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1 Introduction 

The pricing and hedging of exotic options are of great significance to modern derivative 

markets and numerous methods have been derived for this purpose, including Figlewski and Gao 

(1999), Boyle and Tian (1999), Fusia and Meucci (2008) and Cai et al. (2015) . Extensive empirical 

studies have revealed that the returns of various assets have fatter tails and higher peaks than the 

normal distribution. For example, Bates (1996) finds that jumps in the exchange rate process are able 

to explain the volatility smile in the Deutsche Mark option. Johannes (2004) provides evidence of 

jumps in short-term interest rate models and shows that they play an important role in option pricing.  

Most numerical methods, especially the tree methods, are based on diffusion models and it 

seems somewhat difficult to apply the tree ideas directly to the jump-diffusion process in a flexible 

and appealing manner, mainly because the transformation by Nelson and Ramaswamy (1990) is 

complex when jumps are included. Amin (1993) builds a tractable discrete time model by 

constructing multivariate jumps superimposed on the binomial model and Hilliard and Schwartz 

(2005) develop a robust bivariate tree approach. However, it is difficult to apply these ideas beyond 

the Black-Scholes framework or to different jump variables. Beliaeva and Nawalkha (2012) propose 

the mixed jump-diffusion tree; however, as pointed out in Wu et al. (2015), this is not robust when 

the jump size is insufficiently large. Kou and Wang (2004) and Cai and Kou (2012) derive analytical 

solutions for exotic options under a mixed (double)-exponential jump-diffusion model in the 

Black-Scholes framework. However, for most situations, analytical approximations cannot be 

obtained easily, especially for models outside the Black-Scholes-Merton framework.  

Andricopoulos et al. (2003; 2007) and Chen et al. (2014) propose the quadrature method and 

deliver a novel and universal application for path-dependent options in Black-Scholes, multi-asset 

and volatility model cases, while also delivering exceptional accuracy and speed. In this paper, we 

extend the quadrature method to price exotic options under jump-diffusion models. The main gaps 

between diffusion and jump-extended models in the quadrature method are the estimation of the 

required transition density and the time-step size. To acquire a closer approximation, Chen et al. 

(2014) use Ait-Sahalia’s algorithm to allow for a longer step up to 0.05 s or more. However, in a 

jump situation, this algorithm does not work and the transition density of the general jump-diffusion 

process calls for a multiple integral, which takes more time under a longer time step. Hence, we aim 



to approximate the general jump model with Merton’s jump model (Merton, 1976) and a small time 

step is essential to achieve a closer approximation. Andricopoulos et al. (2003; 2007) focus on the 

convergence on the asset-price step and we pay close attention to the convergence on the time-step 

size.  

Furthermore, as the prices of discretely monitored Asian and lookback options vary for different 

monitoring frequencies, a smaller time-step size will provide insight on the convergence from 

discretely monitored to continuously monitored frequencies. Here, we use the popular Gaussian 

approximation scheme to estimate the transition density of the diffusion part, which differs little from 

Ait-Sahalia’s results when the time step is less than 0.01 s and the convolution integral is used to 

implement the transition density under Merton’s jump model. Moreover, we present a simpler and 

more efficient lattice grid in which the points stay the same at each time step, thus eliminating the 

need for repeated calculations of transition density in recursion, leading to a substantial reduction in 

running time. Under the static scheme, the recursion equation is a simple matrix multiplication, the 

prices of exotic options are calculated directly and the hedging ratio (first and second order) can be 

easily estimated from the Chebyshev approximation.  

The diffusion models, from both the binomial and the trinomial tree, always achieve a desirable 

convergence in pricing exotic options. The quadrature method outperforms the tree methods because 

it can correct the “distribution error” (Figlewski and Gao, 1999; Andricopoulos et al., 2003) and can 

handle the jump situation well, while the tree methods have limited appeal and sometimes assign the 

probability to nodes in an unsatisfactory way. Tree methods also need many more steps than 

quadrature and become more complicated when pricing Asian options and lookback options. 

The remainder of this article is organized as follows. Section 2 introduces the basics of the 

quadrature method for jump-diffusion models, covering topics on the transition density 

approximation, the static lattice points we proposed and Greek calculation via the Chebyshev 

approximation. Section 3 discusses a universal and improved application of the technique on 

lookback options, multiple barrier options and Asian options under the static lattice points. In Section 

4, we show the numerical results of different jump-diffusion models and put the method into 

perspective. Section 5 concludes the study. All of the Matlab codes used within the study are 

available upon request. 

 



2 Quadrature Method 

2.1 General quadrature method 

In the interests of brevity, we provide only a short introduction to quadrature. A more detailed 

description can be found in Andricopoulos et al. (2003; 2007). Consider an option written at time 0 

with expiration date T , spot price 0X  and strike price K . The model can be approximated 

discretely with M  as equally spaced dates using the time step T M  . For path-dependent option 

pricing it is necessary to introduce a state variable in pricing. We take the European call lookback 

option as an example. At time (1 )n n M   , the option value relies not only on the current price

nX   
but also on the maximum price it reaches during time 0 and n , so we treat the maximum 

price as a state variable for this lookback option. The option price varies with different states.  

If ( , , )n kV X S 
 
is the option price on node nX  under state kS at time n , the recursive 

equation is as follows: 

  
0

( , , ) exp( ) ( | , )* ( , , ( , , ))n k n k nV X S r f x X V x n h S x X dx


           (1) 

0,1,2,..., ( 1)n M   and 1,2,...,k L , 

where ( | , )nf x X  
 
is the conditional density of | nx X   

and ( , , )k nh S x X   
indicates that the 

option price of asset price nX  with the state kS
 
at n  relies on the value of node x with the state 

variable ( , , )k nh S x X   
at ( 1)n   . An analytical solution to (1) is usually not available, but we can 

evaluate it by quadrature using the truncation of the domain where x  goes from nX   
to 

nX   

instead of from 0 to positive infinity. 
nX   

is the maximum price at which the underlying asset can 

arrive at a later time step and nX   
is the minimum price. Sullivan (2000) proposes the Gauss 

quadrature because of its perfect convergence speed. Andricopoulos et al. (2003) suggest Simpson’s 

rule to implement the task for its robustness, great convergence speed and accuracy. Here, we use 

Simpson’s rule to complete the integral in (1) because its regularly spaced grid is convenient for 

pricing exotic options and estimating the recursion process. For the option with early exercisable 

styles, such as Bermuda, American and executive stock options, the equation for call options is as 

follows:  



0
( , , ) max(exp( ) ( | , )* ( , , ( , , )) max(0, ))n k n k n nV X S r f x X V x n h S x X dx S K



            ，  

 

2.2 Transition densities 

It is obvious that the transition density plays a key role in the quadrature method. The gap in the 

diffusion and jump-diffusion models is the transition density computation. Chen et al. (2014) use 

Ait-Sahalia’s (1999; 2002) explicit sequence of closed-form functions to handle the diffusion model 

outside the Black-Scholes-Merton framework. However, in the jump situation, Ait-Sahalia’s methods 

cannot be applied directly. Here we start from the general jump-diffusion model,  

 
1

; ; ( ( , ))d ( ) ( ) t

t

N

t N tit t t d f X JX X dt X dW  


    (2) 

where tN
 
is a Poisson process with intensity parameter  , and ( , )

tN tf X J
 
is the jump function 

depending on tX
 
and the jump variable J . For a tiny time step, we can reduce the model to the 

following widely applicable form: 

; ; ( , ) ( )d ( ) ( ) t tt t t f X J dNX X dt X dW       (3) 

where ( )dN   is a Bernoulli distribution, which takes the value of 1 with a probability of dt  and 

the value of 0 with a probability of 1 dt . Merton (1976) introduced this Poisson-driven process 

for the jump process. 

 

The PDF in (3) is as follows: 

  
; ; , with probability1

; ; ( , ), with probability

( ) ( )
d

( ) ( )

t

t

t t
t

t t

dt

f X J dt

X dt X dW
X

X dt X dW

  

  

 

 

 
  
 



 
 (4) 

We are able to calculate the transition density of the first part, ; ;( ) ( )
tt tX dt X dW   , which we 

easily denote as 0P
 
according to the Gaussian approximation scheme (a normal distribution). The 

second part, ; ; ( , )( ) ( )
tt t f X JX dt X dW    , we denote as 1P  according to the convolution 

integral because it is a sum of two random variables: 

 1( , | ; ) ( | ; ) ( | ; )t t tP x X x y X p y X dy       (5) 

Usually, 1P
 
cannot be expressed in a closed form. Fortunately, there are a variety of numerical 

integral methods useful for completing the integral. As such, according to the Bayes rule, the 



transition density is as follows: 

 1 0 1 1 1( , | ; ) (1 ) ( , | ; ) ( , | ; )t t t t t tP X X P X X P X X               (6) 

In the work of Chen et al. (2014), the time-step size   can be up to 0.05s or more. However, in the 

jump-extended situation, a smaller   is preferred to guarantee the accuracy of density, not only for 

the Merton jump model close to the general jump model, but also for the Gaussian approximation 

scheme of 1P  close to the model. Wu et al. (2015) show that the jump-extended situation possesses 

good convergence in American option pricing when   is less than 0.01 s. 

 

2.3 Lattice points 

When a smaller time step size is selected, more recursion steps and more calculations of 

transition densities are required. Thus, it is necessary to construct the lattice points more effectively 

than in Andricopoulos et al. (2003; 2007). In doing so, let ( 0,1,..., )nA n M 
 
be the maximum 

price that the asset can reach at each observation point, and let ( 0,1,..., )nA n M 
 
be the minimum 

price at each observation point. In contrast to the dynamic (time-varying) lattice points in 

Andricopoulos et al. (2003; 2007), we choose the static nodes suggested in Wu et al. (2015), which 

means that , ,i i

n M n nX X A A A A      (0 )n M  . Let   be the price-step size in the grids. 

The vector of lattice points we construct before expiration is as follows:   

min max 0(( ) :1: )*I I X   

where minI is the nearest integer less than or equal to 0( )X A  , maxI  is the nearest integer greater 

than or equal to 
0( )A X   and min max( ) :1:I I

 is a regularly spaced vector. By adopting the static 

node scheme and initially calculating the transition density matrix, we avoid repeated 

time-consuming computations in recursion and we see a substantial reduction in running time. Thus, 

without the time loss on the transition density computation, a smaller time step and more accurate 

transition density are both possible. The second advantage of a static node scheme over a dynamic 

one is that we can calculate the option price on different spot prices immediately at each observation 

point, and it is easy to derive the option Greeks, especially Delta, Gamma, Theta and Charm, using 

the Chebyshev approximation. However, within the dynamic framework, the numbers of nodes and 

the scale they cover decrease as we move backward, so we need to calculate the values node by node. 

The third advantage is that it is much easier to price the exotic options now that we are able to 



accomplish the recursion in (1) using only a matrix multiplication. This avoids an exponential 

increase in the effort involved in calculating the values as we move further backward and we remove 

the extrapolation, which may take extra time, as reported in Andricopoulos et al. (2003; 2007) and 

Chen et al. (2014). This is because the states in a static point scheme merely present a linear increase 

for Asian options and no increase for multiple-barrier and lookback options, which we discuss later.  

For most options within 0.5 years, we take A  to be 02X  (or 01.8X ) and A  to be 0 2X
 

(or 0 3X ). Wu et al. (2015) use a similar extension for nodes to guarantee the accuracy of points 

near A  or A . Andricopoulos et al. (2003; 2007) and Chen et al. (2014) show that the smaller the 

price step, the more accurate the options. From our experience, it reaches a penny accuracy when   

is less than 0.2 for the case 0 100X 
 
and an appropriate parameter is set in the model.  

Figure 1 Comparison of dynamic and static grids 

 

2.4 Option hedging  

To approximate Delta 0( )X , which is the sensitivity of the option price with respect to 

changes in the asset price, the simplest approach is to use a finite difference approximation. We can 

obtain the option price 0( )V X 
 
and 0( )V X 

 
with a spot price equal to 0X 

 
and 0X   

(let  be a number close to zero), then 0( )X
 
can be estimated by
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0 0 0( ) ( ( ) ( )) (2 )X V X V X       . Although the expense of performing a resimulation for 

different spot prices is obviously disadvantageous, other universal methods have some drawbacks 

that limit their use in practice. The simulation-based likelihood ratio method (see Glasserman, 2003) 

may face a larger variance, and the WD method (Pflug and Weisshaupt, 2005) needs a 

time-consuming simulation. Our method seems to be much easier. Based on the grid scheme in the 

previous subsection, we can calculate the prices on nodes d to m in Figure 1 at time 0. As mentioned 

in Sullivan (2002), function approximation can be used to acquire a close and satisfactory fit for 

these nodes. Thus, hedging coefficients can be easily computed with the fit curve estimated. Here, 

we select the Chebyshev polynomials as the candidate approximation and the first-order and 

second-order derivative can be derived directly. 

 

3 Specific option pricing 

The Bermuda option was considered in Andricopoulos et al. (2003) and the American option 

was solved by Wu et al. (2015). Here, we focus on the lookback option, multiple barrier option and 

Asian option under the simple lattice grid. 

 

3.1 Lookback option 

First, it is necessary to pay close attention to the lookback option, whose payoffs depend on the 

maximum or minimum price it reaches before expiration. Both floating and fixed strike options are 

available. Here, we show an example of a call lookback option priced at time n  on a particular 

node. The state variables are the maximum prices it reaches by time n  at node h: a, b, c, d, e, f, g, 

h. The value of h in state f at time n  is calculated from the value of nodes f to n in state f and the 

value of nodes a to e in their own state at time ( +1)n  . We keep in mind that the state variables 

stay the same through the option lifetime under a static grid and, as highlighted in Andricopoulos et 

al. (2007), help to prevent the non-linearity error. At each time step, there is an option value matrix 

nU   
that contains the values for all of the nodes in different states. The following simple equation 

represents the recursion equation (1): 

 
( 1)exp( )* *Had( , )*n nV r W P U      (7) 

where W represents the weight coefficient matrix in applying Simpson’s rule, ( )P i, j  is the 

conditional density of |j i

n nX X   
in one time step and Had refers to the Hadamard product for 



matrix W and P. 
( 1) ( )( )nU i, j i j  

 
is the option value of iX  in state ( )j j jS S X

 
at time 

( 1)n+   and 
( 1) ( 1)( ) ( )n nU i, j V i, j   

 
for i j  and 

( 1) ( 1)( ) ( )n nU i, j V i,i   
 
for i j .  

MU  , which is an upper triangular matrix at maturity, is the result and we complete the 

recursion through (7) step by step. The resulting option values of nodes d to n under different states 

at time 0 and the numbers in the main diagonal are the option prices. The only difference between 

floating and fixed strike options lies in the value matrix MU   
at maturity, which is easy to find. 

Once the option is valued for different spot prices, applying the Chebyshev approximation and 

computing the derivative of the fitted polynomials is relatively easy. 

Figure 2 The static grid for lookback and barrier options 

 

 

3.2 Multiple barrier options 

The payoff for a barrier option depends on whether the price crosses a certain level, either 

knocked out or knocked in. A knock-out option can be easily valued by the quadrature method 

because it is worth nothing when the price moves beyond the barriers. The value of a knock-in call 

equals the value of a regular call minus the value of a knock-out call. Therefore, the knock-in option 

is not difficult to calculate. However, more work seems necessary to calculate multiple barrier 
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options. Here, we demonstrate how to value multiple barrier options directly using the quadrature 

method.  

We highlight the case of a down-and-in call barrier option price. There are two states, which 

relate to whether or not it is knocked in up to time n  at h. As depicted in Figure 2, the value of h 

in the knocked-in state at time n  is calculated from the value of nodes c to m, which are in the 

knocked-in state at time ( +1)n  . The value of h in the state that is not yet knocked-in at time n  

is calculated from the value of nodes c to j, which are not yet knocked-in, plus k to m, which are in 

the knocked-in state at time ( +1)n  . The value of m at time n  is calculated from nodes h to p in 

their knocked-in states. Thus, we find that it is necessary to record the value of the nodes in two 

states at each time step. It is not difficult to complete the aforementioned algorithm in a matrix 

(vector) form.  

When we move forward to a double knock-in barrier option that is available once either (or both) 

of these barriers is breached, then there are four states (both knocked-in, one or the other knocked-in, 

not yet knocked-in) to record for every node and the procedure can be worked out directly with 

fewer states compared with the lookback option. Similarly, it is not difficult to extend the idea to the 

moving barriers or early exercise barrier option. 

 

3.3 Asian options 

In this section we investigate the problem of discretely monitored Asian options under the static 

grid scheme. Asian options provide a payoff at maturity, based on the arithmetic (geometric) average 

before the expiration date. Floating strike options and fixed strike options also exist. For most work 

on Asian option pricing, the models are built under the Black Scholes assumption as they are 

analytically tractable and provide a closed-form solution in terms of the Fourier transformation (see 

Benhamou (2002), Fusai and Meucci (2008) and Cai and Kou (2012) for examples of this). 

Numerical methods include the tree method of Hull and White (1993), the quadrature method with 

Chebyshev approximation in Andricopoulos et al. (2007) and a convolution structure of recursion 

under Lévy processes as proposed by Fusai and Meucci (2008).  

We present a method based on transition density to price Asian options, taking the pricing of the 

arithmetic average Asian options with fixed strike and a payoff of 
0

1
max( ,0)

M

ii
X K

M



 
as an 

example. The state variable for this option at time n  is the sum of prices from maturity T 



backward to :
M

n ii n
n S X 
  . At time n , the state variable is an arithmetic progression from 

( 1)*M n A   to ( 1)*M n A   with a constant difference of  , which contains 

min max( 1)*( )nN M n I I    
 
elements and presents a linear increase. Separately from recursion 

equation (1), we recursively compute the transition probability matrix of the state variables for all 

nodes at time n .  

Figure 3 The static grid for Asian options 

 

 , ,
0

( , , ) ( | , )* ( , , )n n k n n k np X S f x X p x n S X dx


            (8) 

Again, we approximate the integral (9) discretely via the following matrix form:  

 
( 1) * *n nQ U P X    (9) 

where ( , )P j i  is the conditional density of |j i

n nX X   
in one time step and 

( 1) ( , )nU j i   
is the 

probability matrix of iX  in state 
( 1) , ( 1) ,( ( 1)* ( 1)* ,1 )n j n j nS S M n A j X j N          

 
at 

time ( 1)n+   and 
( 1) ( 1)( , ) ( 1, ),n nU j i Q j i i j i       . At maturity, MU  is the identity matrix. 

This method is similar to that of Benhamou (2002) and Fusai and Meucci (2008), who discuss it 

within the Black-Scholes framework. Our method extends the idea beyond the Black-Scholes 

h(S)  
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framework and it seems relatively easy to complete (10). Finally, at time 0, we get an approximation 

of the distribution of 0 0

M

ii
S X 

  , which is of course conditional on 0X . Consequently, the 

valuation of the option and estimation of the Greeks are easy to derive. As for floating average Asian 

options, we take ( 1)
M

n i Mi n
S X M + X  

   as the corresponding state variable and use double 

the number of fixed cases. When turning to the geometric average Asian options under the static grid 

scheme, which have a payoff of 
0

max(exp(1 ( 1) log( )) ,0)
M

ii
M X K

  , we are able to 

calculate the transition density of 
( 1)(log( ), | log( ); )n nP X X   

 
through 

( 1)( , | ; )n nP X X   
 
and 

treat log( )
M

n ii n
S X 


 

as the state variable. The remaining calculation stays the same with 

arithmetic average Asian options.  

The linear increase in state variables may still require a large-scale matrix once we have 

hundreds of steps. Fortunately, our results in the subsequent section indicate perfect convergence on 

the asset-price steps. In practice, the points near A  or A  can be “absorbed” into truncated points. 

Furthermore, based on (10), the truncation of the domain for each node ranges from A  to A  

instead of five or six standard deviations away from node nX   
in a time step . This also eliminates 

the need for the extrapolation procedure in Andricopoulos et al. (2007), which requires more effort.  

 

4 Numerical results 

In this section, we consider exotic options under a wide range of jump-diffusion models to 

illustrate the performance of the quadrature method. Specifically, we select the lognormal 

jump-extended CEV model, the exponential jump-extended DFW model (see Dumas, Fleming and 

Whaley, 1998) and the double-exponential jump model (see Kou, 2002, and Kou and Wang, 2004) as 

representatives. Due to the limited appeal of tree methods in jump-extended models, we treat the 

Monte Carlo results as benchmarks.  

 

4.1 Lookback options under the lognormal jump-extended CEV model 

To check the accuracy of the quadrature method, we test several cases under the lognormal 

jump-extended CEV model:  

(exp( ) 1) ( )d t tt t t J dNX rX dt X dW X      



where tX
 
is the underlying asset price and 2~ ( , )J JJ N   . The lognormal distribution jump is 

derived by Johannes (2004) into continuous-time interest rate models, allowing both negative and 

positive jumps and avoiding the interest rates becoming negative. By the Gaussian approximation 

scheme, we have the following density: 
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is expressed in the following convolution integral: 
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Then,  

0 1( , | ; ) (1 ) ( , | ; ) ( , | ; )t t t t t tP x x P x x P x x               

We use Simpson’s rule to implement convolution integral (12). We can calculate the 0.05% and 

99.95% percentiles of the jump variable (exp( ) 1)t JX 
 
and establish an equally spaced grid with 

200 or more quadratic points between the percentiles. From this the integral can be numerically 

approximated using Simpson’s rule. We choose an appropriate parameter setting for the CEV models,

0.05, 0.9, 0.02, 0.03J Jr       , and the maturity is 0.5 years and 0 100X  . 

In Table 1, we collect the prices for different strike prices, jump intensities and volatilities. The 

average absolute error is around 0.005. The time taken to generate one numerical result by 

quadrature is around 5 seconds for 1/ 200 (400)  , which significantly outperforms the Monte 

Carlo method. Table 2 presents the Greek letter Delta in the lookback option. Estimates from the 

Chebyshev approximation are also similar to the results produced by the Monte Carlo method (finite 

difference). 

Table 1 Lookback option prices for the lognormal jump-extended model 

Strike σ  Quad-200 MC-200 SE Quad-400 MC-400 SE 

         

Floating 

0.30 1 8.699 8.701 0.010 8.931 8.934 0.010 

0.30 3 8.244 8.248 0.010 8.482 8.492 0.010 

0.40 1 12.169 12.175 0.013 12.488 12.492 0.013 

 
  

      

100 
0.30 1 12.204 12.210 0.014 12.436 12.436 0.014 

0.30 3 13.853 13.863 0.016 14.092 14.097 0.016 



0.40 1 15.671 15.683 0.019 15.990 15.992 0.019 

 
  

      

110 

0.30 1 5.070 5.071 0.011 5.200 5.195 0.011 

0.30 3 6.370 6.371 0.013 6.518 6.517 0.013 

0.40 1 8.158 8.164 0.016 8.365 8.363 0.016 

Running Time 

 

4.8s 13.8s 

 

5.3s 29.0s 

  

The columns “Quad-200 (400)” stand for 1/ 200(400)   and the same is true of  

MC-200(400). Quad-200 (400), MC-200 (400) and SE denote the quadrature results, 

the Monte Carlo simulation estimates and associated standard errors based on  

50,000 (25,000*2) replications with the antithetic variates method. 

 

Table 2 Estimating the Delta of the lookback options 

Strike σ  Quad-400 MC-400 

   

90 95 100 90 95 100 

Floating 

0.30 1 0.0801 0.0795 0.0790 0.0798 0.0793 0.0788 

0.30 3 0.0759 0.0753 0.0748 0.0756 0.0751 0.0747 

0.40 1 0.1205 0.1146 0.1117 0.1118 0.1111 0.1105 

 
        

100 

0.30 1 0.5616 0.8197 1.0649 0.5618 0.8187 1.0738 

0.30 3 0.6365 0.8743 1.0849 0.6367 0.8739 1.0930 

0.40 1 0.6823 0.8937 1.0944 0.6834 0.8933 1.1038 

This shows the estimated value of Delta for discretely monitored lookback options 

with 1/ 400  , using the Chebyshev approximation and finite difference  

method under different strike prices for several spot prices. is equal to 0.0025. 

 

4.2 Multiple Barrier options  

To demonstrate its universality, we consider a double barrier call option (Down-and-out and 

Up-and-in) under the DFW model with an exponential jump variable that is introduced by Duffie et 

al. (1999) to suggest a positive spike for stock return volatility: 

( ) ( )d t t tt t b JdNX rX dt X X dW      

where ~ exp(1 )J   and 1( , | ; )t tP x x  
 
are easy to calculate in the same way as (11) and (12). 

The parameters used in our numerical example are 00.05, 0, 100, 0.5r b X t    , written with a 

knock-out barrier of 90 and a knock-in barrier of 110. Table 3 reports the prices and the running 

times. We show that our method can reach penny accuracy within different strikes, volatilities and 

jump intensities. Furthermore, they can be obtained within one second when   is equal to

1/ 200 (400) . We find that all of the quadrature values are located within 95% confidence intervals of 

the associated MC values and one barrier option price generated from quadrature saves a lot of time 



compared with the Monte Carlo method. 

 

 

 

 

 

Table 3 Double barrier option prices 

Strike σ   Quad-200 MC-200 SE Quad-400 MC-400 SE 

         
 

90 

0.0015 1 4 10.751 10.751 0.019 10.848 10.831 0.019 

0.0015 3 4 15.046 15.049 0.022 15.125 15.113 0.022 

0.0015 3 2 11.724 11.710 0.019 11.825 11.799 0.019 

0.0020 1 4 12.298 12.314 0.022 12.325 12.313 0.022 

         
 

100 

0.0015 1 4 6.305 6.311 0.014 6.334 6.327 0.013 

0.0015 3 4 9.445 9.451 0.017 9.467 9.460 0.017 

0.0015 3 2 6.926 6.925 0.014 6.957 6.943 0.014 

0.0020 1 4 7.618 7.632 0.017 7.614 7.603 0.017 

         
 

110 

0.0015 1 4 2.657 2.663 0.009 2.657 2.658 0.009 

0.0015 3 4 4.634 4.642 0.012 4.634 4.628 0.012 

0.0015 3 2 2.938 2.941 0.009 2.939 2.932 0.009 

0.0020 1 4 3.930 3.939 0.013 3.924 3.918 0.013 

Running time (s) 
 

0.3 6.7 

 

0.4 13.9 

 The table compares the quadrature method with the Monte Carlo method. The meaning of 

Quad-100, Quad-200, MC-200 and MC-400 are the same as in Table 1. 

 

4.3 Asian options under HEM 

In this subsection, we price Asian options under the double-exponential jump diffusion model 

(Kou, 2002):  

(t)

1

( )
( ) ( ( 1))

( )

N

ii

dX t
dt dW t d V

X t
 


   


  

where ln( )iy V
 
has the PDF 

1 1 ( 0) 2 2 ( 0)( ) * *exp( * )*1 (1 )* *exp( * )*1y yf y p y p y        . An 

extension to this model is the mixed-exponential jump model (see also Cai and Kou, 2011), which is 

general enough to approximate any jump-size distribution. The explicit density over a time interval 

  can be found in Kou (2002). A parameter set is given by 1 20.05, 30    
 
and 0 100X  . We 

consider the arithmetic average of Asian call options with various strikes, jump intensities, 



volatilities and maturities. Table 4 provides the results of fixed strike price options and Table 5 

presents the Delta estimates. As mentioned in Andricopoulos et al. (2007), when Chebyshev 

approximating polynomials are required, quadrature does not produce remarkable results for Asian 

options when there are many observations. Our results show that the convergence speed on the price 

step is fast, and impressive accuracy is again attained on both the price and the Delta. Table 6 shows 

that the running time and quadrature save a lot of time compared with the Monte Carlo method when 

the step is equal to 1 or   is equal to 1/100. 



Table 4   Asian options under the double exponential jump diffusion model 

Strike σ T  Quad-100 Quad-100 MC-100 SE Quad-200 Quad-200 MC-200 SE 

    

step=1.0 step=0.5 

  

step=1.0 step=0.5 

  

90 

0.20  0.50  1 11.104  11.104  11.101  0.011  11.105  11.105  11.104  0.011  

0.20  0.50  3 10.873  10.873  10.871  0.011  10.876  10.876  10.869  0.011  

0.20  1.00  1 12.364  12.364  12.368  0.015  12.365  12.365  12.369  0.015  

0.30  0.50  1 11.863  11.863  11.860  0.015  11.867  11.867  11.864  0.015  

 
           

100 

0.20  0.50  1 3.824  3.824  3.825  0.008  3.832  3.832  3.830  0.008  

0.20  0.50  3 3.796  3.796  3.800  0.008  3.804  3.804  3.797  0.008  

0.20  1.00  1 5.662  5.662  5.666  0.011  5.667  5.667  5.670  0.011  

0.30  0.50  1 5.378  5.378  5.382  0.012  5.389  5.389  5.387  0.012  

 
           

110 

0.20  0.50  1 0.714  0.714  0.716  0.003  0.721  0.721  0.721  0.003  

0.20  0.50  3 0.758  0.758  0.761  0.004  0.765  0.765  0.763  0.004  

0.20  1.00  1 1.974  1.974  1.982  0.007  1.980  1.980  1.986  0.007  

0.30  0.50  1 1.892  1.892  1.896  0.007  1.905  1.905  1.905  0.007  

The columns “Quad-100 (200)” represent 1/100 (200)   
and the same is true of MC-100 (200). “step = 1.0(0.5)” means the  

price step is 1(0.5). MC-200 (400) and SE denote the Monte Carlo simulation estimates and associated standard errors based on  

50,000 (250,000 plus 250,000 antithetic) replications. 

Table 5  Estimating the Delta of the Asian options 

Strike σ T  Quad-1 Quad-0.5 MC 

    

90 100 110 90 100 110 90 100 110 

100 

0.20  0.50  1 0.1367 0.5580 0.8930 0.1368 0.5580 0.8930 0.1365 0.5579 0.8933 

0.20  0.50  3 0.1390 0.5409 0.8738 0.1390 0.5409 0.8738 0.1385 0.5411 0.8740 

0.20  1.00  1 0.2510 0.5754 0.8268 0.2510 0.5754 0.8268 0.2506 0.5752 0.8282 

0.30  0.50  1 0.2369 0.5472 0.8073 0.2370 0.5472 0.8073 0.2372 0.5472 0.8081 

This table compares the Delta from the Chebyshev approximation by the quadrature method and the finite difference by the Monte Carlo  

method with different spot prices under a strike price of 100. Quad-1 (0.5) indicates that the price step was set at 1 (0.5). The MC results 

are from 500,000 paths (250,000 plus 250,000 antithetic) and the   value is 0.0025.



 

Table 6    Running time (in seconds) 

Δ Quad-1 Quad-0.5 MC 

1/100 0.9 3.8 4.8 

1/200 3.2 14.0 9.5 

This table compares the running time with different time-step  

sizes. The columns “Quad-1 (0.5)” stand for  =1(0.5). 

 

5 Conclusion  

In this paper, we extend the quadrature method (Andricopoulos et al., 2003) to jump-diffusion 

models. Our paper makes three contributions. First, we generalize the efficient quadrature method to 

jump-diffusion models with the transition densities calculated from convolution integrals and we 

allow a smaller time step. Second, we propose a simpler and more robust static grid and complete the 

recursion in matrix form. Third, we estimate both first- and second-order hedging ratios via the 

Chebyshev approximation based on the option prices. The calculation is simple and precise. We run 

numerical tests on exotic options, including lookback options, multiple-barrier options and Asian 

options, and these examples show that our method offers good accuracy and greatly reduced running 

times compared with the popular Monte Carlo method. 
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