)2

, (45)

where PMOD
n represents the model-based price for option n, PMKT

n is the market price for op-

tion n, and BSV MKT
n denotes the Black-Scholes vega (Black and Scholes (1973)), the derivative

with respect to volatility, computed using the market implied volatility.

Now we are ready to estimate the model with the joint likelihood function of the observed

variables and pricing errors. Specifically, we solve the following joint optimization problem:

max lnLP + lnLo, (46)

where

lnLo = −N
2

log(2π)− N

2

N∑
n=1

log(σ2
e)−

N∑
n=1

((PMOD
n − PMKT

n )/BSV MKT
n )2

2σ2
e

∝ −1

2

N∑
n=1

(
log(σ2

e) +
VWRMSE2

σ2
e

)
. (47)
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Table 4 Option Dataset Summary for Subsamples

Panel A. WED, 2003-2015

Maturity

<30 30-60 60-90 90-120 120-150 >150 Total

<0.3
414 946 671 534 361 348 3,274

(0.1459) (0.1403) (0.1458) (0.1514) (0.1484) (0.1462) (0.1455)

0.3-0.4
438 619 318 252 150 131 1,908

(0.1396) (0.1467) (0.1615) (0.1780) (0.1691) (0.1694) (0.1550)

Delta
0.4-0.5

640 986 607 442 239 238 3,152
(0.1449) (0.1622) (0.1697) (0.1829) (0.1748) (0.1754) (0.1650)

0.5-0.6
789 1449 1141 738 384 382 4,885

(0.1566) (0.1663) (0.1833) (0.2018) (0.1928) (0.1947) (0.1784)

0.6-0.7
615 977 609 462 285 305 3,254

(0.1688) (0.1821) (0.1911) (0.2103) (0.2039) (0.2012) (0.1890)

>0.7
1,064 2,869 2,063 1,355 878 791 9,020

(0.1973) (0.2090) (0.2230) (0.2347) (0.2263) (0.2241) (0.2177)

Total
3,960 7,846 5,409 3,783 2,297 2,198 25,493

(0.1645) (0.1787) (0.1918) (0.2037) (0.1966) (0.1949) (0.1860)

Panel B. THU, 2003-2015

Maturity

<30 30-60 60-90 90-120 120-150 >150 Total

<0.3
537 855 737 584 393 291 3,397

(0.1352) (0.1393) (0.1431) (0.1513) (0.1497) (0.1454) (0.1433)

0.3-0.4
535 508 346 246 183 134 1,952

(0.1349) (0.1487) (0.1584) (0.1758) (0.1673) (0.1649) (0.1529)

Delta
0.4-0.5

720 928 590 422 275 186 3,121
(0.1395) (0.1621) (0.1679) (0.1799) (0.1761) (0.1788) (0.1626)

0.5-0.6
915 1,376 1,179 798 409 333 5,010

(0.1539) (0.1697) (0.1788) (0.1976) (0.1967) (0.1855) (0.1767)

0.6-0.7
664 894 612 424 328 256 3,178

(0.1618) (0.1829) (0.1938) (0.2138) (0.2033) (0.1998) (0.1882)

>0.7
1,302 2,636 1,890 1,363 926 680 8,797

(0.1979) (0.2087) (0.2199) (0.2341) (0.2263) (0.2251) (0.2166)

Total
4,673 7,197 5,354 3,837 2,514 1,880 25,455

(0.1607) (0.1796) (0.1876) (0.2020) (0.1967) (0.1934) (0.1839)

Panel C. WED, 2016-2019

Maturity

<30 30-60 60-90 90-120 120-150 >150 Total

<0.3
1,124 1,223 340 318 270 271 3,547

(0.1022) (0.1048) (0.1069) (0.1079) (0.1094) (0.1114) (0.1053)

0.3-0.4
780 530 118 115 115 121 1,779

(0.0995) (0.1089) (0.1158) (0.1219) (0.1244) (0.1254) (0.1082)

Delta
0.4-0.5

962 829 275 206 167 132 2,571
(0.1068) (0.1189) (0.1316) (0.1317) (0.1347) (0.1371) (0.1187)

0.5-0.6
889 1,150 532 395 261 250 3,477

(0.1145) (0.1246) (0.1380) (0.1384) (0.1476) (0.1493) (0.1292)

0.6-0.7
749 717 275 224 232 184 2,381

(0.1283) (0.1413) (0.1540) (0.1572) (0.1585) (0.1631) (0.1435)

>0.7
2,444 3,663 1,052 1,110 1,097 779 10,145

(0.1592) (0.1724) (0.1966) (0.2033) (0.2068) (0.2082) (0.1816)

Total
6,948 8,112 2,592 2,368 2,143 1,737 23,900

(0.1270) (0.1431) (0.1577) (0.1651) (0.1720) (0.1687) (0.1466)

Notes: For each category, the number of options is provided, and the average of implied volatilities is in parentheses.
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We optimize on the joint likelihood function, which consists of two parts, the likelihood of

returns and realized variances, lnLP in equation (24), and an option-based likelihood compo-

nent, lnLo.

6.3 In-sample Estimation Results

Table 5 reports the in-sample estimation results on returns, realized measures, and option

data. Similar to Table 2, log h1 represents the initial value of variances and are estimated as

free parameters. We find that log hCO,1 is lower than log hOC,1, indicating that the level of

overnight variance is averagely lower than the intraday counterpart, which is in accordance

with French and Roll (1986).

The estimated coefficients of λCO and λOC in the BRG model, measuring the price of

overnight and intraday volatility risk, are both significantly positive. Importantly, λCO is larger

than λOC , which is consistent with the intuition that investors ask for a higher compensation

for exposure to overnight (non-trading) volatility risk. The same pattern has been illustrated

in, for example, Bogousslavsky (2021), who emphasizes that the margin requirements are

higher during overnight period, and lending fees are typically charged only on positions held

overnight. In addition, λOC is again close to λ reported in the RG model, maintaining the

findings in Table 2.

Moreover, Table 5 shows similar overnight and intraday dynamic patterns with those in Ta-

ble 2. Furthermore, the significantly positive γCO verifies the importance of the high-frequency

overnight information in modeling overnight variance dynamics. Our findings highlight the

importance of distinct variation patterns in overnight and intraday volatility, timely arrived

overnight information, and volatility risk compensation for non-trading hours.

6.4 Evaluating Pricing Performance

6.4.1 In-sample Pricing Performance

In terms of option pricing accuracy, we compare the performance of different models using

the implied volatility root-mean-squared error (IVRMSE). We refer to Renault (1997) for a

discussion on the benefits of using the IVRMSE for evaluating option pricing performance. To

compute IVRMSE, we first obtain the model-based implied volatility, IV MOD
n , by using the
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Table 5 In-sample Joint Estimation: 2003-2015

Estimations on Historical Returns, Realized Measures, and Option Data

Parameters BRG RG GARV HNG EG

CO OC

λ 0.1131 0.0257 0.0322 2.0000 1.6220 -0.0013
(0.0264) (0.0022) (0.0389) (0.0117) (2.19E-05) (9.12E-05)

β 0.6608 0.7095 0.9427 0.9002 0.0783 0.9856
(0.0417) (0.0463) (0.0163) (0.1435) (3.85E-05) (0.0007)

τ1 -0.0001 0.0009 -0.0883 2.02E-06 5.22E-06 0.1381
(-0.0009) (0.0233) (0.0239) (4.17E-07) (1.94E-10) (0.0023)

τ2 0.0284 0.0372 0.0487 400.7900 398.5555 -0.5130
(0.0089) (0.0111) (0.0134) (0.7565) (0.0099) (0.0010)

γ 0.3741 0.2803 0.2805
(0.0438) (0.0368) (0.0406)

ξ 0.3829 -2.0231 -2.0089
(0.0431) 0.2452 (0.6239)

φ 0.7869 0.8411 0.8475 2.06E-06
(0.0587) (0.0724) (0.0669) (3.02E-08)

δ1 -0.0185 -0.0252 -0.0007 4.26E-06
(0.0265) (0.0349) (0.0037) (6.81E-07)

δ2 0.0225 0.0044 8.43E-05 680.7891
(0.0109) (0.0063) (0.0147) (0.2586)

σ 0.6089 0.6987 0.6979 2.77E-06
(0.0176) (0.0202) (0.0203) (3.58E-07)

χ -0.0108 1.0052 -0.2387 -0.0391
(1.89E-04) (1.64E-05) (0.0022) (0.0093)

κ 0.2003
(0.1574)

log h1 -13.2891 -9.3743 -9.2997 -9.0172 -9.6195 -9.0366
(0.7554) (0.5328) (0.5487) (0.0312) (0.0189) (0.0001)

πP 0.9552 0.9453 0.9427 0.9652 0.9075 0.9856
πQ 0.9552 0.9453 0.9427 0.9658 0.9142 0.9856

L 96374 30715 44892 39489 31153

Notes: Table 5 reports estimation results on returns, realized measures, and option data. The sample period is from July

2, 2003 to December 30, 2015. We report the estimated coefficients, and their corresponding standard errors are presented

in parentheses. Note that for the GARV and the HNG model, the parameters ω can be inferred by E[h̄]. πP and πQ stand

for the volatility persistence under P and Q measure, respectively.
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model-based option prices and inverting the BS formula

IV MOD
n = BS−1(PMOD

n ).

We compare the model-based implied volatility to the market implied volatility, IV MKT
n ,

obtained from the option dataset, and compute the implied volatility error

en = IV MKT
n − IV MOD

n ,

with N denoting the total number of options in the sample. The IVRMSE is now computed

as

IV RMSE =

√√√√ 1

N

N∑
n=1

e2
n.

Table 6 reports the in-sample evaluation results. Overall, the IVRMSE of the BRG model

shows a 6.65% improvement over the RG model, a nested model of the BRG which focuses on

total daily variations. Compared to the other nested specification, the EG model, the Bisected

Realized GARCH model achieves an impressive 19.02% reduction of the IVRMSE.

In addition to evaluating the overall option pricing accuracy, we also compare performance

in pricing options with different moneyness, maturities, and VIX levels. Specifically, Panel

A of Table 6 reports the IVRMSE of the five models sorted by moneyness. The BRG model

performs the best in five of the six moneyness categories considered, thus, the overall improve-

ment by the BRG model is not driven by any particular range of the moneyness. Notice that

the BRG model performs the best for options with the highest Delta (Delta > 0.7), and these

options also have the highest implied volatility (see Table 3).

Panel B reports the IVRMSE sorted by calendar days to maturity. Again, the BRG model

performs the best in five of the six maturity groups. Therefore, the overall improvement the

BRG model is not driven by any particular subset of the maturities.

Panel C reports the IVRMSE sorted by the VIX levels. We observe that the BRG model,

the RG model, and the EG model show better performance in highly volatile times (when

VIX > 35). This is attributed to the log-linear specification of the volatility dynamics which

is flexible to capture the sharp change in volatility during highly volatile times. The above

finding is in line with previous empirical results, see Huang et al. (2017) for example. Moreover,

the BRG model shows a 6.83% improvement in IVRMSE, compared to the RG model when
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Table 6 In-sample Evaluations: WED, 2003-2015

IVRMSE by Moneyness, Maturity, and VIX

Model T
ot

al

D
el

ta
<

0.
3

0.
36

D
el

ta
<

0.
4

0.
46

D
el

ta
<

0.
5

0.
56

D
el

ta
<

0.
6

0.
66

D
el

ta
<

0.
7

D
el

ta
>

0.
7

Panel A. Partitioned by Moneyness

BRG 3.8150 3.7822 3.7692 3.8565 4.0277 4.3438 3.5887
RG 4.0866 3.9438 3.9625 4.0835 4.3813 4.4897 3.8408
GARV 4.3023 4.6850 4.3533 4.1867 4.4256 4.3580 4.1595
HNG 4.3102 4.3811 4.1556 3.9003 4.1705 4.2405 4.5100
EG 4.7110 4.3865 4.2429 4.2969 4.5669 4.7704 4.9923

Model T
ot

al

T
<

30

30
6

T
<

60

60
6

T
<

90

90
6

T
<

12
0

12
06

T
<

15
0

T
>

15
0

Panel B. Partitioned by Maturity

BRG 3.8150 3.7473 3.7854 4.0211 4.0917 3.9286 3.8658
RG 4.0866 3.8833 4.0028 4.1230 4.3585 4.1877 3.9355
GARV 4.3023 4.8397 4.2055 3.9312 4.3710 4.3850 4.2228
HNG 4.3102 4.4602 4.0724 4.1378 4.7057 4.4395 4.2206
EG 4.7110 4.4521 4.6634 4.6071 5.0619 4.8678 4.6705

Model T
ot

al

V
IX
<

15

15
6

V
IX
<

20

20
6

V
IX
<

25

25
6

V
IX
<

30

30
6

V
IX
<

35

V
IX

>
35

Panel C. Partitioned by VIX Level

BRG 3.8150 3.4555 2.1056 3.9027 6.4479 8.9339 6.5491
RG 4.0866 3.7785 2.0674 4.1692 6.8892 9.6294 7.0289
GARV 4.3023 2.7932 3.1015 3.1015 6.5812 8.8928 8.9272
HNG 4.3102 2.1935 3.1214 5.3943 6.9742 8.7806 8.7714
EG 4.7110 4.1346 3.0203 5.4055 7.6490 9.6607 7.1057

Notes: Table 6 reports the IVRMSEs to compare the in-sample option pricing performance across models. The IVRMSEs are
sorted by moneyness, maturity, and the CBOE VIX level, as in Table 3. Panel A reports the IVRMSEs for contracts sorted
by the Black–Scholes delta (see equation (44)). Panel B reports the IVRMSEs for contracts sorted by days to maturity. Panel
C reports the IVRMSEs for contracts sorted by the VIX level on the quote day. For each category, the smallest IVRMSE
is marked in bold. The sample covers options on Wednesdays from July 2, 2003 to December 30, 2015. The IVRMSEs are
expressed in percentages.
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VIX > 35. Thus, the Bisected Realized GARCH model achieves an even better performance

during highly volatile times.

6.4.2 Out-of-sample Pricing Performance

Compared with the in-sample evaluation, studying the out-of-sample option pricing perfor-

mance is a more convincing way for measuring the additional improvement by the Bisected

Realized GARCH model. We conduct the out-of-sample evaluations in two different windows.

The first is Thursdays from July 3, 2003 to December 31, 2015, and the second is Wednesdays

from January 6, 2016 to December 18, 2019. The corresponding results are reported in Table

7 and Table 8, respectively.

Results reported in Table 7 are similar to those in Table 6, but the BRG model achieves a

larger improvement of 8.24% in out-of-sample test, compared to the RG model. Moreover, the

BRG model has a better performance in all of the three Panels in Table 7, relative to Table

6. To be more specific, the BRG model performs the best in every maturity group, five of the

six moneyness categories, and also five of the six VIX levels considered. Moreover, the BRG

model again outperforms the other models in highly volatile times.

Table 8 report results of the second out-of-sample examination, using options during a pure

out-of-sample period. Overall, the BRG model gains a 7.24% reduction of IVRMSE, relative

to the RG model. Across different categories, the BRG model performs the best in all of the

categories sorted by moneyness. For options on Wednesdays from 2016 to 2019, the BRG

model has a good performance for options with shorter maturities and higher VIX levels. As

expected, all of the five models have the most difficulty in pricing options in highly volatile

times, and the BRG model achieves at least 27.90% improvement in IVRMSE compared with

the other models. We conclude here that the Bisected Realized GARCH model has an even

better performance in highly volatile times.
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Table 7 Out-of-sample Evaluations: THU, 2003-2015

IVRMSE by Moneyness, Maturity and VIX

Model T
ot

al

D
el

ta
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0.
3

0.
36
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ta
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0.
4

0.
46
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5

0.
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ta
<

0.
6
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<

0.
7
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ta
>

0.
7

Panel A. Partitioned by Moneyness

BRG 3.7832 3.6915 3.5901 3.8029 3.8423 4.1987 3.3186
RG 4.1228 3.9812 3.7964 4.2626 4.3209 4.4217 3.9566
GARV 4.5781 4.9208 4.6485 4.4977 4.5544 4.5880 4.5254
HNG 4.7769 4.7003 4.6694 4.4382 4.6271 4.7993 4.9512
EG 4.6555 4.3391 4.0125 4.3850 4.4549 4.6776 4.9443

Model T
ot

al

T
<

30

30
6

T
<

60

60
6

T
<
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90
6

T
<

12
0

12
06

T
<

15
0

T
>

15
0

Panel B. Partitioned by Maturity

BRG 3.7832 3.5493 3.7331 4.1275 4.3343 3.8919 3.8532
RG 4.1228 3.8859 4.0186 4.1941 4.4535 4.1076 4.0194
GARV 4.5781 5.4091 4.5484 4.2033 4.6311 4.4414 4.2955
HNG 4.7769 5.4095 4.8114 4.5598 4.7773 4.6273 4.3708
EG 4.6555 4.4066 4.6314 4.6481 4.9412 4.6553 4.5819

Model T
ot
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V
IX
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15

15
6

V
IX
<
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6
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IX
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25
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V
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30
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6

V
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35

V
IX

>
35

Panel C. Partitioned by VIX Level

BRG 3.7832 3.4051 1.9567 4.0369 6.5613 8.6470 6.2541
RG 4.1228 3.8429 2.0341 4.2220 7.0676 9.3297 6.7042
GARV 4.5781 3.2113 3.1096 5.4269 7.4232 9.3140 9.0120
HNG 4.7769 2.8204 3.7474 5.9045 7.5679 9.2148 8.2828
EG 4.6555 4.1651 3.0692 5.3325 7.7883 8.6598 7.1319

Notes: Table 7 reports the IVRMSEs to compare the out-of-sample option pricing performance across models. The IVRMSEs
are sorted by moneyness, maturity, and the CBOE VIX level, as in Table 3. Panel A reports the IVRMSEs for contracts sorted
by the Black–Scholes delta (see equation (44)). Panel B reports the IVRMSEs for contracts sorted by days to maturity. Panel
C reports the IVRMSEs for contracts sorted by the VIX level on the quote day. For each category, the smallest IVRMSE
is marked in bold. The sample covers options on Thursdays from July 3, 2003 to December 31, 2015. The IVRMSEs are
expressed in percentages.
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Table 8 Out-of-sample Evaluations: WED, 2016-2019

IVRMSEs for Moneyness, Maturity and VIX

Model T
ot

al

D
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ta
¡0
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0.
36

D
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¡0
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0.
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D
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D
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¡0

.7

D
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>

0.
7

Panel A. Partitioned by Moneyness

BRG 3.3933 3.1476 2.9811 2.9286 3.1265 3.2607 3.6821
RG 3.6580 3.3760 3.1021 3.4360 3.4490 3.6123 3.7824
GARV 3.6635 3.8512 3.3770 3.1350 3.4677 3.7926 3.7829
HNG 3.8422 4.2091 3.9010 3.8903 3.6052 3.8801 4.5128
EG 4.2821 3.2502 3.5068 3.8192 3.8921 3.9134 4.5775

Model T
ot

al

T
¡3

0
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0
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T
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Panel B. Partitioned by Maturity

BRG 3.3933 3.2046 3.4073 3.5079 3.4705 3.3694 2.8546
RG 3.6580 3.5399 3.6606 3.8498 3.7680 3.6522 3.4858
GARV 3.6635 5.0386 3.9901 3.2692 3.0933 2.7867 3.3750
HNG 3.8422 4.4786 3.7830 3.4280 2.9443 3.7472 2.6039
EG 4.2821 4.3920 4.4146 4.2561 4.3195 4.0414 3.8281

Model T
ot

al

V
IX

¡1
5

15
6

V
IX

¡2
0
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V
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¡2
5

25
6

V
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¡3
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30
6

V
IX

¡3
5

Panel C. Partitioned by VIX Level

BRG 3.3933 3.8790 2.2660 2.4584 2.9792 6.0426
RG 3.6580 4.1504 2.2505 2.7183 4.9659 8.3814
GARV 3.6635 3.8586 2.3584 4.1098 7.6277 7.6262
HNG 3.8422 2.2244 3.6329 6.7507 9.5375 9.9501
EG 4.2821 4.2790 3.4495 4.4266 6.0297 8.9491

Notes: Table 8 reports the IVRMSEs to compare the out-of-sample option pricing performance across models. The IVRMSEs
are sorted by moneyness, maturity, and the CBOE VIX level, as in Table 3. Panel A reports the IVRMSEs for contracts sorted
by the Black–Scholes delta (see equation (44)). Panel B reports the IVRMSEs for contracts sorted by days to maturity. Panel
C reports the IVRMSEs for contracts sorted by the VIX level on the quote day. For each category, the smallest IVRMSE is
marked in bold. The sample covers options on Wednesdays from January 6, 2016 to December 18, 2019. The IVRMSEs are
expressed in percentages.
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7 Conclusion

This study develops a new and flexible option-pricing model that can accommodate distinct

overnight variance dynamics and intraday variance dynamics into its underlying asset-pricing

process. An important feature of the model is that the dynamics of overnight and intraday

variances are governed by their empirical proxies. Given that these proxies are constructed in

discrete time, our model contributes to the discrete-time family.

From a theoretical viewpoint, the structure of the new model and the application of mul-

tivariate Edgeworth-Sargan density enable us to derive analytical approximations for option

pricing formulas that nest several option-pricing specifications. This feature facilitates the

estimation procedure, allows for a direct comparison of nested models, and avoids the need to

resort to simulation techniques.

From an empirical viewpoint, our new proposed option pricing model performs well. In

terms of pricing accuracy, the model improves significantly upon popular specifications when

optimized on a dataset of S&P 500 index options, realized overnight and intraday variances,

and returns. In particular, the overnight component accounts for an out-of-sample gain of

7.24% in pricing accuracy, relative to simply modeling total daily returns.
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8 Appendix

8.1 Appendix A. Risk-Neutralization

Given the independence of zt and ut, and the correlation of components in zt and ut follows

Σz =

 1 ρ

ρ 1

 , Σu =


1 ρvCO,vOC ρvCO,ṽ

ρvCO,vOC 1 ρvOC ,ṽ

ρvCO,ṽ ρvOC ,ṽ 1

 ,

the pricing kernel corresponding to five random shocks

Zt+1 =
exp(νCO,tzCO,t+1 + νOC,tzOC,t+1 + θCO,tvCO,t+1 + θOC,tvOC,t+1 + θ̃tṽt+1)

Et[exp(νCO,tzCO,t+1 + νOC,tzOC,t+1 + θCO,tvCO,t+1 + θOC,tvOC,t+1 + θ̃tṽt+1)]

can be reduced into

Zt+1 = exp



νCO,tzCO,t+1 + νOC,tzOC,t+1 −
ν2CO,t

2
− ν2OC,t

2
− νCO,tνOC,tρt+1

+θCO,tvCO,t+1 + θOC,tvOC,t+1 + θ̃tṽt+1

− θ2CO,t
2
− θ2OC,t

2
− θ̃2t

2

−θCO,tθOC,tρvCO,vOC − θCO,tθ̃tρvCO,ṽ − θOC,tθ̃tρvOC ,ṽ


. (A-1)

We impose the no-arbitrage condition, namely that the return under Q-measure equals to

risk-free return rj in that specific period,

EQt [exp(rj,t+1)] = exp(rj), j ∈ {CO,OC}. (A-2)

Note that Zt+1 builds the relationship between P measure and Q measure,

Et[Zt+1 exp(rj,t+1)] = EQt [exp(rj,t+1)], j ∈ {CO,OC}. (A-3)

we have

Et[Zt+1 exp(rj,t+1)] = exp(rj), j ∈ {CO,OC}. (A-4)
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One can derive by plugging in the explicit form of pricing kernel Zt and the return dynamic

under P measure into the first term of the equation above that:

Et



exp



νCO,tzCO,t+1 + νOC,tzOC,t+1 −
ν2CO,t

2
− ν2OC,t

2
− νCO,tνOC,tρt+1

+θCO,tvCO,t+1 + θOC,tvOC,t+1 + θ̃tṽt+1

− θ2CO,t
2
− θ2OC,t

2
− θ̃2t

2

−θCO,tθOC,tρvCO,vOC − θCO,tθ̃tρvCO,ṽ − θOC,tθ̃tρvOC ,ṽ

+rj + λj
√
dj,thj,t − 1

2
dj,thj,t +

√
dj,thj,tzj,t+1




= exp

(
rj + λj

√
dj,thj,t + (νj,t + ρt+1ν−j,t)

√
dj,thj,t

)
= exp(rj),

(A-5)

which implies

νj,t + ρt+1ν−j,t = −λj, (A-6)

where j ∈ {CO,OC} and −j = {CO,OC}\j.

Then we consider the risk-neutral moment generating function (MGF) and the sufficient

condition to derive the model under Q measure. The moment generating function of the five

random shocks can be written as EQ
t [exp(s′(z′t+1,u

′
t+1)′)] :

EQt [exp(s1zCO,t+1 + s2zOC,t+1 + s3vCO,t+1 + s4vOC,t+1 + s5ṽt+1)]

= Et[Zt+1 exp(s1zCO,t+1 + s2zOC,t+1 + s3vCO,t+1 + s4vOC,t+1 + s5ṽt+1)]

= exp



s1(νCO,t + ρt+1νOC,t) + s2(νOC,t + ρt+1νCO,t) +
s21
2

+
s22
2

+ s1s2ρt+1

+s3(θCO,t + ρvCO,vOCθOC,t + ρvOC ,ṽθ̃t)

+s4(ρvCO,vOCθCO,t + θOC,t + ρvOC ,ṽθ̃t)

+s5(ρvCO,ṽθCO,t + ρvOC ,ṽθOC,t + θ̃t)

+
s23
2

+
s24
2

+
s25
2

+ s3s4ρvCO,vOC + s3s5ρvCO,ṽ + s4s5ρvOC ,ṽ



(A-7)
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We set

θCO,t + ρvCO,vOCθOC,t + ρvCO,ṽθ̃t = χ1,

ρvCO,vOCθCO,t + θOC,t + ρvOC ,ṽθ̃t = χ2,

ρvCO,ṽθCO,t + ρvOC ,ṽθOC,t + θ̃t = χ3,

(A-8)

thus implying that we have the following mapping relationship:

z∗CO,t+1 = zCO,t+1 + λCO,

z∗OC,t+1 = zOC,t+1 + λOC ,

v∗CO,t+1 = vCO,t+1 − χ1,

v∗OC,t+1 = vOC,t+1 − χ2,

ṽ∗t+1 = ṽt+1 − χ3.

(A-9)

and we can obtain the dynamic model under Q-measure.

8.2 Appendix B. Expressions and Notations in the Option Pricing

Formula

Here are the notations applied in the option pricing formula. To begin with, the domain of

integration involving

D′ = {(zCO, zOC)|σCOzCO + σOCzOC 6 log(S0/K) + µCO + µOC + (σ2
CO + σ2

OC) + 2ρσCOσOC},

D′′ = {(zCO, zOC)|σCOzCO + σOCzOC 6 log(S0/K) + µCO + µOC + (σ2
CO + σ2

OC)},

(B-1)

To ease notation, we denote

σ =
√
σ2
CO + σ2

OC ,

δ =
1

σ
(−rT + µCO + µOC +

σ2
CO + σ2

OC

2
),

∆ =
1

σ
(−rT + µCO + µOC +

σ2
CO + σ2

OC

2
+ ρσCOσOC),

k =
1

σ
(log(S0/K) + µCO + µOC),

d = k + σ.

(B-2)

where

zCO =
RCO,T − µCO

σCO
, zOC =

ROC,T − µOC
σOC
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are both standardized cumulate returns with cumulants κCO and κOC , and

ρ = covQ0 (zCO, zOC), Σ =

 1 ρ

ρ 1

 , Σ0 =

 1 0

0 1

 .

Φ and φ denotes cumulative density function (CDF) of bivariate normal distribution, and

denotes probability density function (PDF) of normal distribution, respectively. And κj,i =

EQ
0 [Ri

j], which can be expressed as

κj,3 =
1

σ3
j

[
EQ

0

(
R3
j

)
− µ3

j

]
− 3

µj
σj
, κj,4 =

1

σ4
j

[
EQ

0

(
R4
j

)
− µ4

j

]
− 2

µj
σj

(
2κj,3 + 3

µj
σj

)
.

8.3 Appendix C. Proof of Proposition 1

Lemma 1. Let z1, z2 are orthogonal standard distributed random variables. That is, corr(z1, z2) =

0. Let

G1(k, σ1, n) =

∫∫
σ1z1+σ2z26σk

(z1 − σ1)nφ(z1, z2)dz1dz2,

G2(k, σ2, n) =

∫∫
σ1z1+σ2z26σk

(z2 − σ2)nφ(z1, z2)dz1dz2.

Then we have the following recurrence relation for any σ1, σ2 > 0 and n ∈ R+:

G1(k, σ1, n) = (n+ 1)G1(k, σ1, n)− σ1G1(k, σ1, n+ 1)− σ1σ
n+1
2

σn+2
E
(
z +

σ1(k − σ)

σ2

)n+1

φ(k),

G2(k, σ2, n) = (n+ 1)G2(k, σ2, n)− σ2G2(k, σ2, n+ 1)− σ2σ
n+1
1

σn+2
E
(
z +

σ2(k − σ)

σ2

)n+1

φ(k),

where

G1(k, σ1, 0) = Φ(k), G1(k, σ1, 1) = −σ1

σ
φ(k)− σ1Φ(k),

G2(k, σ2, 0) = Φ(k), G2(k, σ2, 1) = −σ2

σ
φ(k)− σ2Φ(k).

Proof. Integrating z1 first, we have

G1(k, σ1, n) =

∫ +∞

−∞

(∫ σk−σ2z2
σ1

−∞

1√
2π
e−

z21
2 d

1

n+ 1
(z1 − σ1)n+1

)
1√
2π
e−

1
2
z22dz2,

Integrating by parts yields

G1(k, σ1, n) =

∫ +∞

−∞

1√
2π
e
− 1

2
(
σk−σ2z2

σ1
)2 · 1√

2π
e−

1
2
z22

1

n+ 1

(
σk − σ2z2

σ1

− σ1

)n+1

dz2

+
1

n+ 1
G1(k, σ1, n+ 2) +

σ1

n+ 1
G1(k, σ1, n+ 1),
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where∫ +∞

−∞

1√
2π
e
− 1

2
(
σk−σ2z2

σ1
)2 · 1√

2π
e−

1
2
z22

1

n+ 1

(
σk − σ2z2

σ1

− σ1

)n+1

dz2

=

∫ +∞

−∞

1√
2π
e
− 1

2
[( σ
σ2
t−σ1k

σ2
)2+k2] 1√

2π
(t− σ1)n+1σ1

σ2

dt (Let
σk − σ2z2

σ1

= t)

= φ(k)

∫ +∞

−∞

1√
2π

(
z +

σ1(k − σ)

σ2

)n+1 (σ2

σ

)n+1

· σ1

σ
e−

1
2
z2dz (Let

σ

σ2

t− σ1k

σ2

= z)

=
σ1σ

n+1
2

σn+2
E
(
z +

σ1(k − σ)

σ2

)n+1

φ(k).

(C-1)

Rearranging the terms can we derive Lemma 1.

Proof Outline of Proposition 1. The price of European option matures at time T can

be given by

e−rTEQ0 [max(ST −K, 0)] = e−rT
∫∫
D

[S0 exp (µ− σ′z)−K] g̃(z)dz,

where g̃(zCO, zOC) = g(−zCO,−zOC). and

e−rT
∫∫
D

[S0 exp (µ− σ′z)−K] g̃(z)dz

= e−rT
∫∫
D

[S0 exp (µ− σ′z)−K] · 1

2π
√

1− ρ2
· exp(−1

2
z′Σ−1z)dz (A)

− e−rT
∫∫
D

1

2π
[S0 exp (µ− σ′z)−K] e−

1
2 (z

2
CO+z2OC) · κCO,3

6
(z3CO − 3zCO)dz (B)

+ e−rT
∫∫
D

1

2π
[S0 exp (µ− σ′z)−K] e−

1
2 (z

2
CO+z2OC) · κCO,4 − 3

24
(z4CO − 6z2CO + 3)dz (C)

+ e−rT
∫∫
D

1

2π
[S0 exp (µ− σ′z)−K] e−

1
2 (z

2
CO+z2OC) ·

κ2CO,3
72

(z6CO − 15z4CO + 45z2CO − 15)dz (D)

− e−rT
∫∫
D

1

2π
[S0 exp (µ− σ′z)−K] e−

1
2 (z

2
CO+z2OC) · κOC,3

6
(z3OC − 3zOC)dz (E)

+ e−rT
∫∫
D

1

2π
[S0 exp (µ− σ′z)−K] e−

1
2 (z

2
CO+z2OC) · κOC,4 − 3

24
(z4OC − 6z2OC + 3)dz (F)

+ e−rT
∫∫
D

1

2π
[S0 exp (µ− σ′z)−K] e−

1
2 (z

2
CO+z2OC) ·

κ2OC,3
72

(z6OC − 15z4OC + 45z2OC − 15)dz (G)

Here term (A) involves a bivariate normal distributed probability density function, while

term (B) to (G) involve higher order terms in Edgeworth-Sargan density, which are utilized

to slightly modify the asymptotic distribution.
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For the first term (A), we apply linear transformation to match the normal distribution

probability density function:

e−rT
∫∫
D

[S0 exp (µ− σ′z)−K] g̃(z) · 1

2π
√

1− ρ2
· exp(−1

2
z′Σ−1z)dzCOdzOC

= e−rT
∫∫
D

S0 exp

(
µCO + µOC +

1

2
υ′Σ−1υ − 1

2
z†
′
Σ−1z†

)
1

2π
√

1− ρ2
· dzCOdzOC

−
∫∫
D

Ke−rT
1

2π
√

1− ρ2
exp

(
1

2
z′Σ−1z

)
dzCOdzOC

= S0e
∆σΦ(D′; Σ)−Ke−rTΦ(D; Σ), (C-2)

where

υ =

 σCO + ρσOC

ρσCO + σOC

 , z† = z + υ, Σ =

 1 ρ

ρ 1

 ,

∆ =
1

σ
(−rT + µCO + µOC +

σ2
CO + σ2

OC

2
+ ρσCOσOC),

D = {(zCO, zOC)|σCOzCO + σOCzOC 6 log(S0/K) + µCO + µOC},

D′ = {(zCO, zOC)|σCOzCO + σOCzOC 6 log(S0/K) + µCO + µOC + (σ2
CO + σ2

OC) + 2ρσCOσOC}.

For term (B) and (E), one can derive by lemma 1 that

− 1

6

e−rT
∫∫
D

1

2π
[S0 exp (µ− σ′z)−K] e−

1
2

(z2CO+z2OC) · (z3
j − 3zj)dz


= −1

6

{
S0e

δσ (Gj(d, σj, 3)− 3Gj(d, σj, 1))−Ke−rT (Gj(k, 0, 3)− 3Gj(k, 0, 1))
}

= −1

6

{
−S0e

δσσj(σ
2
jΦ(D′′; Σ0) +

σ2
j (2σ − d)

σ2
φ(d))

}
=: Aj,3.

where d, σj are given in Proposition 1, and

D′′ = {(zCO, zOC)|σCOzCO + σOCzOC 6 log(S0/K) + µCO + µOC + (σ2
CO + σ2

OC)}.

Apply the same technique to term (C) to (G) can we obtain

Aj,4 :=
1

24


S0e

δσ(Gj(d, σj, 4)− 6Gj(d, σj, 2) + 3Gj(d, σj, 0))

−Ke−rT (Gj(k, 0, 4)− 6Gj(k, 0, 2) + 3Gj(k, 0, 0))


=

1

24
S0e

δσσj(σ
3
jΦ(D′′; Σ0) +

σ3
j

σ3
(d2 − 1− 3σ(d− σ))φ(d)),

(C-3)
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Aj,6 :=
1

72
S0e

δσσj(σ
5
jφ(D′′; Σ0) +

σ5
j

σ5
(3− 6d2 + d4 + 5σ(d− (d− σ)(σd− 2)− (d− σ)3))φ(d)).

(C-4)

Additionally, based on the Bisected Realized GARCH model, the covariance of standard-

ized cumulative return RCO,T and ROC,T under Q-measure can be written as

ρ =
1

σCOσOC
· (TrCO − µCO) (TrOC − µOC)− TrCO − µCO

2σCOσOC

T∑
i=1

EQ0 [dOC,ihOC,i]−
TrOC − µOC

2σCOσOC

T∑
i=1

EQ0 [dCO,ihCO,i]

+
1

4σCOσOC
·
T∑
i=1

T−i∑
j=1

EQ0 [dCO,ihCO,idOC,i+jhOC,i+j ] +
1

4σCOσOC
·
T∑
i=1

T−i∑
j=1

EQ0 [dOC,ihOC,idCO,i+jhCO,i+j ]

− 1

2σCOσOC
·
T∑
i=1

T−i∑
j=1

EQ0
[√

dOC,ihOC,izOC,idCO,i+jhCO,i+j

]

− 1

2σCOσOC
·
T∑
i=1

T−i∑
j=1

EQ0
[√

dCO,ihCO,izCO,idOC,i+jhOC,i+j

]

+
5

4σCOσOC

T∑
i=1

EQ0 [dCO,ihCO,idOC,ihOC,i] .

(C-5)

the detailed expressions are discussed in Appendix D.

8.4 Appendix D. Analytical Terms

Following Duan et al. (1997), the moment of cumulative return based on the Bisected Realized

GARCH under Q-measure can be written as follows:

EQ0 (Rs
j,T ) = EQ0

[(
T∑
i=1

(rj −
dj,ihj,i

2
+
√
dj,ihj,iz

∗
j,i)

)s]
, (D-1)
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so the first four moments are

EQ0 (Rj,T ) = EQ0

[
T∑
i=1

(rj −
dj,ihj,i

2
+
√
dj,ihj,iz

∗
j,i)

]
= Trj −

1

2

T∑
i=1

EQ0 [dj,ihj,i],

EQ0 (R2
j,T ) = T 2r2

j − Trj
T∑
i=1

EQ0 [dj,ihj,i] +
1

4
Sj,D1 + Sj,D2 − Sj,D3 ,

EQ0 (R3
j,T ) = T 3r3

j −
3

2
T 2 · r2

j ·
T∑
i=1

EQ0 [dj,ihj,i] + 3Trj

(
1

4
Sj,D1 + Sj,D2 − Sj,D3

)
+

(
−1

8
Sj,T1 + Sj,T2 +

3

4
Sj,T3 −

3

2
Sj,T4

)
,

EQ0 (R4
j,T ) = T 4r4

j − 2T 3 · r3
j

T∑
i=1

EQ0 [dj,ihj,i] + 6T 2r2
j

(
1

4
Sj,D1 + Sj,D2 − Sj,D3

)
+ Trj

(
−1

2
Sj,T1 + 4Sj,T2 + 3Sj,T3 − 6Sj,T4

)
+

(
1

16
Sj,Q1 + Sj,Q2 −

1

2
Sj,Q3 +

3

2
Sj,Q4 − 2Sj,Q5

)
.

We simplify the notation of the risk-neutral dynamic and have

log hj,t+1 = ωj + γj(φj − 1) log dj,t + βj log hj,t + εj,t, (D-2)

where2

εj,t = τ j,1(z∗j,t − λj) + τ j,2((z∗j,t − λj)2 − 1) + γjσvjv
∗
j,t,

ωj = ωj + γjξ
∗
j , βj = βj + γjφj, τ j,1 = τj,1 + γjδj,1, τ j,2 = τj,2 + γjδj,2.

The terms needed for SDis, STis, and SQis
3 can be divided into three classes, that is, terms

concerning only CO part, terms concerning only OC part, and terms concerning both of them.

We will give the detailed derivation of the third kind of terms, and the former follow the struc-

ture of those for daily volatility (ht) in Huang et al. (2017) and Duan et al. (1997).

Now In order to compute ρ by equation (C-5), we need to calculate

EQ0 [dj,ihj,id−j,i+kh−j,i+k], EQ0
[√

dj,ihj,izj,id−j,i+kh−j,i+k

]
,

together with

EQ0 [dCO,ihCO,idOC,ihOC,i], EQ0
[√

dj,ihj,izj,id−j,i+kh−j,i+k

]
,

2We also denote Yj,t = ωj + εj,t.
3See Duan et al. (2006).
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where j ∈ {CO,OC},−j = {CO,OC}\j, and i+ k 6 T.

Referring to the recursive relationship in equation (D-2), one can derive that

EQ0 [dj,ihj,id−j,i+kh−j,i+k]

= EQ0 [dj,ihj,id
β
k
−j
−j,ih

β
k
−j
−j,i] · E

Q
0 [d−j,k+1h−j,k+1] · (d−j,1h−j,1)

−βkj ·
d−j,i+kd

β
k
−j
−j,1

d−j,k+1 · d
β
k
−j
−j,i

·

i+k−1∏
l=i

d
γ−j(φ−j−1)β

i+k−1−l
−j

−j,l

i+k−1∏
l=i

d
γ−j(φ−j−1)β

l−i
−j

−j,i+k−l

= EQ0 [dj,ihj,id
β
k
−j
−j,ih

β
k
−j
−j,i] · E

Q
0 [d−j,k+1h−j,k+1] · (d−j,1h−j,1)

−βkj ·
d−j,i+kd

β
k
−j
−j,1

d−j,k+1 · d
β
k
−j
−j,i

·

k−1∏
l=0

d
γ−j(φ−j−1)β

k−1−l
−j

−j,i+l

k−1∏
l=0

d
γ−j(φ−j−1)β

l
−j

−j,k−l

.
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Similarly,

EQ0
[√

dj,ihj,izj,id−j,i+kh−j,i+k
]

= EQ
0 [
√
dj,ihj,id

βk−j
−j,ih

βk−j
−j,i] · E

Q
0 [zj,i exp

(
β
k−1
−j Y−j,i

)
] · EQ

0 [d−j,kh−j,k] ·
(
d−j,1h−j,1

)−βk−1
−j ·

d−j,i+kd
β
k−1
−j

−j,1

d−j,kd
βk−1

−j,i

·

i+k−1∏
l=i

d
γ−j(φ−j−1)β

i+k−1−l
−j

−j,l

j−2∏
l=0

d
γ−j(φ−j−1)βl−j
−j,k−1−l

= EQ
0 [
√
dj,ihj,id

β
j
−j

−j,ih
β
j
−j

−j,i] · E
Q
0 [zj,i exp

(
β
k−1
−j Y−j,i

)
] · EQ

0 [d−j,kh−j,k] ·
(
d−j,1h−j,1

)−βk−1
−j ·

d−j,i+kd
β
k−1
−j

−j,1

d−j,kd
βk−1

−j,i

·

k−1∏
l=0

d
γ−j(φ−j−1)β

k−1−l
−j

−j,i+l

k−2∏
l=0

d
γ−j(φ−j−1)βl−j
−j,k−1−l

.

(D-4)

Then, to find EQ
0 [hmCO,ih

n
OC,i], we may refer to the following useful result: for bivariate

normal distributed random vector x

y

 ∼ N
 0

0

 ,

 1 ρ

ρ 1

 ,

it can be shown that

E
[
exp(a1x

2 + b1x+ a2y
2 + b2y)

]
=

1√
1− 2(a1 + a2) + 4a1a2(1− ρ2)

exp

(
b2

1(1− 2a2(1− ρ2)) + 2b1b2ρ+ b2
2(1− 2a1(1− ρ2))

2 · (1− 2(a1 + a2) + 4a1a2(1− ρ2))

)
,
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so

EQ0 [hmCO,ih
n
OC,i] = h

mβ
i−1
CO

CO,1 h
nβ

i−1
OC

OC,1

i−2∏
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d
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where

u1 = mβ
k

COτCO,2, u2 = mβ
k

CO(2τCO,2λCO + τCO,1),

v1 = nβ
k

OCτOC,2, v2 = nβ
k

OC(2τOC,2λOC + τOC,1).

Therefore, when m = n = 1,
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Similarly,
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where

a1 = β
k

COτCO,2, b1 = β
k

CO(−2τCO,2λCO + τCO,1),

a2 = β
k

OCτOC,2, b2 = β
k

OC(−2τOC,2λOC + τOC,1),

a3 =
1

2
a1, b3 =

1

2
b1, a4 =

1

2
a2, b4 =

1

2
b2.

Additionally,

EQ
0 [zj,i exp (kY−j,i)]

= EQ
0

[
zj,i exp

(
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)]
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2
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3
2

,

where a−j = 1
2
− kτ−j,2, b−j = k (τ−j,1 − 2τ−j,2λ−j) .

Since % = 1
2

log
(

1+ρi
1−ρi

)
, we have EQ0 [ρi] = EQ0 [ e

2%i−1
e2%i+1

] and

%i = (ω̃+ γ̃ξ̃)(1 + (β̃+ γ̃φ̃) + · · · (β̃+ γ̃φ̃)i−2) + (β̃+ γ̃φ̃)t−1%1 + γ̃σṽ(ṽi−1 + · · ·+ (β̃+ γ̃φ̃)i−2ṽ1).

Taking expectation, and we have

EQ0 [ρi] =

∫ +∞

−∞
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Ṽ 2
i−1

2σ2
i

)
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where

Ṽi−1 = ṽi−1 + · · ·+ (β̃ + γ̃φ̃)i−2ṽ1 ∼ N
(
0, σ2

i

)
, σi =

1− (β̃ + γ̃φ̃)2i−2

1− (β̃ + γ̃φ̃)2
.

Finally, following Duan et al. (2006), we approximate fractional h based on the following

Taylor expansion in the empirical part.

EQ0 [haj,t] ≈ (1 +
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