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1 Introduction

This paper investigates the welfare effect of centralized information disclosure in a

model of sequential consumer search. Firms in the market simultaneously charge

prices for their products. Consumers, each of whom has a unit demand for the

products in the market, initially have imperfect information about the prices and

values of firms’ products. By incurring a search cost, a consumer can sequentially

sample firms’ products. Upon being matched with a firm, a consumer learns the price

and observes a signal about the match value, based on which he decides whether to

purchase or continue searching. The goal of this paper is to understand the welfare

limits of all possible information disclosure rules, with a particular emphasis on the

industry-optimal information policy.

Such questions are relevant when the platforms of online marketplaces, such as

eBay and Amazon, consider the design of their platforms. Understanding their users’

needs and their own business goals, these platforms carefully design their websites to

organize, structure, and label contents in order to disclose the relevant information.

These aspects of design will shape the consumers’ perception of the listed products

and services, which in turn will determine the market interactions and performance,

and ultimately the profitability of the platforms. Moreover, an important amount of

earnings for such platforms comes from the money they collect from sellers in the form

of a certain fraction of the sales revenue. In such circumstances, it would be natural

for platforms to adopt an industry-favoring approach for the underlying information

design problem.

To understand the limits of the welfare effects of information in these markets,

we adopt the information design approach and impose no parametric restriction on

the form of information disclosure policies except that information is independent

across firms’ products. Such an approach also reflects the fact that the platforms can

flexibly design their websites in practice.

We first construct a relatively simple class of feasible signal distributions, each of

which induces an equilibrium in the search market. More importantly, we show that

this class of signal distributions is in fact rich enough so that every equilibrium that

can possibly arise under an arbitrary feasible signal distribution can be achieved by

a signal distribution in this constructed class.

Each such signal distribution is parameterized by three values: a signal cutoff,

the conditional mean of signals below the cutoff, and the corresponding consumer

surplus in the induced equilibrium. Above the signal cutoff, there is a continuum of
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signals indicating high match values. Below the signal cutoff, there may be a single

atom or another continuum of signals indicating low match values. In the induced

equilibrium, the consumers actively search in the market until they receive a signal

above the cutoff, in which case they purchase from the currently matched firm. Those

continuum of signals are specially distributed so that given the consumers’ equilibrium

search behavior, each firm faces a demand curve with unit-elasticity over a certain

range of prices. Such a signal distribution is referred to as a conditional unit-elastic

demand signal distribution.

We then apply this construction to investigate the industry-optimal information.

Contrary to the conventional wisdom that lower search cost reduces the industry sur-

plus since it promotes competition among firms, we find that the industry surplus

under the industry-optimal information is in fact strictly increasing as the market

becomes less frictional. For fixed information disclosure, lower search cost leads to

more search activity by consumers, which in turn intensifies competition among firms.

However, when information disclosure can be flexibly adjusted according to the search

cost, lower search cost does not necessarily imply more search activity. This is be-

cause consumers’ search incentive also depends on the information disclosure rule. In

particular, a less informative disclosure rule reduces search activity because products

become more homogeneous across firms. Therefore, if a signal distribution induces a

certain level of industry surplus in a market with high search cost, then in a market

with low search cost, we find that a strictly higher industry surplus can be achieved

by a less informative signal distribution.

Restricting attention to value distributions with increasing hazard rate, we show

that the unique industry-optimal conditional unit-elastic demand signal distribution

is the one that achieves the highest possible total welfare and gives all the surplus to

the industry, provided the search cost is not too low. When the search cost is really

low, such signal distribution is no longer feasible and there is typically a trade-off

between total welfare and industry surplus. If the value distribution, in addition, has

increasing density, the unique industry-optimal conditional unit-elastic demand signal

distribution still allows the industry to extract all the equilibrium total welfare, but

the total welfare is no longer maximized. This is because achieving the highest total

welfare requires the consumers search intensively when the search cost is sufficiently

low, which leads to a very competitive market. A lower total welfare can reduce

consumers’ search activity, thereby relaxing competition.
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Related Literature This paper is closely related to Roesler and Szentes (2017),

who study the buyer-optimal information in a monopoly pricing setting in the frame-

work of Bayesian persuasion and information design (Rayo and Segal (2010), Ka-

menica and Gentzkow (2011)). They show that the maximal buyer surplus can be

achieved by a signal distribution that induces a demand curve for the monopolist

with unit-elasticity.1 This paper extends their analysis to the current competitive

and dynamic environment. Our construction of signal distributions generalizes their

analysis by incorporating the consumers’ endogenous outside option and search in-

centives. Moreover, in their setting, it is easy to see that disclosing no information

at all is industry-optimal, in which case the firm simply charges the expected value

and extracts all the surplus. In the search market, however, this is no longer true

because no information disclosure will simply lead to an inactive market. Therefore,

the industry-optimal information in our setting and its welfare consequence are much

less obvious. We show that, under certain conditions, the industry-optimal informa-

tion in our setting also results in maximized total welfare and full extraction by the

firms, but it is achieved by carefully designed information.

Dogan and Hu (2022) study an information design problem in the same search

framework as the current paper, focusing on the consumer-optimal design. They also

construct a class of signal distributions that have the property of unit-elasticity and

show that every feasible equilibrium consumer surplus can be achieved by a signal

distribution in that class. But their construction suffers from the limitation that

those signal distributions are not rich enough to achieve every feasible equilibrium.

Consequently, their construction can not be applied to investigate the welfare limit

of the search market, nor the industry-optimal information. The current paper com-

plements their analysis by constructing a strictly larger class of signal distributions

and showing that this larger class is sufficiently rich so that every feasible equilibrium

can be achieved. This construction then allows studying the industry-optimal infor-

mation. Section 3.2 discusses more about the comparison of the constructions, and

Section 4.3 discusses the comparison of the consumer-optimal and industry-optimal

information.

Armstrong and Zhou (2022) also study an information design problem in a com-

petitive environment. Their main focus is duopolistic competition in a discrete choice

1Condorelli and Szentes (2020) analyze the classical hold-up problem, where there is no fixed

prior about the buyer’s valuation, and Choi et al. (2019), building on Anderson and Renault (2006),

analyze the buyer-optimal information in a search good environment. Both studies also find that

the unit-elasticity plays an important role in maximizing the buyer’s welfare.
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model. By considering the case where the market is always covered, which allows them

to focus on information disclosure about the relative valuation, they fully characterize

the consumer and industry optimal information, as well as the welfare limit of their

market. Among other results, Armstrong and Zhou (2022) show that the industry-

optimal information usually leads to maximized total welfare, which is clearly higher

than the one under the consumer-optimal information. Our result is similar to theirs

when the search cost is not too low, but differs when the search cost is sufficiently low.

The major reason that drives the difference is the fact that information in the cur-

rent model can affect market competition through the channel of consumers’ search

behavior, which is not present in their model. When the search cost is very low, it

is very important to lower consumers’ search incentive for the industry. It is then

optimal not to achieve the highest possible total welfare, since lower total welfare can

reduce consumers’ search activity.

There are also other related papers studying decentralized information disclosure

by competitive firms. Bar-Isaac et al. (2012) consider a similar consumer search model

where firms compete not only in prices, but also their product designs. By restricting

attention to a parameterized family of signal distributions that are ordered by the

demand rotation order in Johnson and Myatt (2006), Bar-Isaac et al. (2012) show

that every firm provides the extremal level of information: either the minimum or the

maximum. Board and Lu (2018) study a search setting in which products across firms

are homogeneous and the firms compete in how much information to disclose about

the common state. Au and Whitmeyer (2018) consider a related information design

problem in a directed search setting, where firms in an oligopolistic market compete

in attracting and persuading buyers through their information disclosure about their

own products of heterogeneous qualities. Au and Kawai (2020) analyze competition

among firms that disclose their own product information to persuade buyers, but

they abstract away firms’ pricing behavior. Hwang et al. (2019) consider an oligopoly

model in which firms compete not only in prices, but also their advertising strategies

about how much product information to provide. Our setting is quite different from

these papers, as firms only compete in their prices and product information disclosure

is designed by a third party, such as a platform.

The remainder of this paper is organized as follows. Section 2 sets up the model.

Section 3 contains the construction of signal distributions that can achieve every

equilibrium under an arbitrary feasible signal distribution. Section 4 analyzes the

industry-optimal signal distribution. Section 5 extends the analysis to equilibria in

mixed strategies. Section 6 concludes. Unless otherwise stated, all the proofs are
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deferred to the appendix. We also provide an analysis of the welfare limit and some

supplemental results for Section 4 in the online appendix.

2 Model

2.1 Setup

The model follows that in Dogan and Hu (2022), which is based on a model of sequen-

tial consumer search due to Wolinsky (1986). There are a continuum of risk neutral

firms and a continuum of risk neutral consumers. Each firm supplies a single product.

The firms’ costs of providing their products are normalized to zero. Each consumer

wishes to purchase one unit of one product from the market. The value of a firm’s

product to a consumer is u, which is distributed according to a cumulative distribution

function F over [0, 1]. Let µ denote the expected value, i.e., µ ≡
∫ 1

0
udF (u) ∈ (0, 1).

The market interaction is as follows. Firms simultaneously choose a price for

their own product. Consumers must gather price and value information through

a sequential search process. By incurring a search cost s ∈ (0, µ), a consumer is

randomly matched with a firm, upon which he discovers the price, say p, and receives

a noisy signal, say q, about the match value. Based on the signal, the consumer forms

expectation E[u|q] about the match value and then decides whether to purchase from

this currently matched firm. If he purchases, he stops searching and leaves the market.

In this case, his expected surplus is E[u|q]− p and the profits of the matched firm are

p. If he does not purchase, he and the firm get zero from the current match. He then

can decide whether to continue searching.2

The main concern of this paper is how the product information available to con-

sumers affects the welfare of this market, with a particular interest in what kind

of information disclosure can maximize industry surplus. For this, we can think of

a third party who, before the market opens, can design and commit to a product

information disclosure rule, which specifies how signal q is correlated with the true

product value u of the currently matched firm.3 For example, if q and u are per-

fectly correlated, it is full information disclosure; if q and u are independent, it is

2Because we focus on a stationary environment, whether consumers have free recall or not does

not matter.
3Formally speaking, an information disclosure rule consists of a (measurable) signal space Q and

a system of conditional distributions {ν( · |u)}u∈[0,1] such that (i) for each u, ν( · |u) is a probability

measure over Q, which specifies the conditional distribution of signals given the true value u, and

(ii) for each measurable A ⊂ Q, ν(A| · ) : [0, 1]→ [0, 1] is measurable.
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no information disclosure at all. As mentioned in the introduction, one interpreta-

tion of this search market is an online platform. This platform controls how much

product information is available to consumers through its web design. Such design

can include, for example, how many pictures of each product to display, whether to

provide detailed product specifications or just a short summary, whether to provide a

free trial for digital contents, and so forth. Because the revenues of the marketplace

platforms, such as eBay and Amazon, mainly come from charging a commission on

transactions, a natural objective of the design of these platforms is to maximize the

industry surplus.

Throughout the paper, we restrict attention to the case where signal q that a

consumer observes when matched with a firm only reveals information about the cur-

rent match value and is independent of the match values of other firms. We also

assume that the information disclosure rule is identical across all matches. As con-

sumers are risk neutral and their purchasing decisions only depend on the conditional

mean E[u|q], the firms’ demand and their pricing decisions are entirely driven by the

marginal distribution of the conditional mean. Therefore, to understand the wel-

fare effect of information disclosure and the industry-optimal design problem, it is

sufficient to focus on the marginal distribution of the conditional mean that each dis-

closure rule induces. It is well known that a distribution of the conditional mean G

is induced by some disclosure rule if and only if it is a mean-preserving contraction of

F :
∫ 1

0
qdG(q) =

∫ 1

0
qdF (q) and

∫ x
0
G(q)dq ≤

∫ x
0
F (q)dq for all x ∈ [0, 1].4 We refer to

such a distribution G as a feasible signal distribution and let GF be the set of all fea-

sible signal distributions. The true value distribution F itself is feasible, representing

the most informative signal distribution in GF . On the other hand, F0, which specifies

an atom of size one at µ, is also feasible, representing the totally uninformative signal

distribution.

2.2 Equilibrium

Throughout most part of this paper, we focus on symmetric pure strategy equilibria

with active search in this market.5 In Section 5, we will extend our analysis to equilib-

ria in mixed strategies and show that restricting attention to pure strategy equilibria

4See, for instance, Blackwell (1951), Gentzkow and Kamenica (2016), Kolotilin (2018), and Dwor-

czak and Martini (2019).
5As usual in sequential search models, for any signal distribution G ∈ GF , there is always a trivial

equilibrium where all firms set very high prices, e.g., p ≥ 1, and consumers do not participate in the

market at all. We rule out these uninteresting equilibria.
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is indeed without loss of generality for industry-optimal design. A symmetric pure

strategy equilibrium with active search, or simply equilibrium, consists of a price for

the firms and a stopping rule for consumers, which satisfy the following two proper-

ties: (i) the consumers’ stopping rule is optimal given that all firms charge the same

equilibrium price, and (ii) no firm has an incentive to charge a different price given

the consumers’ stopping rule and the belief that all other firms charge the equilibrium

price.

Lemma 1 below provides a simple characterization of an equilibrium.6 Its state-

ment needs a notation. For any signal distribution G ∈ GF , let cG : [0, 1] → R+ be

the consumers’ incremental benefit function, defined as

cG(x) ≡
∫

[x,1]

(q − x) dG(q), ∀x ∈ [0, 1]. (1)

Given G, the value cG(x) captures each consumer’s incremental gain from one more

search with a match of expected quality x at hand.

Lemma 1. Suppose the signal distribution is G ∈ GF . A symmetric pure strategy

equilibrium with active search is characterized by a pair (b, v) that satisfies the follow-

ing two conditions:

cG(b) = s, (2)

and

− c′G(b−)(b− v) ≥ −c′G(x−)(x− v), ∀x ∈ [0, 1], (3)

On the equilibrium paths, each firm charges price p = b− v, and consumers purchase

at p if and only if they receive a signal greater than or equal to b. The associated

consumer surplus, industry surplus and total welfare, respectively, are v, p, and b.

Conditions (2) and (3) are the standard equilibrium characterization in the con-

sumer search literature. Condition (2) characterizes the consumers’ optimal stopping.

When all firms charge the same price, consumers face a stationary environment. As a

result, the consumers’ optimal stopping rule is a cutoff rule. In particular, consumers

stop and purchase from a firm with price p′ and signal q if and only if q − p′ ≥ v,

or equivalently q ≥ p′ + v, where v is consumers’ continuation payoff from tomorrow

on that serves as consumers’ outside option when deciding whether to buy from the

currently matched firm. Because the environment is stationary, this v is also con-

sumers’ equilibrium surplus. Since all firms charge the same price p = b − v on the

6Because the result is standard, its proof is omitted.
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equilibrium path, the consumers’ equilibrium signal cutoff is then just b. Condition

(2) characterizes this equilibrium signal cutoff. It states that with signal b at hand,

the consumers are indifferent between stopping and one more round of search.

Condition (3) is about firms’ incentives. It requires that no firm has an incentive

to deviate from the equilibrium price p = b− v. The left hand side of (3) is a firm’s

profits from the equilibrium price. The right hand side is its profits from deviating to

price p′ = x− v. Facing such a price, the consumers’ signal cutoff is just x. Thus, the

firm’s associated demand and profits are −c′G(x−) = 1−G(x−) and −c′G(x−)(x−v),

respectively.7 Therefore, firms’ pricing incentive can be equivalently interpreted as

no firm having an incentive to deviate to a different signal cutoff x than b.

Since consumers have unit demand and purchase for sure in equilibrium, the equi-

librium price p is also equal to the equilibrium industry surplus. Therefore, the

expected total welfare, which is the sum of consumer surplus and industry surplus, is

then v + p = b.8

Not every signal distribution G ∈ GF induces an equilibrium with active search.

It is also possible that no signal distribution induces such an equilibrium. The search

market (F, s) admits active search if at least one feasible signal distribution G ∈ GF
induces such an equilibrium. In such a market, different signal distributions lead to

different equilibria and thus different levels of total welfare and its division between

the consumers and the industry. The goal is to understand the set of all achievable

equilibria and the industry-optimal signal distribution.

2.3 Feasible incremental benefit functions

The previous definition of equilibrium indicates that the effects of a signal distribution

on the corresponding equilibrium behavior are completely summarized by its incre-

mental benefit function. Therefore, to understand all achievable equilibria, it is useful

to understand the set of all feasible incremental benefit functions. In this way, we can

work directly with incremental benefit functions without referring to the underlying

signal distribution. The following lemma from Dogan and Hu (2022), which builds on

Gentzkow and Kamenica (2016), provides a convenient characterization, which allows

a simple geometric representation.

7By integration by parts, cG(x) =
∫ 1

x
(1−G(q))dq. Hence, −c′G(x−) = 1−G(x−).

8Another way to see this is to notice that total welfare by definition equals EG[q|q ≥ b] −
s

1−G(b−) , where the first term is the expected match quality and the second term is the total search

expenditures. Using equilibrium condition (2), it is easy to verify that this expression equals b,

which is equal to the equilibrium signal cutoff.
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Lemma 2. A function c : [0, 1] → R is the incremental benefit function for some

signal distribution G ∈ GF , i.e., c ∈ CF , if and only if it is convex and cF0 ≤ c ≤ cF .

1
x

µ

µ

cF0

cF

Figure 1: Feasible incremental benefit functions

Lemma 2 can be easily understood by looking at Figure 1. The lower solid curve

is cF0 . It is a downward-sloping-45-degree line over [0, µ] and becomes zero over [µ, 1].

The higher solid curve is cF . The shaded area between cF0 and cF represents the

range of CF . Any convex function in this area is in CF and thus is an incremental

benefit function for some feasible signal distribution, and vice versa. The red curve

is an example of such a function. We point out that two geometric features of an

incremental benefit function can directly tell us some properties of its underlying

signal distribution, which will facilitate understanding our construction in the next

section. First, a kink point on an incremental benefit function means an atom of its

underlying signal distribution at this point.9 The kink at µ of cF0 is an example.

Second, a straight line segment over a certain interval, say [x, x′], means that G has

no mass over (x, x′).10 The straight line segments over [0, µ] and [µ, 1] of cF0 are two

examples.

3 Conditional unit-elastic demand signal distribu-

tion

In this section, we construct a special class of signal distributions in terms of their

corresponding incremental benefit functions. Each such signal distribution will induce

an equilibrium with active search. More importantly, this class of signal distributions

9This is because G(x)−G(x−) = (1 + c′(x+))− (1 + c′(x−)) = c′(x+)− c′(x−).
10This is because G(x′−) = 1 + c′(x′−) = 1 + c′(x+) = G(x).
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is rich enough so that every equilibrium that can arise under an arbitrary feasible

signal distribution can be achieved by a signal distribution in this class. Therefore,

we can focus on this class of signal distributions to analyze the industry-optimal signal

distribution in Section 4.

3.1 Construction

Every incremental benefit function to be constructed is parameterized by three values:

b ∈ [µ − s, b̄], v ∈ [0, b) and a ∈ [0, µ − s), where b̄ is the solution to cF (b̄) = s.

Such an incremental benefit function will induce equilibrium (b, v), and parameter

a measures the conditional mean of the signals below b, i.e., E[q|q < b], under the

corresponding signal distribution. Let ρ ≡ µ−s−a
b−a , which will be the probability of

trade per match. Let π ≡ ρ(b− v) = µ−s−a
b−a (b− v), which will be the firm’s expected

profits in equilibrium. The construction distinguishes two cases. If a ≤ v + π, define

ca,b,v(x) ≡


µ− x, if x ∈ [0, a],

`(x), if x ∈ (a, b],

max
{
h̄(x), 0

}
, if x ∈ (b, 1],

(4)

where `(x) ≡ s− ρ(x− b) and h̄(x) ≡ s− π log x−v
b−v . If a > v + π, define

ca,b,v(x) ≡


µ− x, if x ∈ [0, v + π],

max{
¯
h(x), `(x)}, if x ∈ (v + π, b],

max
{
h̄(x), 0

}
, if x ∈ (b, 1],

(5)

where
¯
h(x) ≡ µ− v − π − π log x−v

π
.

Figure 2 illustrates typical ca,b,v’s for both cases a ≤ v + π and a > v + π, as well

as their corresponding signal distributions. Panel (a) illustrates the case a ≤ v + π.

It coincides with the lower bound cF0 over [0, a], and is the straight line `(x) over

[a, b]. Over [b, 1], it takes the particular functional form max{h̄(x), 0}. As will be

seen soon, such construction will make the firms different over a certain range of

prices in equilibrium. Panel (c) depicts the corresponding signal distribution. Below

b, there is only an atom at a.11 Above b, there is a continuum of signals. There is

potentially an atom at some x̄ ∈ (b, 1]. It arises because of the truncation of h̄, i.e.,

h̄(x̄) = 0. For ease of exposition, we refer to this type of ca,b,v as type I.

11When b = µ− s, this atom disappears. In this case, the choice of a is irrelevant.
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x
1

µ
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cF

cF0
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ca,b,v

x̄

(a) ca,b,v if a ≤ v + π

x
1

µ

s

cF

cF0

v + π b

ca,b,v

x̄
¯
x

(b) ca,b,v if a > v + π

q

a b x̄ 1

1

(c) Signal distribution if a ≤ v + π

q

v + π b x̄ 1
¯
x

1

(d) Signal distribution if a > v + π

Figure 2: Construction of ca,b,v and the corresponding signal distribution
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Panel (b) illustrates the constructed ca,b,v when a > v+ π. It takes a similar form

as the one of type I over the intervals [0, v+ π] and [b, 1]. The difference arises in the

interval [v+π, b]. When a > v+π, ca,b,v is not a straight line over [v+π, b]. Rather, it

takes the form of max{
¯
h(x), `(x)}. Such construction is also to guarantee that firms

are indifferent over a certain range of prices in equilibrium. Panel (d) depicts the

corresponding signal distribution. Unlike the one in panel (c) where there is an atom

at a, this atom is replaced by a continuum of signals over [v + π,
¯
x].12 The potential

atom
¯
x arises from the truncation of

¯
h by `, i.e.,

¯
h(

¯
x) = `(

¯
x). We refer to this type

of ca,b,v as type II.

By construction, if ca,b,v is type I, it is above cF0 and convex. Thus, it is feasible if

it is below cF . If ca,b,v is type II, it is still above cF0 by construction. It is convex if and

only if
¯
h(b) ≤ s, which rules out the possibility that

¯
h is always above ` over [v+π, b].

Hence, such ca,b,v is feasible if and only if
¯
h(b) ≤ s and ca,b,v ≤ cF . Let U ⊂ CF be the

set of all feasible ca,b,v’s. The following proposition explains the significance of the

above construction.

Proposition 1. Every ca,b,v ∈ U induces equilibrium (b, v), in which the probability

of trade per match is ρ and the firm’s expected profits are π. Conversely, if (b, v) is an

equilibrium under feasible signal distribution G, then ca,b,v ∈ U , where a ≡ EG[q|q <
b].

The results of Proposition 1 are twofold. On the one hand, it verifies that the

construction of ca,b,v is “correct” in the sense that it indeed induces equilibrium (b, v).

On the other hand, it asserts that this constructed special class of signal distributions

is in fact rich enough to induce every equilibrium that can possibly arise under an

arbitrary signal distribution. These two parts together greatly simplify the analysis

of the industry-optimal signal distribution, because they allow us to restrict attention

to a relatively simple and parameterized class of signal distributions.

To gain some intuition about the first part of Proposition 1, observe first that

ca,b,v(b) = s by construction. Hence, equilibrium condition (2) for the consumers’

search incentive is satisfied. To understand why it is optimal for firms to set signal

cutoff b, or equivalently charge price b− v, it is useful to examine the demand curve

that a matched firm faces under ca,b,v. Panel (a) in Figure 3 gives an illustration for

a type I ca,b,v, while panel (b) gives an illustration for a type II ca,b,v. In both panels,

12Observe that ` is the left tangent line of ca,b,v at b. Because ` intersects the downward-sloping-

45-degree line at a by construction, a is just the conditional mean of signals below b, as is the case

of type I signal distributions.
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Figure 3: Induced demand curve under ca,b,v

the vertical axis represents the signal cutoff x. Given the consumers’ equilibrium

search behavior, a firm setting cutoff x is equivalent to charging price x − v. The

horizontal axis represents the associated demand −c′a,b,v(x−), i.e., the probability that

the consumer’s signal realization is greater than or equal to x.

Consider a type I ca,b,v first. It is so constructed that its induced demand curve in

panel (a) has unit elasticity when the signal cutoff changes over the range [b, x̄]. Hence,

every firm is in fact indifferent between any signal cutoff in this range. Moreover,

because a ≤ v + π, where π is the expected profits when setting signal cutoff b, the

expected profit from signal cutoff a is a− v ≤ π. Therefore, setting signal cutoff b, or

equivalently charging price b− v, is optimal for firms. When ca,b,v is type II, it is so

constructed that its induced demand curve in panel (b) has unit elasticity when the

signal cutoff changes over the range [v + π,
¯
x] ∪ [b, x̄]. It is then optimal for firms to

set signal cutoff b given such a demand curve.

For the second part of Proposition 1, we show that if (b, v) is an equilibrium under

feasible signal distribution G, then ca,b,v ≤ cG, where a = EG[q|q < b]. That is, the

signal distribution under ca,b,v must be less dispersed than G in the sense of mean

preserving contraction, which in turn implies that ca,b,v is feasible. Essentially, the

signal distribution under ca,b,v is obtained by modifying G in two ways. First, the

signal distribution over [b, 1] under G is replaced by a signal distribution that induces

unit-elastic demand. Second, the signal distribution over [0, b) under G is replaced by

the atom signal a = EG[q|q < b] if ca,b,v is type I, or a signal distribution that again

induces unit-elastic demand if ca,b,v is type II. Both modifications make the signals
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more concentrated than G. Hence, the distribution under ca,b,v is a mean preserving

spread of G.

A direct corollary of Proposition 1 is an intuitive characterization of when the

search market (F, s) admits active search.

Lemma 3. The search market (F, s) admits active search if and only if s ∈ (0, s̄] for

some s̄ ∈ (0, µ).

For any true value distribution F , there exists a search cost threshold for active

search s̄. When the search cost s is less than s̄, by properly designing the information

available to the consumers, there is always an equilibrium in which the consumers

search actively in this market. But when the search cost s is greater than this thresh-

old, the market is always inactive, regardless of what kind information is available to

the consumers.

3.2 Discussion

The above construction of ca,b,v is built on Roesler and Szentes (2017), who first find

that, in their monopoly pricing setting, modifying any given signal distribution into

one that induces a unit-elastic demand curve does not change the monopolist’s pricing

incentive but requires less information disclosure. Based on this observation, they

show that the consumer surplus in this market can be maximized by a unit-elastic

demand signal distribution. Under this consumer-optimal signal distribution, the

monopolist is indifferent between prices in the support of this distribution, and trade

occurs with probability one in the consumer-optimal equilibrium. The previously

constructed incremental benefit function ca,b,v also shares this feature. In equilibrium,

firms are indifferent between prices over a certain range no matter whether it is

type I or type II. But ca,b,v generalizes their unit-elastic demand signal distribution

in two ways that reflect the nature of the current dynamic and competitive search

environment. First, by different combinations of a and b, the constructed ca,b,v allows

for different probabilities of trade per match. This is a necessary component in the

current setting, as the consumers always have the opportunity to find a better match.

Second, consumers’ outside option, which coincides with the consumer surplus v and

determines their search behavior and the competition between firms, is endogenous.

Thus, it is incorporated as part of the design.

The currently constructed conditional unit-elastic demand signal distributions are

a strictly broader class of signal distributions than those constructed in Dogan and
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Hu (2022). Dogan and Hu (2022) only construct ca,b,v’s of type I with the additional

restriction that a ≤ v. Although these signal distributions serve their purpose in that

they can achieve every consumer surplus that can arise under an arbitrary feasible

signal distribution, they are not rich enough to achieve every equilibrium. The reason

is straightforward. The restriction a ≤ v imposes an exogenous upper bound b − a
on the equilibrium price that every ca,b,v can induce. For instance, for some total

welfare level b, such restriction may rule out the possibility of full surplus extraction

by the industry, because the parameter a may not be zero given b due to the feasibility

constraint.13 As a result, the class of signal distributions constructed in Dogan and

Hu (2022) can not be used in studying the industry-optimal information design. The

current construction solves this limitation by introducing ca,b,v’s type II. As will be

seen soon, the industry-optimal signal distribution is indeed of type II in many cases.

Following the terminology in Dogan and Hu (2022), the underlying signal distri-

bution that gives rise to such an incremental benefit function ca,b,v is referred to as

the conditional unit-elastic demand signal distribution.

4 Industry-optimal Design

By Proposition 1, the set of all achievable equilibria and thus the welfare limits of

this search market can be analyzed by focusing on the class of conditional unit-elastic

demand signal distributions, which is much smaller and simpler than the class of

all feasible signal distributions. The online appendix provides the analysis. In this

section, we focus on industry-optimal design.

4.1 Industry-optimal signal distribution

As we have explained in Section 2.2, the industry surplus in an equilibrium (b, v)

equals the corresponding equilibrium price b−v, because trade occurs with probability

one and consumers have unit demand. Therefore, finding a signal distribution that

maximizes the industry surplus is equivalent to finding one that leads to the highest

equilibrium price. For this goal, Proposition 1 implies that we only need to consider

the following problem:

max
ca,b,v∈U

b− v (6)

Recall that b̄ is the unique solution to cF (b̄) = s. It is an upper bound of all

13See (7) in Section 4.2.
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achievable total welfare in this market. Let b̂ ∈ [µ − s, b̄] be the highest achievable

total welfare in this market. Claim A.2 in the online appendix shows that the set of

all achievable total welfare is interval [µ−s, b̂]. Therefore, problem (6) can be thought

of as a two stage optimization problem by rewriting it as

max
b∈[µ−s, b̂]

(
b− min

ca,b,v∈U
v
)
.

For each achievable total welfare b ∈ [µ− s, b̂], minca,b,v∈U v is the associated minimal

feasible consumer surplus. Then, b−minca,b,v∈U v corresponds to the highest possible

equilibrium price for total welfare b. Among all the feasible levels of total welfare,

the industry-optimal signal distribution should choose the one that maximizes b −
minca,b,v∈U v. There is another intuitive interpretation of this problem. Recall that

consumer surplus v also serves as consumers’ outside option when matched with a

firm. Hence, given b, the problem minca,b,v∈U v can be thought as finding the signal

distribution that gives consumers the lowest outside option among those that lead

to total welfare b. Because each firm is competing with consumers’ outside option,

finding the lowest outside option simply means finding the least competitive market.

Let b̃ ∈ [µ−s, b̂] be the highest possible total welfare at which full surplus extrac-

tion by the industry is feasible. That is, b̃ is the largest b such that ca,b,0 is feasible

for some a.14 If b̃ = b̂, even at the highest achievable total welfare b̂, full surplus

extraction by the industry is feasible. Then, the industry-optimal surplus is achieved

by ca,b̂,0 for some a. If b̃ < b̂, it is clear that the total welfare under the industry-

optimal signal distribution can only appear in [b̃, b̂], because for any b < b̃, the highest

industry surplus is bounded above by b. Higher b ∈ [b̃, b̂] leads to higher total welfare,

but at the same time, it may also lead to higher minimal feasible consumer surplus

minca,b,v∈U v. Therefore, the total welfare level that maximizes the industry surplus

must resolve this trade-off.

For general value distribution F , it is very difficult to characterize b̂, b̃, and the

total welfare that maximizes the industry surplus in the case of b̃ < b̂. This is because

the feasibility constraint involves uncountably many inequality constraints. Despite

this difficulty, it is still possible to compare the optimal industry surplus, i.e., the value

of problem (6), for different search costs. Quite surprisingly, the following proposition

shows that the industry surplus under the optimal design is increasing as the search

cost decreases.

14Because c0,µ−s,0 is always feasible when market (F, s) admits active search, such b̃ exists. See

the proof of Lemma 3 in Appendix A.
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Proposition 2. For any value distribution F , the industry surplus under the optimal

signal distribution is strictly increasing as the search cost decreases over (0, s̄].

Contrary to the traditional wisdom that lower search cost leads to fiercer com-

petition among firms, which would reduce the equilibrium price and thus industry

surplus, Proposition 2 states that lower search cost is beneficial for the industry. As

long as the information available to the consumers can be adjusted flexibly and prop-

erly as the search cost changes, the industry surplus is in fact strictly higher in the

market with lower search cost.

The proof of Proposition 2 shows that if a certain level of industry surplus is

achieved by some signal distribution in the market with search cost s, then for any

s′ < s, a strictly higher industry surplus can be achieved by a less informative signal

distribution in the market with search cost s′. The underlying logic is the following.

The standard intuition that lower search cost intensifies competition is based on

the idea that lower search cost leads to more search activity by consumers. This is

clearly true if the product information available to consumers does not change with

search cost, for example, if it is always full information disclosure as in Wolinsky

(1986) and Anderson and Renault (1999). However, as Anderson and Renault (1999)

point out, how much information is available to consumers is also a determinant of

their search behavior. For instance, less information means more homogeneity among

firms, which in turn lowers consumers’ search incentive. Therefore, if information

disclosure can be adjusted flexibly as the search cost changes, then disclosing less

information in a market with lower search cost can be used to offset consumers’

additional search incentive due to lower search cost, thereby softening competition

among firms. There may be concern that less information can potentially intensify

rather than soften competition, because products become more homogeneous. But

Proposition 2 shows that if “less information” is properly designed, the overall effect

on softening competition is positive, leading to a strictly higher equilibrium price and

thus higher industry surplus in the market with lower search cost.

4.2 Value distributions with increasing hazard rate

In this subsection, we restrict attention to value distributions with increasing hazard

rate. This class of value distributions makes problem (6) more tractable, and the

results will illustrate our analysis in Section 4.1. Formally, we assume that value

function F has a positive and continuous density f over (0, 1) such that its hazard

rate function f
1−F is increasing. These regularity conditions are widely used in the
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consumer search literature.15 The increasing hazard rate property is equivalent to log-

concavity of the survival function 1−F . A sufficient condition is that f is increasing.

Another well-known condition is that f itself is log-concave.16

Anderson and Renault (1999) show that when the search cost s is less than or

equal to a cutoff ŝ, full information disclosure in this market leads to an equilibrium

with active search. The corresponding signal cutoff, or equivalently total welfare, is

just b̄. The equilibrium price is 1−F (b̄)

f(b̄)
and the consumer surplus is b̄− 1−F (b̄)

f(b̄)
. Clearly,

ŝ is the search cost determined by b̄ = 1−F (b̄)

f(b̄)
.17 Recall that s̄ denotes the threshold

for active search in Lemma 3. By definition, we have s̄ ≥ ŝ. Claim B.1 in the online

appendix shows that it must be s̄ > ŝ. Recall that b̂ denotes the highest achievable

total welfare that can possibly arise under an arbitrary feasible signal distribution.18

When s ∈ (0, ŝ], we clearly have b̂ = b̄. When s ∈ (ŝ, s̄], Claim B.2 in the online

appendix shows that b̂ < b̄.

Proposition 3 below finds the unique industry-optimal signal distribution as long

as the search cost is not too small. Its statement requires introducing some notation.

Recall that the equilibrium probability of trade per match under ca,b,v is ρ = µ−s−a
b−a .

For a given b > µ − s, this probability is strictly decreasing in a. This is obvious

from panel (a) of Figure 4. This probability of trade corresponds to the slope (in

absolute value) of the line segment connecting (a, µ − a) and (b, s). For instance,

because a′ < a′′ in this graph, the associated slope and thus probability of trade for

a′ is greater than that for a′′. However, it is also obvious from this graph that there is

no feasible ca′,b,v for any v, because the solid red line segment, which constitutes part

of ca′,b,v, is sometimes higher than cF . Hence, for this b, there is a highest feasible

probability of trade, and it is obtained by setting a to its lowest feasible level:

a(b) ≡ min

{
a ∈ [0, µ− s)

∣∣∣∣ s− µ− s− a
b− a

(x− b) ≤ cF (x), ∀x ∈ [a, b]

}
. (7)

The set on the right hand side of (7) is the set of all feasible a’s, as the inequalities

simply require that the line segment connecting (a, µ− a) and (b, s) be below cF . At

the lowest feasible a(b), some of these inequalities must be binding, as is illustrated

by the blue line segment in panel (a) of Figure 4. Panel (b) illustrates the special

15See, for example, Anderson and Renault (1999), Armstrong et al. (2009), Eliaz and Spiegler

(2011), Choi et al. (2018).
16See, for instance, An (1998) and Bagnoli and Bergstrom (2005).
17Because cF (b̄) = s, b̄ obviously depends on search cost s. For notational simplicity, we suppress

s from b̄.
18As b̄, b̂ also depends on search cost s. We also suppress s from b̂ for notational simplicity.
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case where b = b̄. In this case, a(b̄) = E[q|q < b̄], i.e., the conditional mean of

values below b̄ under the value distribution F . The corresponding blue line segment

is just the tangent line of cF at b̄, and the highest feasible probability of trade is then

−c′F (b̄) = 1− F (b̄).

x

µ

s

ba(b)a′ a′′

cF

(a) Determination of a(b)

x

µ

s

a(b̄) = E[q|q < b̄] b̄

cF

(b) a(b̄) = E[q|q < b̄]

Figure 4: Illustration of a(b)

The role of a(b) in our analysis is reflected in the following lemma. It implies that,

to find an industry-optimal signal distribution, it is without loss of generality to focus

on incremental benefit functions of the form ca(b),b,v.

Lemma 4. If ca,b,v is feasible, then ca(b),b,v is feasible.

We are now ready to state our next result.

Proposition 3. Suppose the value distribution F has a positive and continuous den-

sity f over (0, 1) such that the hazard rate f(x)
1−F (x)

is increasing. Then, ca(b̂),b̂,0 is

feasible if and only if s ∈ [s̃, s̄], where s̃ is the unique solution over (0, ŝ) to the

following equation:19

b̄(1− F (b̄))
[
1− log(1− F (b̄))

]
+ s̃ = µ. (8)

Moreover, when s ∈ [s̃, s̄], ca(b̂),b̂,0 is the unique industry-optimal incremental benefit

function in U .

Under the assumption of increasing hazard rate, Proposition 3 first asks when it

is feasible for the industry to fully extract the highest achievable total welfare b̂. By

Lemma 4, this question is equivalent to the feasibility of ca(b̂),b̂,0. Proposition 3 shows

that it is feasible if and only if the search cost is not too low. Consequently, ca(b̂),b̂,0

19Over [0, µ], there are two and only two solutions to (8). The obvious one is s = µ. The other

appears in (0, ŝ). See Claim 3 in Appendix D.2.
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in this case is industry-optimal. Proposition 3 further strengthens this implication

and shows that ca(b̂),b̂,0 is in fact the unique incremental benefit function in U that is

industry-optimal. That is, there is no other a such that ca,b̂,0 is feasible. This result

is intuitive because a(b̂) by construction uniquely maximizes the probability of trade

per match for total welfare b̂. The highest probability of trade per match means the

fewest searches by consumers, thereby minimizing competition among firms.

The analysis of Proposition 3 is a little involved. We use uniform distribution

F ∼ U [0, 1] to explain the ideas. For the uniform distribution, it is easy to calculate

cF (x) = 1
2
− x+ 1

2
x2 and b̄ = 1−

√
2s. Hence, the search cost ŝ that solves b̄ = 1−F (b̄)

f(b̄)

is ŝ = 0.125. We can also calculate numerically s̃ ≈ 0.041 and s̄ ≈ 0.296. Hence,

s̃ < ŝ < s̄ as claimed.

Consider first the special search cost s = ŝ. Full information disclosure induces

equilibrium (b̄, 0). It achieves the highest possible level of total welfare of this market

and the industry extracts it all since b̄ = 1−F (b̄)

f(b̄)
. Because a(b̄) = E[q|q < b̄], we know

ca(b̄),b̄,0, or equivalently ca(b̂),b̂,0, is feasible by Proposition 1. Clearly, both full infor-

mation disclosure and ca(b̂),b̂,0 are industry-optimal. This is an example of multiple

optimal signal distributions.

Consider the next case, s ∈ (0, ŝ). Full information disclosure still induces an

equilibrium, implying b̂ = b̄. For the uniform distribution, we can also easily verify

that b̄(1 − F (b̄)) < E[q|q < b̄]. Under ca(b̄),b̄,0, the left hand side of this inequality

is the expected profits π of a matched firm, while the right hand side is simply

a(b̄). Hence, this inequality simply implies that ca(b̄),b̄,0 is type II. Proposition 3

shows that it is feasible if and only if the search cost is not sufficiently low and

explicitly characterizes the threshold s̃. When s ≥ s̃, ca(b̄),b̄,0, or equivalently ca(b̂),b̂,0,

is clearly industry-optimal. This result goes along with the standard intuition that

lower search cost intensifies competition among firms, which makes it harder and

eventually impossible for the industry to extract all the surplus at the highest total

welfare level. Admittedly, we have mentioned in the discussion of Proposition 2 that

this intuition in general may not apply when information also changes with search

cost. It still applies in the current particular situation, because ca(b̄),b̄,0, as search cost

decreases, does not change in a way to soften competition. This is suggested by the

fact that the probability of trade under ca(b̄),b̄,0 is 1−F (b̄), which is strictly decreasing

as s decreases and eventually converges to zero as s goes to zero. Consequently, as

search cost decreases, consumers under ca(b̄),b̄,0 indeed search more as as they do under

full information disclosure, which makes the market more competitive.

The third case is s ∈ (ŝ, s̄]. In this case, full information disclosure no longer
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Figure 5: Different cases of ca(b̂),b̂,0 for the uniform value distribution

induces an equilibrium. Indeed, we can show that b̄ is no longer an achievable level

of total welfare. Thus, b̂ < b̄.20 Moreover, because of uniform distribution again, we

can verify b̄(1 − F (b̄)) > E[q|q < b̄]. Contrary to the previous case, this inequality

implies that ca(b̄),b̄,0 is type I, which in turn implies that ca(b̂),b̂,0 is type I too. Hence,

for the feasibility of ca(b̂),b̂,0, only those h̄(x) ≤ cF (x) for x ∈ [b̂, 1] matter. Similarly

as above, we show that these constraints are indeed satisfied. Therefore, ca(b̂),b̂,0 is

feasible and industry-optimal. Figure 5 provides a summary of the above analysis.

What makes the uniform distribution special in the above explanation is that the

cutoff search cost ŝ for full information disclosure inducing an equilibrium coincides

with the cutoff for type switching of ca(b̂),b̂,0. This is because ŝ is also the unique

solution to b̄(1 − F (b̄)) = E[q|q < b̄] for this particular distribution. For a general

value distribution with increasing hazard rate, these two cutoffs may differ. Additional

cases have to be discussed.

In the monopoly pricing setting in Roesler and Szentes (2017), the firm-optimal

signal distribution also achieves the highest possible total welfare, all of which is

extracted by the firm. But the optimal signal distributions in these two markets are

quite different. In the monopoly setting, it is achieved by no information disclosure

at all. However, in the current search market, no information disclosure would simply

lead to an inactive market. The industry-optimality in Proposition 3 is achieved by

a carefully designed conditional unit-elastic signal distribution.

Finally, what is the industry-optimal signal distribution when s < s̃? In this

case, because it is impossible for the industry to fully extract the highest achievable

total welfare b̂, the determination of the industry-optimal signal distribution becomes

difficult. It involves a nontrivial trade-off between total welfare and equilibrium price.

For example, because ca(b̄),b̄,0 is no longer feasible, the highest feasible price for total

welfare b̄ must be strictly less than b̄. This simply creates the possibility that a higher

20See Claim B.2 in the online appendix.
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equilibrium price is achieved at a lower level of total welfare than b̄. The next result

below states that this is indeed the case if the density of the value distribution is

increasing.

Proposition 4. Suppose the value distribution F has a positive, continuous, and

weakly increasing density f over (0, 1). Assume s ∈ (0, s̃). Then, ca(b̃),b̃,0 is the unique

industry-optimal incremental benefit function in U , where b̃ is the largest b ∈ [µ−s, b̄]
such that ca(b),b,0 is feasible.

When f is increasing, Proposition 4 shows that the industry still extracts all

the equilibrium surplus under the optimal signal distribution when the search cost is

below s̃. Because ca(b̄),b̄,0 is not feasible in this case, we must have b̃ < b̄. Therefore,

unlike the case when s ≥ s̃, the current industry-optimal signal distribution does not

achieve the highest feasible level of total welfare. As we have explained previously,

the problem of achieving the highest total welfare b̄ is that it is associated with very

small probability of trade per match when s is sufficiently small. This means that

consumers search intensively to compare the products across firms, which clearly leads

to very competitive market. To soften the competition, it is then necessary to reduce

consumers’ search incentive. This can only be done by achieving a lower total welfare

level, since lower total welfare is associated with larger probability of trade per match

and hence less search.21

Figure 6 illustrates the optimal industry surplus for the uniform value distribution.

Thinking of the search cost s (the vertical axis) as the independent variable, the red

curve plots the corresponding optimal industry surplus. Because the industry always

extracts all the total welfare under the optimal signal distribution by Propositions

3 and 4, this curve also represents the corresponding total welfare. The curve cF

simply represents b̄. When s ∈ (ŝ, s̄], the optimal industry surplus is b̂. Because b̂ < b̄

for search costs in this range, the red curve is below cF . When s ∈ [s̃, ŝ], the red

curve simply coincides with cF , since the optimal industry surplus is b̂ = b̄. When

s < s̃, the red curve is below cF again, because the optimal industry surplus is b̃

from Proposition 4 and it is strictly lower than b̄. Overall, the red curve is strictly

decreasing in s. This is exactly the result of Proposition 2: as search cost decreases,

the optimal industry surplus strictly increases.

21The largest probability of trade for total welfare b, i.e., µ−s−a(b)b−a(b) is decreasing in b. See part (ii)

of 1 in the appendix.
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Figure 6: Optimal industry surplus for the uniform value distribution

4.3 Discussions

Full information benchmark Consider a value distribution with an increasing

hazard rate again (to guarantee the existence of equilibrium under full information

disclosure). As the search cost decreases, the equilibrium consumer surplus is strictly

increasing under full information disclosure, while the corresponding equilibrium price

and thus industry surplus is strictly decreasing. The latter is illustrated by the blue

curve in Figure 6. It is the industry surplus under full information disclosure for

uniform value distribution. Dogan and Hu (2022) show that although there is always

positive value of information design for consumers as compared to full information

disclosure, the value will eventually disappear as the search cost tends to zero. Thus,

there is not much room to improve the consumer surplus when the search friction is

small. However, Proposition 2 implies that this is exactly the opposite when it comes

to the design for the industry. The gap between the optimal industry surplus and the

full information benchmark, e.g., the gap between the red and blue curves in Figure

6, strictly increases as the search cost diminishes. In other words, information design

for the industry is more valuable compared to the full information benchmark in a

market with less search friction.

Total welfare Armstrong and Zhou (2022) study the information design problem in

duopolistic competition in a discrete choice model. Under a log-concavity assumption

of the distribution of the relative valuation, they find that the industry-optimal signal

distribution maximizes the total welfare and it is extracted all by the industry. Our

Proposition 3 shows that the same result holds in the current model, provided that

the search cost is not too low. Moreover, they also show that the consumer-optimal
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design typically does not achieve the highest total welfare, and then conclude that

the industry-optimal design leads to strictly higher total welfare than the consumer-

optimal design in their model. Dogan and Hu (2022) show in the current model

that when it comes to consumer-optimal design, there is always a nontrivial trade-off

between total welfare and highest consumer surplus. Thus, the total welfare under

the consumer-optimal signal distribution is typically not maximized. Therefore, the

comparison of total welfare under the industry-optimal and consumer-optimal designs

in the current model is also the same as that in Armstrong and Zhou (2022), when

the search cost is not too low.

However, when the search cost becomes really small and the density of the value

distribution is increasing, Proposition 4 shows that this is no longer the case. The

industry-optimal design still guarantees full extraction of equilibrium total welfare by

the industry, but the total welfare is not maximized. As we have discussed above,

the main reason behind this result is that achieving a lower total welfare than the

highest one can induce higher probability of trade per match, which in turn means

less search by consumers and thus less competitive market. Clearly, softening compe-

tition through the channel of consumers’ search behavior is not present in the model

of Armstrong and Zhou (2022). Therefore, the result becomes different. Moreover,

Claim B.3 in the online appendix shows that, as the search cost converges to zero,

the limit of the industry-optimal surplus and thus the total welfare (they are equal

by Proposition 4) is strictly bounded above by 1. This can be seen from the uniform

distribution example in Figure 6. However, as we have also mentioned above, Dogan

and Hu (2022) show that total welfare under the consumer-optimal design must in-

crease to 1 when the search cost converges to zero. Therefore, in a market with very

small search friction, it is the consumer-optimal design instead of the industry-optimal

design that leads to higher total welfare.

5 Equilibria in Mixed Strategies

In all the previous analysis, we have only considered pure strategy equilibria. Ob-

viously, this restriction automatically rules out those signal distributions that can

induce active search only in mixed strategies. Nonetheless, we show here that this re-

striction is immaterial to the optimal industry surplus. No industry surplus achieved

by a mixed strategy equilibrium under a feasible signal distribution can exceed the

optimal industry surplus from pure strategy equilibria.

We continue to focus on symmetric equilibria in which all the firms follow the
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same pricing strategy. As a result, consumers’ optimal stopping decision is still a

cutoff rule. Formally, a mixed strategy equilibrium with active search under signal

distribution G can be characterized by a pair (σ, v), where σ is the firms’ mixed

strategy over equilibrium signal cutoffs and v ≥ 0 is the consumer surplus as before.

Similarly as in Lemma 1, (σ, v) is an equilibrium if∫
supp(σ)

cG(b)dσ(b) = s, (9)

and, for all b ∈ supp(σ),

− (b− v)c′G(b−) ≥ −(x− v)c′G(x−), ∀x ∈ [v, 1], (10)

where supp(σ) is the support of σ. Condition (9) is a variant of condition (2). It states

that the average incremental gain from one more search is equal to the cost of one

more search.22 Condition (10) states that every equilibrium signal cutoff b ∈ supp(σ)

must be optimal for the firms. For each such b, condition (10) takes exactly the same

form as condition (3). This is because every firm is still competing with the consumers’

outside option v. The corresponding expected total welfare of this equilibrium is23

be =

∫
suppσ

(−c′G(b−))bdσ(b)∫
suppσ

(−c′G(b−))dσ(b)
, (11)

and thus the expected industry surplus is be − v.

The following result states that if a feasible signal distribution induces an equi-

librium in mixed strategies, then there exists another feasible signal distribution that

induces a pure strategy equilibrium with weakly higher industry surplus. In other

words, signal distributions that induce equilibria in mixed strategies can not lead to

22Given the firms’ mixed strategy σp over prices, consumers’ optimality condition requires

v = −s+

∫
supp(σp)

∫
[0,1]

max{q − p, v}dG(q)dσp(p).

Condition (9) is obtained by subtracting both sides by v and letting σ be the distribution of p+ v.
23The expected total welfare be can be calculated recursively by

be = −s+

∫ [
(1−G(b−))EG[q|q ≥ b] +G(b−)be

]
dσ(b)

= −s+

∫ [
cG(b) + (1−G(b−))b+G(b−)be

]
dσ(b)

=

∫ [
− c′G(b−)b+ (1 + c′G(b−))be

]
dσ(b),

where the last equality comes from equilibrium condition (9). It is then straightforward to obtain

(11).
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strictly higher industry surplus than the optimal one among those that induce pure

strategy equilibria.

Proposition 5. Suppose (σ, v) is a mixed strategy equilibrium under a feasible signal

distribution G. Let be be the equilibrium expected total welfare as defined in (11).

Then, there exist some a and b ≥ be such that ca,b,v ∈ U .

The proof of this proposition is involved and is in Online Appendix C. The basic

idea involves two major steps. In the first step, we show that the result of this proposi-

tion is true if σ only randomizes between two signal cutoffs. This is done by explicitly

constructing the desired ca,b,v. In the second step, we show that if the support of σ

contains more than two signal cutoffs, there must exist a new mixed strategy equilib-

rium under the same signal distribution in which the firms only randomize between

two signal cutoffs and the industry surplus is weakly higher. Combining these two

steps leads to the desired result.

6 Conclusion

This paper has studied the welfare effect of flexible information design in the consumer

search market. We constructed a class of conditional unit-elastic demand signal dis-

tributions and showed that this parametric class of signal distributions is rich enough

to achieve every equilibrium that can possibly arise under an arbitrary feasible sig-

nal distribution. The construction generalizes that in Roesler and Szentes (2017) by

incorporating an endogenous outside option and search incentives. The constructed

class of signal distributions extends that in Dogan and Hu (2022), which overcomes

the limitation that the signal distributions constructed in Dogan and Hu (2022) can

only be used to study the consumer-optimal design.

These signal distributions help us understand the welfare limit of the search mar-

ket. Contrary to the traditional wisdom that less search friction promotes competition

between firms, which would reduce the industry surplus, we show that the optimal

industry surplus in fact strictly increases as the search cost decreases as long as the

information can be adjusted flexibly as the search cost changes. Under certain reg-

ularity conditions on the true value distribution, we fully characterize the unique

industry-optimal signal distribution. Provided the search cost is not too low, the

industry-optimal signal distribution achieves the highest possible total welfare and

the industry extracts it all. When the search cost is really low, the industry-optimal
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signal distribution still leads to full surplus extraction by the industry but the total

welfare is not maximized.

An interesting avenue for future research would be to extend the current analysis

to the search market where there are only finitely many firms and the consumers’

search order is endogenous, as is studied in Zhou (2011) and Armstrong (2017). Such

a richer environment would allow us to address interesting questions such as how

market size affect the optimal design. Another related and promising question is

the design of the pre-match information that can be used to induce different search

orders of the consumers, like the one studied in Choi et al. (2018) under exogenous

information. We leave this direction of research for future study.

Appendix A Proofs for Section 3

Proof of Proposition 1. First, we show that every ca,b,v induces equilibrium (b, v).

Clearly, we have ca,b,v(b) = s by construction. Hence, equilibrium condition (2)

for the consumers’ search incentive is satisfied. For the firms’ pricing incentive in

condition (3), observe that if a firm sets cutoff x ∈ [b, x̄], its expected profits are

−c′a,b,v(x−)(x − v) = −h̄′(x)(x − v) = π
x−v (x − v) = π. Hence, no firm has an

incentive to deviate from cutoff b to any cutoff x ∈ (b, x̄]. If ca,b,v is type I, i.e.,

a ≤ v + π, deviating to cutoff a, or equivalently charging price a− v, yields demand

−c′a,b,v(a−) = 1. The resulting expected profits are thus (a−v)×1 ≤ π. Hence, no firm

has an incentive to deviate to this cutoff. From panel (a) of Figure 3, it is also clear

that deviating to cutoff x ∈ [0, 1]\({a}∪[b, x̄]) can not be profitable. This verifies that

(b, v) is an equilibrium when ca,b,v is type I. If ca,b,v is type II, setting cutoff x ∈ [v+π,
¯
x]

yields expected profits −c′a,b,v(x−)(x− v) = −
¯
h′(x)(x− v) = π

x−v (x− v) = π. Hence,

no firm has an incentive to deviate to any cutoff x ∈ [v + π,
¯
x]. From panel (b) of

Figure 3, it is also clear that deviating to cutoff x ∈ [0, 1]\([v + π,
¯
x] ∪ [b, x̄]) can not

be profitable. This verifies that (b, v) is an equilibrium if ca,b,v is type II too.

Next, suppose (b, v) is an equilibrium under a feasible signal distribution G. Let

a ≡ EG[q|q < b]. Consider ca,b,v. Recall that we construct ρ = µ−s−a
b−a and π = ρ(b−v).

Observe that

ρ =
µ− s− a
b− a

=
µ− cG(b)− EG[q|q < b]

b− EG[q|q < b]
= 1−G(b−) = −c′G(b−).

That is, the constructed ρ is just the probability of trade of the equilibrium under G.

This implies that the constructed π is also the expected profits of each matched firm
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Figure 7: Proof of Proposition 1

in the equilibrium under G, and that ` by construction is just the left tangent line of

cG at b. For any x ∈ [b, 1],

h̄(x) = h̄(b) +

∫ x

b

h̄′(x̃)dx̃ = s−
∫ x

b

π

x̃− v
dx̃ ≤ s+

∫ x

b

c′G(x̃−)dx̃ = cG(x),

where the inequality comes from the firms’ pricing incentive in the equilibrium under

G: −c′G(x̃)(x̃− v) ≤ π for all x̃. Hence, we know ca,b,v(x) ≤ cG(x) for all x ∈ [b, 1].

If ca,b,v is type I, we immediately know that ca,b,v(x) ≤ cG(x) for all x ∈ [0, b]

as well, because ca,b,v coincides with the lower bound cF0 over [0, a] and is the left

tangent of cG over [a, b]. Therefore, ca,b,v ≤ cG ≤ cF , implying that ca,b,v ∈ U . See

panel (a) of Figure 7 for an illustration.

If ca,b,v is type II, we have for any x ∈ [v + π, b],

¯
h(x) =

¯
h(v + π) +

∫ x

v+π ¯
h′(x̃)dx̃ = cF0(v + π)−

∫ x

v+π

π

x̃− v
dx̃

≤cG(v + π) +

∫ x

v+π

c′G(x̃−)dx̃ = cG(x),

where the inequality comes from cF0 ≤ cG and −c′G(x̃)(x̃ − v) ≤ π for all x̃ again.

This implies that
¯
h(b) ≤ cG(b) = s and ca,b,v(x) ≤ cG(x) for all x ∈ [0, b]. Therefore,

ca,b,v ∈ U . See panel (b) of Figure 7 for an illustration.

Proof of Lemma 3. Corollary 1 and its proof (Claim A.2 in the online appendix) in

Dogan and Hu (2022) show that there exists s̄ ∈ (0, µ) such that the following three

statements are equivalent: (i) (F, s) admits active search; (ii) cs0,µ−s,0 ∈ CF ; and (iii)

s ∈ (0, s̄]. Thus, in fact, we can give an expression of s̄: s̄ = max{s | cs0,µ−s,0 ∈ CF}.
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Appendix B Proof of Proposition 2

Proof of Proposition 2. To avoid confusion, we explicitly add superscript s and write

csa,b,v to mean that this incremental benefit function is constructed for search cost s.

We also add s as an explicit argument to both
¯
h and h̄.

Consider 0 < s′ < s ≤ s̄. To show the desired result, it suffices to show that if csa,b,v
is feasible, then cs

′

a,b′,v is also feasible, where b′ = b + (s−s′)(b−a)
(µ−s−a)

. Figure 8 illustrates

how this b′ is obtained. It is the intersection of the horizontal line of value s′ and the

extension of the straight line segment connecting (a, µ− a) and (b, s).

By construction, the equilibrium probabilities of trade under csa,b,v and cs
′

a,b′,v are the

same in their respective markets: ρ = b−a
µ−s−a = b′−a

µ−s′−a . Let π = ρ(b− v) (respectively,

π′ = ρ(b′ − v)) be each firm’s expected profits under csa,b,v (respectively, cs
′

a,b′,v) in

the market with search cost s (respectively, s′). Clearly π′ > π. Recall that `(x) =

s − ρ(x − b). It can also be written as `(x) = s′ − ρ(x − b′). For any x ∈ [b, b′], we

have `(x) ≤ h̄(x; a, b, v, s). For x ∈ [b′, 1], we have

h̄(x; a, b′, v, s′) = s′ −
∫ x

b′

π′

x̃− v
dx̃ ≤ h̄(b′; a, b, v, s)−

∫ x

b′

π

x̃− v
dx̃ = h̄(x; a, b, v, s),

where the inequality comes from `(b′) = s′ ≤ h̄(b′; a, b, v, s) and π′ > π. Therefore,

cs
′

a,b′,v ≤ csa,b,v over [b, 1].

If csa,b,v is type I, we know cs
′

a,b′,v is type I too, since v + π′ > v + π ≥ a. Because

they coincide over [0, b], above analysis immediately implies that cs
′

a,b′,v ≤ csa,b,v over the

whole interval [0, 1]. Therefore, cs
′

a,b′,v is feasible. This case is illustrated in Figure 8.

The blue curve represents the given csa,b,v, while the red curve is the newly constructed

cs
′

a,b′,v.
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If csa,b,v is type II and cs
′

a,b′,v is type I, then cs
′

a,b′,v(x) = `(x) ≤ max{
¯
h(x; a, b, v, s), `(x)} =

csa,b,v(x) for x ∈ [a, b]. Therefore, cs
′

a,b′,v ≤ csa,b,v, implying that cs
′

a,b′,v is feasible too.

Finally, if both csa,b,v and cs
′

a,b′,v are type II, we have, for all x ∈ [π′ + v, b],

¯
h(x; a, b′, v, s′) = µ− π′ − v −

∫ x

π′+v

π′

x̃− v
dx̃

≤
¯
h(π′ + v; a, b, v, s)−

∫ x

π′+v

π

x̃− v
dx̃ =

¯
h(x; a, b, v, s),

where the inequality comes from µ − π′ − v ≤
¯
h(π′ + v; a, b, v, s) and π′ > π. Thus,

cs
′

a,b′,v(x) = max{
¯
h(x; a, b′, v, s′), `(x)} ≤ max{

¯
h(x; a, b, v, s), `(x)} = csa,b,v(x) for all

x ∈ [π′ + v, b]. Therefore, cs
′

a,b′,v ≤ csa,b,v, implying that cs
′

a,b′,v is feasible as well.

Appendix C Proof of Lemma 4

For any b, let ρ(b) ≡ µ−s−a(b)
b−a(b)

be the highest feasible probability of trade for b. We

will also use this notation in later proofs.

Proof. Let π ≡ (b − v)µ−s−a
b−a be each firm’s expected profits under ca,b,v and π′ ≡

(b − v)ρ(b) be those under ca(b),b,v. Because ρ(b) ≥ µ−s−a
b−a by definition, π′ ≥ π.

Hence, for all x ∈ [b, 1],

h̄(x; a(b), b, v) = s− π′ log
x− v
b− v

< s− π log
x− v
b− v

= h̄(x; a, b, v) ≤ cF (x), (12)

where the last inequality comes from the feasibility of ca,b,v.

On the one hand, if π′ + v ≥ a(b), we know that ca(b),b,v is type I. Inequality (12)

then implies the feasibility of ca(b),b,v. On the other hand, if π′ + v < a(b), we know

π+ v ≤ π′+ v < a(b) ≤ a, implying that both ca,b,v and ca(b),b,v are type II. Moreover,

for all x ∈ [π′ + v, b],

¯
h(x; a(b), b, v) = µ−π′−v−π′ log

x− v
π′

< µ−π−v−π log
x− v
π

=
¯
h(x; a, b, v). (13)

Because ca,b,v is feasible, we then know
¯
h(x; a(b), b, v) ≤ cF (x) for x ∈ [π′ + v, b] and

¯
h(b; a(b), b, v) ≤ s. These inequalities, together with (12), imply the feasibility of

ca(b),b,v.

Notice that this result holds for general value distribution F .

31



Appendix D Proof of Proposition 3

D.1 General properties of feasibility

In this subsection, we provide some general properties of feasibility that do not rely

on the increasing hazard rate assumption. These properties will also be used in later

analysis.

The following claim lists some simple properties of a(b) that will be used frequently

in the following analysis.

Claim 1. (i) For every b, there exists a unique x̂ ∈ [0, b] such that the straight line

`(x) ≡ s− ρ(b)(x− b) is tangent to cF at x̂.

(ii) a(b) is increasing, while ρ(b) and bρ(b) are decreasing.

(iii) a(b̄) = E[q|q < b̄] and ρ(b̄) = 1− F (b̄−).

Proof. All the results are obvious from Figure 9, and thus the details are omitted.

x

µ

µ

s

s+ b1ρ(b1)

s+ b2ρ(b2)

a(b1)a(b2) b1 b2

Figure 9: Proof of Claim 1

Claim 2. For any s ∈ (0, s̄], ca(b̂),b̂,0 is feasible if one of the following two conditions

is satisfied:

(i) it is type I;

(ii) it is type II and
¯
h(x; a(b̂), b̂, 0) ≤ cF (x) for all x ∈ [π, b̂], where π = b̂ρ(b̂).

Proof. Because b̂ is an achievable level of total welfare, there exist some a and v

such that ca,b̂,v is feasible. By Lemma 4, we know ca(b̂),b̂,v is feasible. Hence, for any
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x ∈ [b̂, 1],

h̄(x; a(b̂), b̂, 0) = s−
∫ x

b̂

b̂ρ(b̂)

t
dt ≤ s−

∫ x

b̂

(b̂− v)ρ(b̂)

t− v
dt = h̄(x; a(b̂), b̂, v) ≤ cF (x).

(14)

If ca(b̂),b̂,0 is type I, (14) implies that it is feasible. This proves part (i). For

part (ii), suppose ca(b̂),b̂,0 is type II, and
¯
h(x; a(b̂), b̂, 0) ≤ cF (x) for x ∈ [π, b̂]. For

ca(b̂),b̂,0 to be feasible, we only need to verify
¯
h(b̂; a(b̂), b̂, 0) ≤ s. If b̂ = b̄, this clearly

holds, since cF (b̄) = s. Assume b̂ < b̄. By part (i) of Claim 1, the straight line `(x) ≡
s−ρ(b̂)(x−b̂) intersects cF at some x̂ ∈ (a(b̂), b̂) ⊂ [π, b̂]. Hence

¯
h(x̂; a(b̂), b̂, 0) ≤ `(x̂).

Consequently,

¯
h(b̂; a(b̂), b̂, 0) =

¯
h(x̂; a(b̂), b̂, 0)−

∫ b̂

x̂

b̂ρ(b̂)

t
dt < `(x̂)−

∫ b̂

x̂

ρ(b̂)dt = `(b̂) = s,

proving part (ii).

D.2 (In)feasibility of ca(b̂),b̂,0

In this and the next subsections, we maintain the assumption that F has a continuous

and strictly positive density f with increasing hazard rate. This subsection charac-

terizes the (in)feasibility of ca(b̂),b̂,0 for different search costs. The next section proves

the uniqueness of the optimal signal distribution.

Claim 3. Equation (8) has a unique solution s̃ ∈ (0, µ). Moreover,

(i)
¯
h(b̄; a(b̄), b̄, 0) ≤ s if and only if s ≥ s̃; and

(ii) if s < s̃, then both b̄ > 1−F (b̄)

f(b̄)
and b̄(1− F (b̄)) < E[q|q < b̄] hold.

Proof. Define φ : [0, 1]→ R as φ(x) ≡ x(1−F (x))[1− log(1− F (x))]+cF (x)−µ. It is

easy to calculate φ′(x) = f(x) log(1−F (x))
[
x− 1−F (x)

f(x)

]
. Because 1−F (x)

f(x)
is decreasing,

there exists a unique x̂ ∈ (0, 1) such that x̂ = 1−F (x̂)
f(x̂)

. Moreover, x < 1−F (x)
f(x)

if x < x̂,

and x > 1−F (x)
f(x)

if x > x̂. Therefore, φ′(x) > 0 if x < x̂ and φ′(x) < 0 if x > x̂. Because

φ(0) = 0, we know φ(x) > 0 if x ≤ x̂. Because φ(1) = −µ < 0, we know there exists a

unique x̃ ∈ (x̂, 1) such that φ(x̃) = 0. Then, s̃ ≡ cF (x̃) is the unique positive solution

to (8). When s ≥ s̃, the corresponding b̄ satisfies b̄ ≤ x̃. By the above analysis,

we know φ(b̄) ≥ 0. Using part (iii) of Claim 1, we observe that this inequality is

equivalent to
¯
h(b̄; a(b̄), b̄, 0) ≤ s. Similarly, when s < s̃, we have

¯
h(b̄; a(b̄), b̄, 0) > s.

This proves part (i).
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Suppose s < s̃. The corresponding b̄ satisfies b̄ > x̃ > x̂. Thus, b̄ > 1−F (b̄)

f(b̄)
. For

the second inequality, define η : [0, 1] → R as η(x) ≡ x(1 − F (x))F (x) −
∫ x

0
tf(t)dt.

With some algebra, we can write η(x) = x(1−F (x))(1 +F (x)) + cF (x)−µ. Because

1 +F (x) < 1− log(1−F (x)) for x ∈ (0, 1), we know φ(x) > η(x) for x ∈ (0, 1). This

implies that η(x) < 0 if x > x̃. Consequently, η(b̄) < 0, since b̄ > x̃. Equivalently,

b̄(1− F (b̄)) < E[q|q < b̄]. This proves part (ii).

Claim 4. For any s ∈ [s̃, s̄], ca(b̂),b̂,0 is feasible.

Proof. We discuss two cases.

Case (i): b̄(1− F (b̄)) ≥ E[q|q < b̄].

By part (iii) of Claim 1, we can write b̄(1 − F (b̄)) ≥ E[q|q < b̄] as b̄ρ(b̄) ≥ a(b̄).

By part (ii) of Claim 1 and the fact that b̂ ≤ b̄, we know a(b̂) ≤ a(b̄) ≤ b̄ρ(b̄) ≤ b̂ρ(b̂).

Therefore, ca(b̂),b̂,0 is type I, and hence is feasible by Claim 2.

Case (ii): b̄(1− F (b̄)) < E[q|q < b̄].

Let π ≡ b̄ρ(b̄) for short. We have π < a(b̄). We first show
¯
h(x; a(b̄), b̄, 0) ≤

cF (x) for all x ∈ [π, b̄]. When x = π, we know
¯
h(π; a(b̄), b̄, 0) = µ − π < cF (π),

where the strict inequality comes from full support of F . Suppose, by contradiction,

¯
h(x̃; a(b̄), b̄, 0) > cF (x̃) for some x̃ ∈ (π, b̄]. Then, there must exist x̂ ∈ [π, x̃) such that

¯
hx(x̂; a(b̄), b̄, 0) > c′F (x̂). That is, −π

x̂
> −(1−F (x̂)), or equivalently π < x̂(1−F (x̂)).

Because 1−F (x)
f(x)

is decreasing, we know π < x(1−F (x)) for all x ∈ [x̂, b̄). Equivalently,

¯
hx(x; a(b̄), b̄, 0) > c′F (x) for all x ∈ [x̂, b̄). This implies

¯
h(b̄; a(b̄), b̄, 0) =

¯
h(x̃; a(b̄), b̄, 0)+∫ b̄

x̃ ¯
h(x; a(b̄), b̄, 0)dx > cF (x̃) +

∫ b̄
x̃
c′F (x)dx = cF (b̄). But this contradicts part (i) of

Claim 3, because s ≥ s̃. Therefore, we must have
¯
h(x; a(b̄), b̄, 0) ≤ cF (x) for x ∈ [π, b̄].

If b̂ = b̄, then ca(b̂),b̂,0 is type II. The above analysis and Claim 2 guarantee that

it is feasible. Assume b̂ < b̄. If ca(b̂),b̂,0 is type I, we know it is feasible by Claim

2. Suppose it is type II. Let π′ ≡ b̂ρ(b̂). By part (ii) of Claim 1, we have π′ ≥ π.

Therefore, for any x ∈ [π′, b̂] ⊂ [π, b̄], we have

¯
h(x; a(b̂), b̂, 0) = µ− π′ − π′ log

x

π′
≤ µ− π − π log

x

π
=

¯
h(x; a(b̄), b̄, 0) ≤ cF (x).

By Claim 2, ca(b̂),b̂,0 is feasible.

Claim 5. For every s ∈ (0, s̃), ca(b̂),b̂,0 is not feasible.

Proof. By part (ii) of Claim 3, we know b̂ = b̄ and ca(b̄),b̄,0 is type II. Part (i) of Claim

3 then implies that ca(b̄),b̄,0 is not feasible.
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D.3 Uniqueness

Claim 6. Suppose s ∈ [s̃, s̄] and b̂ < b̄.

(i) If ca(b̂),b̂,0 is type I, at least one of the feasibility constraints h̄(x; a(b̂), b̂, 0) ≤
cF (x) for x ∈ [b̂, 1] must be binding.

(ii) If ca(b̂),b̂,0 is type II, at least one of the feasibility constraints h̄(x; a(b̂), b̂, 0) ≤
cF (x) for x ∈ [b̂, 1] and

¯
h(x; a(b̂), b̂, 0) ≤ cF (x) for x ∈ [b̂ρ(b̂), b̂] must be binding.

Proof. Part (i): ca(b̂),b̂,0 is type I.

Suppose, by contradiction, h̄(x; a(b̂), b̂, 0) < cF (x) for all x ∈ [b̂, 1]. By uniform

continuity, there exists b1 ∈ (b̂, b̄] such that for all b ∈ [b̂, b1], h̄(x; a(b), b, 0) ≤ cF (x)

for all x ∈ [b, 1].

If b̂ρ(b̂) > a(b̂), we can choose b ∈ (b̂, b1) such that bρ(b) > a(b). This implies that

ca(b),b,0 is type I and is feasible. This contradicts the fact that b̂ is the highest possible

level of total welfare.

Suppose now that b̂ρ(b̂) = a(b̂). Note that for any b > b̂, we know bρ(b) < b̂ρ(b̂) =

a(b̂) < a(b) by part (ii) of Claim 1. Hence ca(b),b,0 is type II. Pick x1 ∈ (0, b̂ρ(b̂)). Pick

b2 ∈ (b̂, b1] such that b2ρ(b2) ≥ x1. Consider the function κ : [x1, b2]× [b̂, b2]→ R as

κ(x, b) ≡

µ− x, if x1 ≤ x ≤ bρ(b),

¯
h(x; a(b), b, 0), if bρ(b) < x ≤ b2.

Consider b = b̂. Because F has full support, we have κ(x, b̂) = µ − x < cF (x) for

x ∈ [x1, b̂ρ(b̂)]. For x ∈ (b̂ρ(b̂), b2], we have κ(x, b̂) =
¯
h(x; a(b̂), b̂, 0) < s − ρ(b̂)(x −

b̂) ≤ cF (x). This implies that κ(x, b̂) < cF (x) for all x ∈ [x1, b2] and κ(x, b̂) < s

for all x ∈ [b̂, b2]. By uniform continuity of κ, we know there exists b ∈ (b̂, b2]

such that κ(x, b) ≤ cF (x) for all x ∈ [x1, b2] and κ(b, b) < s. Therefore, we have

¯
h(x; a(b), b, 0) ≤ cF (x) for x ∈ [bρ(b), b] ⊂ [x1, b2] and

¯
h(b; a(b), b, 0) ≤ s. Because

b ≤ b1, we also know h̄(x; a(b), b, 0) ≤ cF (x) for x ∈ [b, 1] from the above analysis.

Therefore, ca(b),b,0 is feasible. This again contradicts the assumption that b̂ is the

highest possible level of total welfare.

Part (ii): ca(b̂),b̂,0 is type II.

Applying a similar argument as in part (i) for the case b̂ρ(b̂) = a(b̂), we can show

that if none of the feasibility constraints is binding, then there must exist b > b̂ such

that ca(b),b,0 is feasible. This again contradicts the definition of b̂.
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Claim 7. For s ∈ [s̃, s̄], ca(b̂),b̂,0 is the unique industry-optimal signal distribution in

U .

Proof. Because ca(b̂),b̂,0 is feasible by Claim 4 and the industry obtains the highest

possible surplus in this market, it is clear that ca(b̂),b̂,0 is industry-optimal. To show

that it is the unique industry-optimal one in U , we only need to verify that ca,b̂,0 is

not feasible for any a > a(b̂). We discuss two cases.

Case (i): b̂ = b̄.

Consider any a < a(b̄). We have

h̄x(b̄; a, b̄, 0) = −
b̄µ−s−a

b̄−a

b̄
= −µ− s− a

b̄− a
> −ρ(b̄) = −(1− F (b̄)) = c′F (b̄).

Because F is continuous, we have h̄x(x; a, b̄, 0) > c′F (x) over some interval [b̄, x̂].

Because h̄(b̄; a, b̄, 0) = cF (b̄), we have h̄(x; a, b̄, 0) > cF (x) for x ∈ (b̄, x̂]. This shows

that ca,b̄,0 is not feasible.

Case (ii): b̂ < b̄.

Suppose ca(b̂),b̂,0 is type I. By Claim 6, there exists x̂ ∈ [b̂, 1] such that h̄(x̂; a(b̂), b̂, 0) =

cF (x̂). By the same argument as in (12), we know h̄(x̂; a, b̂, 0) > h̄(x̂; a(b̂), b̂, 0) =

cF (x̂) for a > a(b̂), showing that ca,b̂,0 is not feasible for any a > a(b̂).

Suppose ca(b̂),b̂,0 is type II. If there exists x̂ ∈ [b̂, 1] such that h̄(x̂; a(b̂), b̂, 0) = cF (x̂),

then using the same argument as above, we know ca,b̂,0 is not feasible for any a > a(b̂).

If there is no such x̂, we know there exists x̃ ∈ [b̂ρ(b̂), b̂] such that
¯
h(x̃; a(b̂), b̂, 0) =

cF (x̃) by Claim 6. For any a > a(b̂), we know b̂µ−s−a
b̂−a < b̂ρ(b̂) < a(b̂) < a. Hence, ca,b̂,0

is type II. By the same argument as in (13), we know
¯
h(x̃; a, b̂, 0) >

¯
h(x̃; a(b̂), b̂, 0) =

cF (x̃), showing that ca,b̂,0 is not feasible.

Claims 4, 5, and 7 together prove Proposition 3.

Appendix E Proof of Proposition 4

In this section, we maintain the assumption that density f is increasing. The proof

of Proposition 4 requires a series of claims.

Claim 8. For all x ∈ [0, 1], µ(1− F (x))2 ≥ cF (x).
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Proof. Define φ(x) ≡ µ(1 − F (x))2 − cF (x). Note that φ(0) = φ(1) = 0. Because f

is increasing and φ′(x) = 2µ(1− F (x))( 1
2µ
− f(x)), we know φ is increasing first and

then decreasing. Therefore, φ(x) ≥ 0, or equivalently µ(1− F (x))2 ≥ cF (x).

Claim 9. Consider s ∈ (0, µ). The maximal feasible probability of trade function ρ(b)

is differentiable. Moreover, for any b ∈ (µ− s, b̄), we have (µ− s)ρ′(b) + 1 < 0.

Proof. By part (i) of Claim 1, for any b ∈ (µ − s, b̄), the straight line `(x) ≡ s −
ρ(b)(x−b) is tangent to cF at some x(b) ∈ (0, b̄). Therefore, we have ρ(b) = −c′F (x(b))

and for all b,

c′(x(b))(b− x(b)) + c(x(b)) = s.

Because f is continuous, by the implicit function theorem, we know x(b) is differen-

tiable and

x′(b) =
c′F (x(b))2

c′′F (x(b))(cF (x(b))− s)
.

Because ρ(b) = −c′F (x(b)), we know ρ(b) is differentiable too. Moreover,

ρ′(b) = −c′′F (x(b))x′(b) = − c′F (x(b))2

cF (x(b))− s
≤ − cF (x(b))

µ(cF (x(b))− s)
,

where the inequality comes from Claim 8. Consequently,

(µ− s)ρ′(b) + 1 ≤ −(µ− s)cF (x(b))

µ(cF (x(b))− s)
+ 1 =

s(cF (x(b))− µ)

µ(cF (x(b))− s)
< 0.

Claim 10. Suppose s ∈ (0, s̃). Let b̃ be the largest b ∈ [µ − s, b̄] such that ca(b),b,0 is

feasible. Then ca(b̃),b̃,0 is type II. Moreover, at least one of the feasibility constraints

¯
h(x; a(b̃), b̃, 0) ≤ cF (x) for x ∈ [b̃ρ(b̃), b̃] is binding.

Proof. By Proposition 3, we know b̃ < b̂ = b̄. If ca(b̃),b̃,0 is type I, we can apply the

same argument as in the proof of Claim 6 to show that there must exist b′ ∈ (b̃, b̄]

such that either ca(b′),b′,0 is type I or it is type II and
¯
h(x; a(b′), b′, 0) ≤ cF (x) for

x ∈ [b′ρ(b′), b′]. By Claim 2, such ca(b′),b′,0 is feasible. This contradicts the assumption

that b̃ is the largest b ∈ [µ− s, b̄] such that ca(b),b,0 is feasible. Hence, ca(b̃),b̃,0 is type

II.

We can then apply the same argument again as in the proof of Claim 6 to show

that, if none of the feasibility constraints
¯
h(x; a(b̃), b̃, 0) ≤ cF (x) for x ∈ [b̃ρ(b̃), b̃]

is binding, then there exists b′ ∈ (b̃, b̄] such that
¯
h(x; a(b′), b′, 0) ≤ cF (x) for x ∈

[b′ρ(b′), b′]. By Claim 2, ca(b′),b′,0 is feasible. This contradicts again the definition of

b̃.
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Proof of Proposition 4. To show the optimality of ca(b̃),b̃,0, we need to verify that there

is no a ∈ [0, µ− s), b ∈ (b̃, b̄] and v ∈ [0, b− b̃] such that ca,b,v is feasible. By Lemma

4, it suffices to show that, for any b ∈ (b̃, b̄] and v ∈ [0, b− b̃], ca(b),b,v is not feasible.

Because (µ − s)ρ′(b) + 1 < 0 by Claim 9, ρ′(b) < 0 and b̃ ≥ µ − s, we know

b̃ρ′(b) + 1 < 0. Thus, for any b ∈ (b̃, b̄], we know b̃ρ(b) + (b− b̃) < b̃ρ(b̃) < a(b̃) < a(b),

where the second inequality comes from the fact that ca(b̃),b̃,0 is type II by Claim 10

and the last inequality comes from part (ii) of Claim 1. This implies that ca(b),b,b−b̃ is

type II.

Let x̂ ∈ [b̃ρ(b̃), b̃] be such that
¯
h(x̂; a(b̃), b̃, 0) = cF (x̂). Its existence is claimed by

Claim 10. Note that for any b > b̃, x̂ ∈ [b̃ρ(b̃), b̃] ⊂ [b̃ρ(b) + (b − b̃), b]. Thus, x̂ is

in the relevant domain of
¯
h( · ; a(b), b, b− b̃). Holding x̂ and b̃ fixed, the derivative of

b 7→
¯
h(x̂; a(b), b, b− b̃) is

b̃ρ(b)

x̂− (b− b̃)
− 1− b̃ρ′(b) log

x̂− (b− b̃)
b̃ρ(b)

.

As above, since b̃ρ′(b) + 1 < 0, we know −b̃ρ′(b) > 1. Hence, we have

b̃ρ(b)

x̂− (b− b̃)
− 1− b̃ρ′(b) log

x̂− (b− b̃)
b̃ρ(b)

>
b̃ρ(b)

x̂− (b− b̃)
− 1 + log

x̂− (b− b̃)
b̃ρ(b)

> 0.

This implies that
¯
h(x̂; a(b), b, b− b̃) >

¯
h(x̂; a(b̃), b̃, 0) = cF (x̂) for all b ∈ (b̃, b̄]. There-

fore, ca(b),b,b−b̃ is not feasible for any b ∈ (b̃, b̄].

Next, consider any b ∈ (b̃, b̄] and v ∈ [0, b− b̃). Clearly, we have (b− v)ρ(b) + v =

bρ(b) + (1− ρ(b))v < bρ(b) + (1− ρ(b))(b− b̃) = b̃ρ(b) + (b− b̃) < a(b). Hence, ca(b),b,v

is type II. Consider x̂ again. We have

¯
h(x̂; a(b), b, v) =

¯
h(b̃ρ(b) + (b− b̃); a(b), b, v) +

∫ x̂

b̃ρ(b)+(b−b̃)
−(b− v)ρ(b)

t− v
dt

>
¯
h(b̃ρ(b) + (b− b̃); a(b), b, b− b̃) +

∫ x̂

b̃ρ(b)+(b−b̃)
−(b− (b− b̃))ρ(b)

t− (b− b̃)
dt

=
¯
h(x̂; a(b), b, b− b̃) > cF (x̂),

proving that ca(b),b,v is not feasible for any v ∈ [0, b− b̃).
Finally, for the uniqueness, we only need to show that ca,b̃,0 is not feasible for any

a > a(b̃). This can be done by a similar argument as in the proof of Claim 7.
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Online Appendix
Ju Hu

Dec 14, 2022

Online Appendix A Achievable equilibria and wel-

fare

Based on Proposition 1, we can characterize the set of all equilibria that can arise

under any arbitrary feasible signal distribution using conditional unit-elastic demand

signal distributions. In this section, we provide some properties about this set. These

results can potentially be used to explore a wide range of welfare objectives in this

search market, such as the weighted average of the consumer and industry surplus.

Claim A.1. The set of all achievable equilibria is compact.

Proof. It is routine to check that

K ≡
{

(b, v)
∣∣ b ∈ [µ− s, b̄], v ∈ [0, b), and ca(b),b,v is feasible

}
is compact. We omit the details. By Lemma 4, we know the set of all achievable

equilibria is compact.

The next claim shows the interval structure of achievable total welfare and surplus

division.

Claim A.2. (i) The set of all achievable total welfare is an interval [µ − s, b̂] for

some b̂ ∈ [µ− s, b̄].

(ii) For each achievable b ∈ [µ − s, b̂], there exist
¯
v < v̄ such that (b, v) is an

equilibrium if and only if v ∈ [
¯
v, v̄].

Proof. Part (i): We show that if ca,b,v with b > µ − s is feasible then for all b′ ∈
[µ− s, b), there exists v′ such that ca,b′,v′ is also feasible. Fix b′ ∈ [µ− s, b). If a ≤ v,

then Claim A.2 in the online appendix of Dogan and Hu (2022) shows that ca,b′,a is

feasible. Assume v < a. Note ca,b′,v is well-defined, i.e., a ∈ [0, µ− s), b′ ∈ [µ− s, b̄]
and v ∈ [0, b′). We proceed to show that ca,b′,v is feasible. Let π = µ−s−a

b−a (b− v) and

π′ = µ−s−a
b′−a (b′ − v). Because v < a, we have π′ > π. For all x ∈ [b, 1], we have

h̄(x; a, b′, v) = h̄(b; a, b′, v)−
∫ x

b

π′

x̃− v
dx̃ < h̄(b; a, b, v)−

∫ x

b

π

x̃− v
dx̃ = h̄(x; a, b, v),
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where the inequality comes from h̄(b; a, b′, v) < h̄(b′; a, b′, v) = s and π′ > π. Let

`(x) = s − µ−s−a
b−a (x − b) and `′(x) = s − µ−s−a

b′−a (x − b′). We know `′(x) ≤ `(x) for

all x ≥ a. Therefore, if ca,b′,v is type I, it is feasible regardless of whether ca,b,v

is type I or II. If ca,b′,v is type II, we know ca,b,v is type II too. Moreover, for all

x ∈ [v + π′, b′] ⊂ [v + π, b], we have

¯
h(x; a, b′, v) =

¯
h(v + π′; a, b′, v)−

∫ x

v+π′

π′

x̃− v
dx̃

<
¯
h(v + π′; a, b, v)−

∫ x

v+π′

π

x̃− v
dx̃ =

¯
h(x; a, b, v),

where the inequality comes from (i)
¯
h(v+π′; a, b′, v) <

¯
h(v+π′; a, b, v) and (ii) π′ > π.

Therefore, in this case, ca,b′,v is also feasible.

Part (ii): Suppose ca1,b,v1 and ca2,b,v2 are feasible. Assume v1 < v2. We show

that ca(b),b,v is feasible for every v ∈ [v1, v2]. By Lemma 4, we know that both

ca(b),b,v1 and ca(b),b,v2 are feasible. Because v ≤ v2, it is easy to see h̄(x; a(b), b, v) ≤
h̄(x; a(b), b, v2) ≤ cF (x) for all x ∈ [b, 1]. If ca(b),b,v is of type I, it is then feasible.

Suppose it is of type II. Because v+ ρ(b)(b− v) ≥ v1 + ρ(b)(b− v1), we know ca(b),b,v1

is of type II too. We have, for all x ∈ [v + ρ(b)(b− v), b],

¯
h(x; a(b), b, v) =

¯
h(v + ρ(b)(b− v); a(b), b, v)−

∫ x

v+ρ(b)(b−v)

ρ(b)(b− v)

x̃− v
dx̃

≤
¯
h(v + ρ(b)(b− v); a(b), b, v1)−

∫ x

v+ρ(b)(b−v)

ρ(b)(b− v1)

x̃− v1

dx̃ =
¯
h(x; a(b), b, v1),

where the inequality comes from (i)
¯
h(v + ρ(b)(b − v); a(b), b, v) ≤

¯
h(v + ρ(b)(b −

v); a(b), b, v1) and (ii) b−v
x̃−v ≥

b−v1
x̃−v1 since v ≥ v1 and x̃ ≤ b. Therefore, ca(b),b,v is also

feasible in this case.

The last claim is about comparative statics of the highest achievable total welfare

with respect to the value distribution and search cost.

Claim A.3. For fixed s, b̂ is increasing in F with respect to the mean preserving

spread order. For fixed F , b̂ is strictly decreasing in search cost s.

Proof. For the first statement, simply observe that cF ⊂ cF ′ if F ′ is a mean preserving

spread of F . The second statement is proved in the proof of Proposition 2.

Figure A.1 illustrates the welfare limit for different search costs when the value

distribution is uniform. In each panel, the horizontal axis represents the consumer

surplus, while the vertical axis represents the industry surplus. Panels (a) - (c)
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Figure A.1: The welfare limit of uniform value distribution
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illustrate the welfare limit for s = 0.01, s = 0.1 and s = 0.15 respectively. In each of

these panels, each point in the blue area represents a combination of consumer and

industry surplus that can be achieved by some signal distribution. Point A represents

the one that yields the highest consumer surplus, while B is the one that yields the

highest industry surplus. The two dashed lines are downward-sloping-45-degree lines.

The lower one indicates the lowest possible total welfare, i.e., v+p = µ−s. The higher

one indicates the highest possible total welfare, i.e., v+p = b̂. Note that, for all three

search costs, the industry extracts all the equilibrium surplus under the industry-

optimal signal distribution, leaving the consumers zero surplus, as Propositions 3 and

4 assert. But when s = 0.01, the industry-optimal signal distribution does not achieve

the highest possible total welfare, as Proposition 4 claims. Panel (d) nests the first

three panels. It becomes clear that the achievable welfare moves toward the origin as

the search cost increases. This is because both the lower bound µ− s and the upper

bound b̂ decrease in search cost, as Claim A.3 states.

Online Appendix B Supplemental materials for value

distributions with increasing

hazard rate

In this section, we provide three supplemental results when the value distribution has

a continuous and positive density with increasing hazard rate.

Claim B.1. We have s̄ > ŝ.

Proof. We add s to h̄ as an argument and write h̄(x; a, b, v, s) for clarity. Let b̄ be

such that b̄ = 1−F (b̄)

f(b̄)
. By definition, cF (b̄) = ŝ, and cŝ

a(b̄),b̄,0
≤ cF by Proposition 1.

For x ∈ [b̄, 1], we have

h̄(x; 0, µ− ŝ, 0, ŝ) = h̄(b̄; 0, µ− ŝ, 0, ŝ)−
∫ x

b̄

µ− ŝ
x̃

dx̃ < ŝ−
∫ x

b̄

b̄(1− F (b̄))

x̃
dx̃

= h̄(b̄; a(b̄), b̄, 0, ŝ)−
∫ x

b̄

b̄(1− F (b̄))

x̃
dx̃ = h̄(x; a(b̄), b̄, 0, ŝ) ≤ cF (x),

where the strict inequality comes from (i) h̄(µ− ŝ; 0, µ− ŝ, 0, ŝ) = ŝ and h̄ is decreasing

in x and (ii) µ−ŝ = cF (0)−cF (b̄) =
∫ b̄

0
(1−F (x̃))dx̃ > b̄(1−F (b̄)). For x ∈ [µ−ŝ, b̄), we

have h̄(x; 0, µ− ŝ, 0, ŝ) ≤ ŝ < cF (x). Thus, by uniform continuity, there exists s′ > ŝ

such that for all s ∈ [ŝ, s′], we have h̄(x; 0, µ − s, 0, s) ≤ cF (x) for all x ∈ [µ − ŝ, 1].
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Define κ(x, s) : [µ− s′, µ− ŝ]× [ŝ, s′]→ R as

κ(x, s) =

µ− x, if x ∈ [µ− s′, µ− s],

h̄(x; 0, µ− s, 0, s), if x ∈ [µ− s, µ− ŝ].

Because f is positive, we know κ(x, ŝ) = µ − x < cF (x) for all x ∈ [µ − s′, µ − ŝ].
By uniform continuity of κ, there exists s′′ ∈ (ŝ, s′] such that for all s ∈ (ŝ, s′′),

κ(x, s′′) ≤ cF (x) for all x ∈ [µ − s′, µ − ŝ]. This implies that for all s ∈ (ŝ, s′′),

¯
h(x; 0, µ − s, 0, s) ≤ cF (x) for all x ∈ [µ − s, µ − ŝ]. Therefore, for all s ∈ (ŝ, s′′),

¯
h(x; 0, µ − s, 0, s) ≤ cF (x) for all x ∈ [µ − s, 1]. This implies that cs0,µ−s,0 is feasible

if s ∈ (ŝ, s′′), proving s̄ > ŝ.

Claim B.2. If s ∈ (ŝ, s̄], then b̂ < b̄.

Proof. By Lemma 4, it suffices to show that there is no v ∈ [0, b̄) such that ca(b̄),b̄,v is

feasible. Let b̄′ be such that b̄′ = 1−F (b̄′)
f(b̄′)

. By definition, cF (b̄′) = ŝ. Because s > ŝ,

we have b̄ < b̄′. By increasing hazard rate, we have b̄(1− F (b̄)) < x(1− F (x)) for all

x ∈ (b̄, b̄′]. Consider h̄(x; a(b̄), b̄, 0). For any x ∈ (b̄, b̄′],

h̄(x; a(b̄), b̄, 0) = s−
∫ x

b̄

b̄(1− F (b̄))

x̃
dx̃ > s−

∫ x

b̄

(1− F (x̃)dx̃ = cF (x),

implying that ca(b̄),b̄,0 is not feasible. For any v ∈ (0, b̄), we then have h̄(x; a(b̄), b̄, v) >

h̄(x; a(b̄), b̄, 0) for all x > b̄, implying ca(b̄),b̄,v is not feasible either.

Claim B.3. Assume f is increasing. Let b̃s be the optimal industry surplus (total

welfare) when the search cost is s. Then, lims↓0 b̃s < 1.

Proof. We add search cost s as an explicit argument to a(b) and ρ(b), and write a(b, s)

and ρ(b, s) respectively. Let π(b, s) = ρ(b, s)b. Define

¯
h†(x; b, s) ≡ µ− π(b, s)− π(b, s) log

x

π(b, s)
, ∀x ∈ [π(b, s), b].

Note that
¯
h†(x; b, s) is just a short notation for

¯
h(x; a(b, s), b, 0, s). Let B ≡ {b ∈

[µ, 1] |
¯
h†(x; b, 0) ≤ cF (x), ∀x ∈ [π(b, 0), b]}. Because π(µ, 0) = µ, we know µ ∈ B 6= ∅.

Let b† ≡ supB. We must have b† < 1. To see this, suppose by contradiction that

there exists {bn}n ⊂ B such that limn bn = 1. Fix an arbitrary x close 1. We have

limn
¯
h†(x; bn, 0) = µ > cF (x), where the equality comes from the fact that π(1, 0) = 0.

This implies that
¯
h†(x; bn, 0) > cF (x), contradicting the construction of B. Therefore,

we must have b† < 1.
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Using a similar argument as that in Claim 10, we can also show that there must

exist x† ∈ (π(b†, 0), b†) such that
¯
h†(x†; b†, 0) = cF (x†). Pick s† ∈ (0, s̃) such that

b† − s†

ρ(b†,0)
> x+, where, recall, s̃ is defined in Proposition 3. We proceed to show

that b̃s < b† − s
ρ(b†,0)

for all s ∈ (0, s†), which will prove the desired result. Suppose,

by contradiction, that b̃s ≥ b† − s
ρ(b†,0)

for some s ∈ (0, s†). We have π(b̃s, s) ≤
π(b†− s

ρ(b†,0)
, s) = ρ(b†− s

ρ(b†,0)
, s)(b†− s

ρ(b†,0)
) = ρ(b†, 0)(b†− s

ρ(b†,0)
) < π(b†, 0), where the

first inequality comes from Claim 1. The second equality comes from ρ(b†− s
ρ(b†,0)

, s) =

ρ(b†, 0). These inequalities imply that x̂ ∈ [π(b̃s, s), b̃s]. Then
¯
h†(x†; b̃s, s) = µ −

π(b̃s, s)− π(b̃s, s) log x
π(b̃s,s)

> µ− π(b†, 0)− π(b†, 0) log x
π(b†,0)

=
¯
h†(x†; b†, 0) = cF (x†).

This implies that cs
a(b̃s),b̃s,s

is not feasible, as Claim 10 has shown that cs
a(b̃s),b̃s,0

is of type

II. This contradicts the fact that cs
a(b̃s),b̃s,0

is the industry-optimal signal distribution.

Therefore, we must have b̃s < b† − s
ρ(b†,0)

for all s ∈ (0, s†) implying lims↓0 b̃s ≤ b† <

1.

Online Appendix C Proof of Proposition 5

Denote the signal distribution that induces (σ, v) by G. For notational simplicity, we

write c, instead of cG, as the incremental benefit function of G. Let π = −(b−v)c′(b−)

for some (any) b ∈ suppσ be the expected profit of a matched firm under (σ, v).

Because of the firms’ indifference conditions implied by (10), π is independent of the

choice of b. Note that, the equilibrium industry surplus can then be expressed as

be − v =

∫
(−c′(b−))bdσ(b)∫

(−c′(b))dσ(b)
− v =

π∫
(−c′(b))dσ(b)

. (C.1)

Moreover, throughout the proof, we continue to add search cost s as a parameter to

ca,b,v,
¯
h, and h̄ for clarity, as we did in the proof of Proposition 2.

The whole proof of Proposition 5 is involved. Section C.1 below provides two

preliminary results that will be used in the later proof. Section C.2 contains the main

proof.

C.1 Preliminaries

Claim C.1 summarizes some simple observations about c function, which will guaran-

tee that some later constructions are well-defined. Claim C.2 itself can be considered

as another proof of Proposition 2. It provides a stronger result than the one obtained

in the proof of Proposition 2.24

24The proof of Proposition 2 given in the appendix is simpler and easier to interpret.
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Claim C.1. At any x, c(x) > 0 implies c′(x−) < 0. As a result, we have (i) π > 0;

(ii) c′(b−) is negative and strictly increasing over suppσ; and (iii) c(b) is strictly

decreasing over suppσ.

Proof. Since c is decreasing, c′(x−) ≤ 0 and is increasing. If c(x) > 0 and c′(x−) = 0,

we have c′(x′−) = 0 for all x′ ∈ [x, 1]. Then c(1) = c(x) > 0, a contradiction. Hence,

c(x) > 0 implies c′(x−) < 0.

It is clear that π ≥ 0. Suppose, by contradiction, π = 0. Pick any b ∈ suppσ

so that c(b) > 0. Such b must exist because of (9) and s > 0. Then we must have

b = v since (b − v)(−c′(b−)) = π = 0. Pick any x > b such that c(x) > 0. We have

(x−v)(−c′(x−)) > 0 = π, contradicting (10). Therefore, π > 0. This directly implies

that c′(b−) 6= 0 for all b ∈ suppσ, or equivalently c′(b−) < 0 for all b ∈ suppσ. It also

implies that b > v for all b ∈ suppσ. Since c′(b−) = − π
b−v , it is clear that c′(b−) is

strictly increasing over suppσ. Finally, if b1, b2 ∈ suppσ and c(b1) = c(b2), we know

c′(b2−) = 0, contradicting the above analysis. Hence c(b) is strictly decreasing over

suppσ.

Claim C.2. Suppose 0 < s′ < s ≤ s̄ and csa,b,v is feasible. Let b′ be the unique solution

to h̄(b′; a, b, v, s) = s′. Then, cs
′

a′,b′,v is feasible for some a′.

Proof. We clearly have b′ > b. Let `′(x) be the contingent line of csa,b,v at b′, i.e.,

`′(x) = − π
b′−v (x − v) + s′, where π is the expected profits of a matched firm under

csa,b,v. Denote by a′ the intersection of `′ and the downward-sloping-45-degree line of

cF0 . See Figure C.1 for an illustration of a′, b′ and `′. Note that we have a < a′.

x
1

µ

s

cF

a b

ca,b,v

x̄

s′

`′

b′a′

Figure C.1: Proof of Claim C.2

By construction, the equilibrium probability of trade under cs
′

a′,b′,v is −csa,b,v(b′−) =
π

b′−v , and thus the corresponding expected profit of a matched firm is π
b′−v (b′−v) = π,
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which is the same as that under csa,b,v. This directly implies that cs
′

a′,b′,v coincides with

csa,b,v over [b′, 1], because for any x ∈ [b′, 1],

h̄(x; a′, b′, v, s′) = s′ − π log
x− v
b′ − v

= h̄(b′; a, b, v, s)− π log
x− v
b′ − v

= s− π log
b′ − v
b− v

− π log
x− v
b′ − v

= s− π log
x− v
b− v

= h̄(x; a, b, v, s).

Hence, cs
′

a′,b′,v ≤ cF over [b′, 1].

Consider the interval [0, b′]. If a′ ≤ v + π, cs
′

a′,b′,v is type I and we immediately

know that cs
′

a′,b′,v ≤ cF over this interval, because `′ ≤ csa,b,v ≤ cF , where the first

inequality comes from the fact that `′ by construction is tangent to csa,b,v. Sup-

pose a′ > v + π, i.e., cs
′

a′,b′,v is type II. In what follows, we proceed to verify that

max{
¯
h(x; a′, b′, v, s′), `′(x)} ≤ cF (x) for x ∈ [v + π, b′] and

¯
h(b′; a′, b′, v, s′) ≤ s′. Note

that, by construction, we have

¯
h(x; a′, b′, v, s′) = µ− v − π − π log

x− v
π

=
¯
h(x; a, b, v, s), ∀x ≥ v + π.

Hence, we need to show max{
¯
h(x; a, b, v, s), `′(x)} ≤ cF (x) for x ∈ [v + π, b′] and

¯
h(b′; a, b, v, s) ≤ s′.

Consider first the case a > v + π, i.e., csa,b,v is type II too. Because csa,b,v is

feasible, we know max{
¯
h(x; a, b, v, s), `(x)} ≤ cF (x) for all x ∈ [v + π, b], where

`(x) ≡ π
b−v (x − b) + s as in the construction of csa,b,v, and

¯
h(b; a, b, v, s) ≤ s. Since

`′(x) ≤ `(x) when x ≤ b (see Figure C.1), we know max{
¯
h(x; a, b, v, s), `′(x)} ≤ cF (x)

for all x ∈ [v + π, b]. Because
¯
h(x; a, b, v, s) and h̄(x; a, b, v, s) have the same slope

− π
x−v when x ≥ b,

¯
h(b; a, b, v, s) ≤ s = h̄(b; a, b, v, s) implies that

¯
h(x; a, b, v, s) ≤

h̄(x; a, b, v, s) for x ≥ b. This observation implies that max{
¯
h(x; a, b, v, s), `′(x)} ≤

h̄(x; a, b, v, s) ≤ cF (x) for all x ∈ [b, b′], and
¯
h(b′; a, b, v, s) ≤ h̄(b′, a, b, v, s) = s′.

Consider next the case a ≤ v + π < a′. In this case, csa,b,v is type I, but function

¯
h(x; a, b, v, s) is still well-defined. Clearly, we have `(v + π) > µ − v − π =

¯
h(v +

π; a, b, v, s). Moreover, for any x ∈ [v + π, b],
∂
¯
h(x;a,b,v,s)

∂x
= − π

x−v < −
π
b−v . Hence, for

any x ∈ [v + π, b],

¯
h(x; a, b, v, s) =

¯
h(v+π; a, b, v, s)+

∫ x

v+π

(− π

t− v
)dt < `(v+π)+

∫ x

v+π

(− π

b− v
)dt = `(x).

Thus, we have max{
¯
h(x; a, b, v, s), `′(x)} ≤ `(x) ≤ cF (x) for x ∈ [v + π, b]. Moreover,

evaluating the above inequality at x = b yields
¯
h(b; a, b, v, s) ≤ `(b) = s. Then, we can

apply the same argument as in the previous case to show that max{
¯
h(x; a, b, v, s), `′(x)} ≤

cF (x) for x ∈ [b, b′] and
¯
h(b′; a, b, v, s) ≤ s′.

In summary, we have shown, for all possible cases, that cs
′

a′,b′,v ≤ cF . Therefore,

cs
′

a′,b′,v is feasible and yields industry surplus b′ − v > b− v.
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C.2 Proof of Proposition 5

Proposition 5 is first proved for the case where the support of strategy σ contains only

two signal cutoffs (Claim C.3). It is then extended to the cases where the support

of σ contains finitely many or infinitely many signal cutoffs (Claims C.4 and C.5,

respectively).

Claim C.3. If suppσ contains only two signal cutoffs, Proposition 5 holds.

Proof. Suppose suppσ = {b1, b2} and b1 < b2. By (9) and Claim C.1, we have

c(b2) < s < c(b1). With slight abuse of notation, we use σ(bi) to denote the probability

of cutoff bi (or equivalently, the probability of setting price bi − v) under strategy σ.

Because of (10), we know (b1, v) is a pure strategy equilibrium in the market with

search cost s1 ≡ c(b1). By Proposition 1, we know cs1a1,b1,v ≤ c is feasible, where

a1 = EG(q|q < b1). Let b† ∈ [b1, b2] be the unique intersection of h̄(·; a1, b1, v, s1) and

the horizontal line of value s. That is, b† satisfies h̄(b†; a1, b1, v, s1) = s. See panel

(a) of Figure C.2 for an illustration. By Claim C.2, cs
a†,b†,v is feasible for some a†.

Therefore, if b† ≥ be, we immediately obtain the desired result. In the rest of this

proof, we assume b† < be. For clarity, we divide the whole proof into small steps.

Step 1: Introducing (x̂, ŷ).

Let `1 and `2, respectively, be the left tangent lines of c at b1 and b2. That is, for

i = 1, 2,

`i(x) ≡ c′(bi−)(x− bi) + c(bi).

By Claim C.1, `1 and `2 have different slopes. Therefore, these two lines have a

unique intersection, denoted by (x̂, ŷ). Because both lines are below c, we have

`1(b2) ≤ c(b2) = `2(b2) and `2(b1) ≤ c(b1) = `1(b1). This implies that b1 ≤ x̂ ≤ b2 and

c(b2) ≤ ŷ ≤ c(b1). See panel (b) of Figure C.2 for an illustration of `1, `2 and (x̂, ŷ).

Step 2: Introducing x1 and x2.

For i = 1, 2, let xi be the unique intersection of `i and the horizontal line of value

s. Such intersection exists because c′(bi−) < 0 by Claim C.1. See panel (b) of Figure

C.2 for an illustration of x1 and x2. We can explicitly write xi = s−c(bi)
c′(bi−)

+ bi. It is

easy to see that x2 ≤ x1 if s ≥ ŷ, and x1 < x2 if s < ŷ. Note also that we always

have b† > x1 since h̄(·; a1, b1, v, s1) is always above `1 over (b1, b2].

Step 3: b† < be implies s < ŷ, or equivalently x1 < x2.
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c(b1)
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(a) Illustration of b†

x

µ

c
`1 `2

h̄(·; a1, b1, v, s1)
c(b2)

b2

c(b1)

b1

(x̂, ŷ)
s

x1 x2

(b) Illustration of x1 and x2

x

µ

c
`1 `2

c(b2)

b2

c(b1)

b1

s

x1 x2a

be

`

(c) Illustration of `

Figure C.2: Proof of Claim C.3
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For notational simplicity, let

βi ≡
σ(bi)(−c′(bi−))

σ(b1)(−c′(b1−)) + σ(b2)(−c′(b2−))
> 0, i = 1, 2, (C.2)

so that be = β1b1 + β2b2 by (11). It is easy to see that

2∑
i=1

βixi =
2∑
i=1

βi
s− c(bi)
c′(bi−)

+
2∑
i=1

βibi =
2∑
i=1

βibi = be,

where the second equality comes from (9). This means that be is also a convex com-

bination of x1 and x2. If s ≥ ŷ, we know be ≤ max{x1, x2} = x1 < b†, contradicting

the assumption that b† < be. Therefore, we have s < ŷ.

Step 4: Constructing csa,be,v.

Let ` be the straight line that passes through (x̂, ŷ) and (be, s):

`(x) = − ŷ − s
be − x̂

(x− be) + s.

It is the red line in panel (c) of Figure C.2. It intersects the downward-sloping-45-

degree line of cF0 at some a. We will show that csa,be,v is feasible, which will give the

desired result. By construction, we have `−1(y) = β1`
−1
1 (y) + β2`

−1
2 (y). Thus, it is

easy to calculate that the probability of trade per match under csa,be,v is

ŷ − s
be − x̂

=
1

β1
−c′(b1−)

+ β2
−c′(b2−)

=
∑
i

(−c′(bi−))σ(bi). (C.3)

Then, the corresponding expected profit of a matched firm is

ŷ − s
be − x̂

(be − v) =
∑
i

(−c′(bi−))σ(bi)
π∑

i(−c′(bi−))σ(bi)
= π, (C.4)

the same as that in (σ, v) under c.

Step 5: csa,be,v ≤ c over [be, 1].

Consider the interval [be, b2] first. To show that csa,be,v ≤ c over this range, it suffices

to show that h̄(x; a, be, v, s) ≤ `2(x) for all x ∈ [be, b2]. Since h̄(·; a, be, v, s) is convex

and h̄(be; a, be, v, s) = s = `2(x2) < `2(be), we only need to show that h̄(b2; a, be, v, s) ≤
`2(b2) = c(b2). Using the equilibrium condition σ(b1)c(b1) + σ(b2)c(b2) = s, i.e., (9),

we can obtain σ(b1) = s−c(b2)
c(b1)−c(b2)

and σ(b2) = c(b1)−s
c(b1)−c(b2)

. Plugging these expressions

into (C.1), we have

be − v =
π(c(b1)− c(b2))

(s− c(b2))(−c′(b1−)) + (c(b1)− s)(−c′(b2−))
≡ θ(s).
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For s̃ ∈ [c(b2), s], define φ(s̃) ≡ s̃ − π log b2−v
θ(s̃)

. To show that h̄(b2; a, be, v, s) ≤ c(b2),

it is equivalent to showing that φ(s) ≤ c(b2).

It is easy to see that θ(c(b2)) = b2 − v. Thus, φ(c(b2)) = c(b2). Moreover, it is

easy to calculate

dφ

ds̃
= 1 +

π

θ(s̃)

dθ(s̃)

ds̃

=

(
s̃−c(b1)
c′(b1−)

+ b1

)
−
(
s̃−c(b2)
c′(b2−)

+ b2

)
(−c′(b1−))(−c′(b2−))[(s− c(b2))(−c′G(b1−)) + (c(b1)− s)(−c′(b2−))]

.

Because s̃ ≤ s < ŷ, we know s̃−c(b1)
c′(b1−)

+ b1 <
s̃−c(b2)
c′(b2−)

+ b2, implying dφ(s̃)
ds̃

< 0. Therefore,

φ(s) < φ(c(b2)) = c(b2).

Next, consider the interval [b2, 1]. If c(b2) = 0, the above analysis implies that

h̄(b2; a, be, v, s) ≤ 0, which in turn implies that csa,be,v = 0 over [b2, 1]. Hence csa,be,v ≤ c

over this interval. If c(b2) > 0, then (10) implies that (b2, v) is a pure strategy

equilibrium in the market with search cost s2 ≡ c(b2). By Proposition 1, we know

cs2a2,b2,v ≤ c where a2 = EG(q|q < b2). In particular, h̄(x; a2, b2, v, s2) ≤ c(x) for

x ∈ [b2, 1]. Note h̄(x; a2, b2, v, s2) = s2−π log x−v
b2−v while h̄(x; a, be, v, s) = s−π log x−v

be−v .

Hence, these two curves (as functions of x) have exactly the same slope − π
x−v over

[b2, 1]. Because we have shown h̄(b2; a, be, v, s) ≤ c(b2) = h̄(b2; a2, b2, v, s2), we know

h̄(x; a, be, v, s) ≤ h̄(b2; a2, b2, v, s2) ≤ c(x) for x ∈ [b2, 1].

Step 6: csa,be,v is feasible.

If a ≥ v + π, then csa,be,v is type I. Because ` ≤ max{`1, `2} ≤ c, which can be

directly seen from panel (c) of Figure C.2, we immediately know that csa,be,v ≤ c over

[0, be]. Because we have shown csa,be,v ≤ c over [be, 1] in the previous step, we know

csa,be,v is feasible.

Assume a < v+π. Then csa,be,v is type II. We verify that max{
¯
h(x; a, be, v, s), `(x)} ≤

c(x) for x ∈ [v + π, be] and
¯
h(be; a, be, v, s) ≤ s. These inequalities, together with

csa,be,v ≤ c over [be, 1] from the previous step, will imply the feasibility of csa,be,v.

To show max{
¯
h(x; a, be, v, s), `(x)} ≤ c(x) for x ∈ [v + π, be], it suffices to show

¯
h(x; a, be, v, s) ≤ c(x) for x ∈ [v + π, be], because we have already argued that

` ≤ c. By construction,
¯
h(x; a, be, v, s) = µ− v − π − π log x−v

π
=

¯
h(x; a1, b1, v, s1) for

x ≥ v + π. If cs1a1,b1,v is type II, we know max{
¯
h(x; a1, b1, v, s1), `1(x)} ≤ c(x) for all

x ∈ [v + π, b1], since cs1a1,b1,v is feasible. This immediately implies
¯
h(x; a, be, v, s) ≤

max{
¯
h(x; a1, b1, v, s1), `1(x)} ≤ c(x) for x ∈ [v + π, b1]. If cs1a1,b1,v is type I, we
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know
¯
h(x; a1, b1, v, s1) ≤ `1(x) for x ∈ [v + π, b1]. Thus,

¯
h(x; a1, b1, v, s1) ≤ c(x)

for x ∈ [v + π, b1]. Moreover, in both cases, we have
¯
h(b1; a1, b1, v, s1) ≤ s1 = c(b1) =

h̄(b1; a1, b1, v, s1). Observe also that
∂
¯
h(x;a1,b1,v,s1)

∂x
= − π

x−v = ∂h̄(x;a1,b1,v,s1)
∂x

for x ≥ b1.

Therefore,
¯
h(x; a1, b1, v, s1) ≤ h̄(x; a1, b1, v, s1) ≤ c(x) for x ∈ [b1, be], where the sec-

ond inequality comes from the feasibility of cs1a1,b1,v. This implies
¯
h(x; a, be, v, s) ≤ c(x)

for x ∈ [b1, be]. Finally, the inequality
¯
h(x; a1, b1, v, s1) ≤ h̄(x; a1, b1, v, s1) also implies

¯
h(be; a1, b1, v, s1) ≤ h̄(be; a1, b1, v, s1) < h̄(b†; a1, b1, v, s1) = s1, where the second in-

equality comes from the assumption that b† < be and the fact that h̄ is strictly

decreasing in x. This completes the proof.

The next claim extends Claim C.3 to finitely supported equilibrium strategy σ.

Claim C.4. If suppσ contains finitely many signal cutoffs, Proposition 5 holds.

Proof. Suppose suppσ = {b1, . . . , bn}. Consider the following optimization problem

u ≡ min
σ̃ mixes over suppσ

∑
i

σ̃(bi)(−c′(bi−))

s.t.
∑
i

σ̃(bi)c(bi) = s.

By Corollary 17.1.5 in Rockafellar (1970), it has a solution σ̂ whose support contains at

most two bi’s. If suppσ̂ = {bi} for some i, we know c(bi) = s. By (10), (bi, v) is a pure

strategy equilibrium. Thus, csa,bi,v is feasible by Proposition 1, where a = EG[q|q < bi].

Moreover,

bi − v =
π

−c′(bi−)
=
π

u
≥ π∑

i σ(bi)(−c′(bi−))
= be − v,

where the inequality is because σ is feasible to the above minimization problem. This

implies that csa,bi,v is the desired one.

Suppose suppσ̂ = {bi, bj} for some i 6= j. Similarly as above, (σ̂, v) is a mixed

strategy equilibrium. Let b̂e be the expected total welfare of this equilibrium. We

have

b̂e − v =
π

u
≥ π∑

i σ(bi)(−c′(bi−))
= be − v.

By Claim C.3, we know that there exist a and b′ ≥ b̂e such that csa,b′,v is feasible.

Since b′ ≥ b̂e ≥ be, we obtain the desired result.

The last claim further extends Claims C.3 and C.4 to infinitely supported strategy

σ, which completes the proof of Proposition 5.

Claim C.5. If suppσ contains infinitely many signal cutoffs, Proposition 5 holds.
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Proof. By Theorem 6.3 in Parthasarathy (2005), we can find a sequence of mixed

strategies {σn} such that (i) suppσn is finite and suppσn ⊂ suppσ, and (ii) σn con-

verges weakly to σ. Thus, we have25

lim
n

∫
c(b)dσn(b) =

∫
c(b)dσ(b) = s, (C.5)

lim
n

∫
(−c′(b−))dσn(b) =

∫
(−c′(b−))dσ(b). (C.6)

Let bmin = min suppσ and bmax = max suppσ. We have c(bmax) < s < c(bmin). For

each n, define αn ∈ [0, 1] and σ̃n ∈ ∆(suppσ) as

αn ≡


c(bmin)−s

c(bmin)−
∫
c(b)dσn(b)

, if
∫
c(b)dσn(b) < s,

1, if
∫
c(b)dσn(b) = s,

s−c(bmax)∫
c(b)dσn(b)−c(bmax)

, if
∫
c(b)dσn(b) > s,

and

σ̃n ≡


αn ◦ σn + (1− αn) ◦ δbmin

, if
∫
c(b)dσn(b) < s,

σn, if
∫
c(b)dσn(b) = s,

αn ◦ σn + (1− αn) ◦ δbmax , if
∫
c(b)dσn(b) > s,

where δb denotes the strategy that puts probability one on cutoff b ∈ {bmin, bmax}.
By construction,

∫
c(b)dσ̃n(b) = s. Therefore, each (σ̃n, v) is an equilibrium under

c, and the corresponding expected profit of a matched firm is still π. Let be,n be

the corresponding total welfare. By (C.5), it is easy to see that limn αn = 1. Thus,

limn

∫
(−c′(b−))dσ̃n(b) =

∫
(−c′(b−))dσ(b) by (C.6). Hence, we have

lim
n

(be,n − v) = lim
n

π∫
(−c′(b−))dσ̃n(b)

=
π∫

(−c′(b−))dσ(b)
= be − v.

For each k > 1, pick nk large enough so that be,nk
> be − 1

k
. Because σ̃nk

is finitely

supported, by Claim C.4, there exist ak and bk ≥ be,nk
such that csak,bk,v is feasible.

Taking subsequence if necessary, assume limk ak = a and limk bk = b. Clearly, we

have b ≥ be. It is then routine to verify that csa,b,v is feasible.26 This completes the

proof.

25Over the whole interval (0, 1], c′(b−) may not be continuous. However, it is continuous over

suppσ, since c′(b−) = − π
b−v for all b ∈ suppσ.

26See, for example, the proof of Proposition 2 in Dogan and Hu (2022).
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