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Abstract

In the R&D race the incumbent enjoys an advantage of learning from production
experiences, but this important feature has not been incorporated into existing studies.
Assuming that the technological knowledge is accumulated not only by R&D expenditures but
also by production experiences, we study the properties of optimal investment strategies in a
model with an incumbent and many identical challengers. After proving the existence of a
unique Nash equilibrium in the R&D race, we demonstrate analytically that the likelihood of
persistent leadership increases with production experiences of the incumbent but decreases
with the number of challengers. Numerical analyses also establish that (i) the challengers
always invest more than the incumbent and the difference increases with production
experiences, the flow of monopoly profits and the number of challengers; and (ii) the
likelihood of persistent leadership increases with the value of being the winner and the value of
being a loser but decreases with expected waiting time of R&D innovation and the flow of
monopoly profits. However, destructive innovations may still occur even when production
experiences are allowed to play an important role in the R&D competition.
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1. Introduction

In this paper we develop a framework to understand the impact of pro-
duction experiences on the R&D race and study whether the incumbent can
prevail in the face of possibly destructive innovations. Although the effects
of production experiences on production costs' and the structure of an
industry” are in the literature, their impact on the R&D race has not been fully
analyzed.

Production experiences can play to the advantages of the incumbent in the R&D
competition. For example, Intel’s experience of producing 486 CPU provided the
company with an opportunity to supersede its major rivals in the development of the
products of the next four generations — namely, Pentium I, Pentium II, Pentium III,
and Pentium IV CPUs (Yu, 1999; Chang and Park, 2004). Similarly, Gruber’s (1994)
empirical studies also show that production experiences helped the incumbent to
prevail in the patent race for the next-generation EPROMs products. Production
experiences, however, may not be sufficient for the incumbent to sustain its edge over
its competitors as more challengers emerge. In the optical passive components (OPC)
industry for example, an increase of new competitors from Taiwan and Korea
caused most of the Japanese and American incumbents to switch to the optical active
components (OAC) industry. It shows that destructive innovations may occur as the
R&D race becomes more competitive.

In a seminal paper, Reinganum (1982) studies the strategies of a number of
identical firms engaged in R&D race. An increase in the number of challengers is
shown to lead to an increase in each firm’s R&D investment.® Reinganum (1983) also
points out that the incumbent’s R&D investment is less than that of the challenger
when there is only one challenger and one incumbent and when the innovation
process is uncertain. Furthermore, when there is one incumbent and a number of
identical challengers and when the new-generation products are introduced to
replace the obsolete products as in Reinganum (1985), the incumbent always invests
less than the challengers since the incumbent lacks an incentive for R&D
investments. Hence, the Schumpeterian ‘process of destructive innovations’ can
occur in a sequence of innovations as the incumbent is overthrown by a more
innovative challenger.*

In this paper, we include not only the impact of market competition but also the
effects of accumulated production experiences on the R&D competition for the next
generation product. We assume that each firm’s hazard function governing the

'See Dick (1994), Benkard (2000), Park (2002) and Cabral and Leiblein (2001).

2See Gilbert and Newbery (1982), Dasgupta and Stiglitz (1988) and Reinganum (1983, 1985).

*Loury (1979) and Lee and Wilde (1980) also discuss the variations of each participant’s investment
intensities as the number of competitors changes. In addition, Choi (1991) and Malueg and Tsutsui (1997)
analyze a patent race for several identical firms with an uncertain hazard rate governing the innovation
process.

“The persistence of monopoly in the R&D race for uncertain process innovations is possible when the
monopolist incumbent has a first-mover advantage to commit to an entry-deterring level of investment (see
Gilbert and Newbery, 1982, 1984; Reinganum, 1984).
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innovation process depends on its accumulated production experiences and the
cumulative flow of R&D expenditures. We further assume that the incum-
bent and the challengers are heterogeneous. Only the incumbent can enjoy
monopoly profit and accumulated knowledge from production experiences, while
all participants have to pay a fixed cost at the outset as well as recurrent flow
costs when the R&D competition is underway. Besides the probability dis-
tribution governing the timing of innovation, the incumbent’s production
experiences, the monopoly profit from the post-innovation market, the patent
reward and the payoff to the loser will all affect each firm’s equilibrium strategy in
our model.

After proving the existence of a unique Nash equilibrium in this differential game
(Theorem 1), we demonstrate analytically that the likelihood of persistent leadership
increases with production experiences of the incumbent but decreases with the
number of challengers (Theorem 2). It confirms the observation that production
experiences can play to the advantage of the incumbent such as Intel. It also shows
that destructive innovation is more likely to happen with increased market
competition, providing an explanation for the OPC industry example mentioned
before. However, it is difficult to obtain a closed-form solution of the optimal
investment strategies from a set of nonlinear first-order partial differential equations.
Numerical simulations are therefore conducted to explore the properties of
equilibrium investment strategies. In the absence of production experience (called
the benchmark case), we first confirm (in the appendix) that our numerical analyses
reach the same conclusions as in Reinganum’s (1983) model, when there is only one
incumbent and one challenger.

Our numerical analyses further indicate that the incumbent invests less than the
challenger when we include the influence of production experiences. This
difference increases with production experiences since the challengers’ invest-
ment rates increase with production experiences while the incumbent’s investment
rate decreases with production experiences (Result 1). The difference between
the challengers’ and the incumbent’s investment rates decreases with the value of
being a winner and a loser but increases with the expected waiting time of an
innovation and the flow of monopoly profits (Result 2). With a large number of
challengers, the persistent leadership in the R&D race is still possible if production
experience of the incumbent is sufficiently large. Moreover, the likelihood of
persistent leadership increases with the present value of being a winner and a loser
but decreases with the expected waiting time of R&D innovation and the flow of
monopoly profits (Result 3). The difference between the challengers’ and the
incumbent’s investment rates increases with the number of challengers in the R&D
race (Result 4).

The paper is organized as follows. The next section contains the model and the
existence and uniqueness result (Theorem 1). In Section 3, we present the analytical
result of Theorem 2 and other numerical analyses (Results 1-4). The proof of
Theorem 1, discussion of our numerical method and confirmation of the benchmark
case (in the absence of production experiences) are included in the appendix. Section
4 concludes the paper.
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2. The model
2.1. Notations and framework

We assume that one incumbent (firm I) and » identical challengers (¢ =
1,2,3,...,n) engage in a multistage patent race. The incumbent enjoys monopoly
profit and production experiences from the previous generation product throughout
each R&D competition. We assume that the incumbent produces one unit of product
per unit of time and its technological knowledge accumulated from production
experiences at time t is proportional to its cumulative output. Hence, accumulated
R&D knowledge is equal to 67, where 0 (6 >0) measures the marginal production
experience.” In our model, production experiences affect each firm’s winning and
losing probability.

Following Reinganum (1982, 1985), we adopt a continuous-time framework. In
each stage, n + 1 participants compete by investing u{(r),j =1,1,2,...,n at time .
Let X/(r) denote firm ;s R&D capital with X/(1) =/(t), where the dot
means the time derivative. Let X7(t)+ 60t and X‘(r) denote the incumbent’s
(firm I) and each challenger’s (firm ¢) accumulated R&D knowledge at time 7,
respectively. And let X(t) = X'(r) + 0t + >"_, X°(t) denote the overall R&D
knowledge at time 7. The value of R&D knowledge is common knowledge in the
game. We further assume that the probability of firm j succeeding in innovation at or
by time “(X’+ 07, X', X%, ...,X") follows an exponential distribution with
parameter A>0, Pr{3je{l,1,2,...,n)}; ¥<1}=1—exp{—iX(1)}.° Thus, the
instantaneous probability that the incumbent succeeds at time 7 and its competitors
lose by time 7 is

Pr{t¢>1, for all challengers ¢ = 1,2,...,n, t/ <1+ dt}
= exp{—AX (D)} () + 0) dt. (1a)

Similarly, the instantancous probability of the incumbent of being a loser at
time 7 is

Pr{t' >1,7°<7+dr, for one firm ¢} = exp{—AX(D)}L > _ u'(r)dr. (1b)

=1

SProduction experiences are considered as an important factor in the dynamic models of learning by
doing (e.g. Stokey, 1988; Young, 1991, 1993; Auerswald et al., 2000). Although the impact may be
nonlinear or dependent on some discount factor, we assume the current form in order to obtain sharper
characterization. A more general form with the more recent experience having a larger impact will be left
for further study.

®As Pr{v <t} =1 —exp{—AX (1)} = S(z) is the survival function in duration analysis, the hazard
function A(7) has to satisfy i(r) = —S'(r)/S(x), where S'(r) = dS(r)/dr. Therefore, A(r) is a constant
(h(t) = 2) under the exponential distribution with parameter A>0, as in Reignanum (1982, 1985). This
requires the probability distribution of innovation success to be memoryless. A more general form can be
considered in a further study.
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The instantaneous probability that one of n challengers succeeds at time 7 and the
others fail by time 7 is

Pr{v/>t, for all firm j, j#c, j=1,1,...,n and 1<t +dt}
— exp{—AX ()} (7) dr. (2a)

The instantaneous probability of one of n challengers of being a loser at time 7 is

Pr{v/ <t +dxt, for one firm j, j#¢c, j=1, 1,...,n and 7°>1}
= exp{—AX (1)} [z <u1(r) +O0+ > M(ﬂ) dz. (2b)
j=lj#c

In our dynamic model, we assume that all firms choose their investment strategies
simultaneously to maximize expected payoff. The incumbent receives a flow of
monopoly profit from the previous product at the constant rate of R while it has to
pay a lump sum fixed cost, F, at the outset as well as a current flow cost, (/) /2, of
R&D investment.” In our multistage dynamic game, each stage of R&D competition
will end if any firm succeeds in innovation, and then the winner and the losers will
receive the terminal value, v® and vf (v >vf), respectively.® We further assume that
the R&D game ends at time 7" when one of the firms succeeds in innovation. The
date T can also be regarded as the doomsday at which the firms abandon the project
entirely if they have not yet succeeded (see Reinganum, 1982). Hence the

incumbent’s expected payoff function for any strategy tuple (u!,u',u?,...,u") can
be written as follows:
T n
Vi ', P, .. ") = / {e_;'X(T) [}yv‘”(ul(r) +0) + Jwt Z u"(r)]
0 c=1
+ (R — (' (1))’ /2)} dr — F. (3)

Similarly, the challenger’s expected payoff function is

0

T
Vet ul P, ) = / {e_zX(T) [}nv“’uc(f) + Jf (u’(r) +0

+ Z uf(r)ﬂ — e (ul (1) /2)} dt — F, 4)

j=li#e

"The current flow cost of R&D investment can be generalized from the quadratic form to the cases with
constant elasticity. Since the cost structure is not the main focus of our research, we adopt the quadratic
form in this paper as in Reinganum (1982, 1985) and Malueg and Tsutsui (1997).

8As discussed in Reinganum (1985), the terminal values represent the values of continuing optimally in
the patent race and may be treated as parameters in each stage when the sequence of innovation is finite
due to technological reasons.
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where 7 is the doomsday at which the earnings must be actualized for all
participants. The first term of (3), exp{—AX(7)}Av”(u!(t) + 0)dr, represents the
expected winning reward of the incumbent; the second term of (3),
exp{—AX(t)}A’ Y "_, u¢(r)dr, is the incumbent’s expected payoff when it becomes
a loser; and e"R and e*”(ul)z/2 of (3) represent the incumbent’s discounted
monopoly profits from previous-generation product and discounted investment
costs, respectively. Similarly, we can find the meaning of different terms of Eq. (4).
These payoff functions V7, j=1,1,2,...,n will be used to define the equilibrium
concept.

2.2. Nash equilibrium strategies

Following Reinganum (1982), we will consider only pure (closed-loop) strategies,
assuming that each firm’s instantaneous investment rate is bounded. For proving the
existence of a unique Nash equilibrium in our differential game, we need the
following assumption on the strategy space. For notational simplicity, let X =
XL X X2, LX),

Assumption 1. The strategy space for firm j, j=1,1,2,...,n, is @ = {i/(1,X) e
[0, K] for some K < oo}, where for all (1, X) € [0, T] x X; x X| x -+ x X,,, ¥(1, X) is
continuous in (7, X)) and satisfies the Lipschitz condition:

| (2, X) — o (z, )| <k(r)| X — X|, ©)

,,,,,

This assumption requires that the investment strategy u/(t,X) of each firm,
belonging to a closed and bounded space, is continuous and differentiable. This is
commonly assumed in the literature in differentiable game (see Friedman, 1971).

2

Definition 1. The n + 1 firms’ strategy tuple (u!,ul,u2,...,u") is a Nash equilibrium

-t O o o e ol
if o/ € & and V/(ul,uy, ..., 0l ' P o uD) S V(w7

s iy

forallw e @ and j=1,1,2,...,n.

Integrating the first term of the payoff functions in (3) and (4) by parts, we can
define the value functions at any time s € [0, 7] as follows:

T n
dl(s,X) = / {[u”(l —A7(2)) + vaﬁ’(f)]AC(‘c)/l Z ug(t) +e " A(r)
K} c=1

x (R — %(ul(r))z)} dr +0°(1 = AXTHALT) = F, s€[0,T], (6)
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where  A9(1) = exp{—A[X' (1) + 07]}, 4.(x) = exp{—=2A>"_, X°(xr)} and A(r) =
exp{—A[X (x) + 0t + >1_, X(0)]}.

T n
(s, X) = / {[um(l—Ag:’(r))+qu;,“(r)]A,(r))(ui(r)Jr9+ Z uf>

j#cj=1
- e_”A(T)(%(uC(T))Z)} dr +0”(1 = AX(T)ANT) - F, (7)

where 4;(t) = exp{—A[X" (1) + 0t + Y7}, X’]} and 42(x) = exp{—AX“(1)}.

As shown in Friedman (1971, Theorem 4.3.2 (p. 141) and 8.2.2 (p. 292)), the
Hamilton—Jacobi equations in our n + 1-firm differential game reveal that all firms’
optimal investment strategies must satisfy a system of Bellman equations (Egs. (8)
and (9)) subject to the respective terminal conditions (Egs. (10) and (11)) given that
Assumption 1 holds, and that (6) and (7) are continuously differentiable. This fact is
used in the proof of Theorem 1 in Appendix A.

&l(t, X)+ max { &L, (¢v, Xl (v, X) + D¢ o (t, ul(t, X
1%, X) M,E[O’K]{ (@ XU (7, X) ; e (@ Xui(z, X)

+[p7(1 = 47(1) + 0" AP (D)]4c(0)2 zn: U (1) + e AR — %(u')z)} =0, (8

c=1

(D:(Ta X) + m[%');]{(p;(((fa X)UC((T, X)) + (Dﬁ(’(fa X)ui(fa X)
u¢elo,

b3 e XX+ D~ A2 41 4

j#cj=1
x A(1)) <u§(r) +O0+ > u’(r)) + e”A(r)(—%(u“))} = 0. ©)
Jj#cj=1
The terminal conditions from the definition of @/(r, X) are given by’
ONT,X) =v"4(T) — v’ A(T) — F, (10)
(T, X) =04(T) —v°A(T) — F. an

The firm’s equilibrium strategies take the form u! = u/(x, X, ®),(r, X)) and u =

u(t, X, @5 c(1, X)). Together with the terminal conditions in (10) and (11), we can
write a system of suggestive solutions in the following form'®

o' (1, X) = d' (1) Ac(x) + b' (1) A(x) — F, (12)

Pl (7, X), 43’;(,(1, X) and (Pgﬂ»(r, X) denote the derivative of @/(z, X) with respect to 7, X/(7) and X“(z),
respectively.

1041 (t)(B'()) and «‘(r)(b°(r)) may not be identical since the incumbent / and challenger ¢ are
heterogeneous.



170 S.-C. Chang, H.-M. Wu | Journal of Economic Dynamics & Control 30 (2006) 163—183

®°(1, X) = a“(1)4;(t) + b°(1)A(z) — F. (13)

Therefore, we have that ul(z, X) = —2e"b! (1) and ul(t, X) = —2e"b (1) from (12)
and (13). As in Reinganum (1982), we can prove the existence of a unique Nash
equilibrium in Theorem 1.

Theorem 1. Under Assumption 1, there exists a unique Nash equilibrium in the R&D
competition.

Proof. See Appendix A. [

Substituting the partial derivatives of the system of solutions in (12) and (13) with
respect to X’ and X* into the Bellman equations of (8) and (9) and using the terminal
conditions of (10) and (11), we obtain a system of nonlinear differential equations
and the boundary conditions:

a' (v) + 222" dl ()b (x) — 22 b () = 0, (14)
a(T) =v°,
a‘ (t) + 227 (b (1) + b(1))a‘(x) — A2 bl (1) + (n — 1A% b (1) (d (x) + 1)

— 20d! (x) + 260v® = 0, (15)
a’(T) =v°,
b (1) + 322e7b! (1) — 206! (v) + 227" b (2)b“(x)

+ 2277 (0” — v )be(t) + Re™7" = 0, (16)
bI(T) — _Uw’
i.)"(r) + (2n — DA% b(2)? — A0b°(x) + 22 (2b (1) + (n — D — v'))b (1)

+ 27" = b (1) — 20w — v) = 0, (17)

B(T) = —v°.

There exists a pair of general solutions: a/(t) = v® and a‘(t) = v® for Eqs. (14) and
(15). However, it is difficult to obtain a closed-form solution of »’(t) and b(r) from
the set of first-order nonlinear partial differential equations in (16) and (17)."!

3. Numerical analysis and the firms’ R&D strategies

In this section, we study how the n+ 1 firms’ optimal investment strategies are
affected by the marginal production experience (), the terminal value of being the

”1.;’(1) and [;f(r) of (16) and (17) can be positive, or negative for »(t)<0 and (1) <0.
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winner (v), the terminal value of being the loser (v%), the flow of monopoly profits
(R) and the expected waiting time of an innovation (1/1) as well as the rival’s
investment intensities in the model. In order to numerically solve the nonlinear
differential equations of (16) and (17), we use the Runge—Kutta—Fehlberg method
with the fourth-order and fifth-order Taylor series expansions, which is one of the
most powerful methods for solving the nonlinear differential equations (see
Fehlberg, 1969; Gerald and Wheatley, 1994). A discussion of the algorithm of this
methodology is included in Appendix B.

In the following analyses, we assume that firms are convinced that the innovation
is infeasible if they fail to succeed by T =4."> We will also set the producer’s
discounted rate y to be 0.1 and restrict v to be greater than v’.

For the case of one incumbent and #n identical challengers in the absence of
production experience (i.e., 0 = 0), our numerical analyses confirm Reinganum’s
(1985) theoretical conclusions on how the equilibrium investment strategies of the
incumbent and the challengers will change with the three factors: v, v, and R. That
is, given the benchmark parameter 6 = 0, we show that: (i) the challenger invests
more than the incumbent; and (ii) the incumbent’s and challengers’ investment
intensities increase with v but decrease with v’ and R (see Appendix C, Figs. 10, 11
and 13). Furthermore, the numerical conclusions reveal that all competitors’
investment decreases with the expected waiting time of an innovation (1/1), which is
also a confirmation of Malueg and Tsutsui’s (1997) theoretical conclusion. In other
words, firms become more aggressive and increase their R&D intensities as the
expected waiting time of innovation (1/2) decreases (Fig. 12 in Appendix C).

We then extend the Reinganum’s (1982) framework to study the general situations
when there are many challengers and when the incumbent enjoys the advantage of
accumulated production experiences (0>0). Since it is almost impossible to
apply theoretical arguments to analyze how these paths change with the exogenous
variables such as v®, v, 1 and R, our numerical analyses help us to obtain useful
comparative static properties, which are not available in Reinganum (1982, 1983,
1985). By extending the benchmark case of 6 = 0 (Appendix C) to the general case of
0>0 and n>=1, we not only verify that the basic insights of the benchmark case
still hold but also demonstrate that the influence of production experiences is
significant.

We first examine how the incumbent’s production experience (0) affects the
incumbent’s and challengers’ R&D investment rates. Figs. 1 and 2 illustrate these
numerical analyses.

Result 1. For any given n (n>1), (i) the incumbent always invests less than the
challenger, i.e., u¢ — u! >0 for any given value of production experiences (0); and (ii)
the incumbent’s investment rate decreases with production experiences and the
challengers’ investment rates increase with the production experiences (6).

2The variation in the values of T, 6, y, b2, v!, 2 and R, as long as the equilibrium solution exists, does

not affect the main conclusions of our numerical results.
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Fig. 1. The impact of 0 for the first part for Result 1. Parameter specification: 0 = 0,50, y = 0.1, 1 = 0.3,
v? =200, v =50, R=150,n=5and T = 4.

30

time

Fig. 2. The impact of 0 the second part for Result 1. Parameter specification: 0 = 0,50, y = 0.1, 1 = 0.3,
v? =200, v =50, R=150,n=5and T = 4.

Result 1 shows that the difference between the challengers’ and the incumbent’s
investment rates increases with production experiences (). The main reason is that
the incumbent’s instantaneous winning probability, exp{—/2X (t)}[u;(r) + 0]dz as in
Eq. (1a), increases with 6 and the instantaneous probability for the challenger to
lose, exp{—AX (D}[A(u'(x) + 0+ >, ;.. #/(¢)]d7 as in Eq. (2b), also increases with
0 (Fig. 1). Hence, the incumbent can remove some resources from the investment in
the patent race to other productive department (that is to decrease investment) and
still maintain its advantage in R&D competition as 0 increases, while the challengers
have to increase their investments to compete with a more experienced incumbent.

Our numerical results also reveal that the incumbent will accelerate investment
rates for projects with higher winning rewards v” or more optimistic outlook (i.e., a
greater /) and decelerate investment for higher R or v, confirming the existing results
of Reinganum (1982, 1983, 1985). In addition, we explore further how the difference
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Fig. 5. The impact of 4 for Result 2. Parameter specification: A =0.3,0.5, y = 0.1, 0 = 50, v* = 200,

vt =50,R=150,n=5and T = 4.
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15 1 1 1 1 1 1 1
time

Fig. 6. The impact of R for Result 2. Parameter specification: R = 50,150; 2 =10.5; y =0.1; 6 = 50;
v” =200; v =50; n=>5and T = 4.

between the challengers’ and incumbent’s investment rates is affected by these
factors. Figs. 3—6 illustrate that the difference between the challengers’ and the
incumbent’s investment rates (u¢ — ul) decreases with v, 1 and v’ but increases with
R. Result 2 provides useful comparative static properties as an extension of
Reinganum’s (1982, 1983, 1985) theoretical conclusions.

Result 2. For any given 6 >0 and n>1, the difference between the challengers’ and
the incumbent’s investment rates (u¢ — ul) decreases with the value of being a winner
(v®”) and the terminal value of being a loser (v°) but increases with the expected
waiting time of an innovation (1/4) and the flow of monopoly profits (R).

In addition, we can obtain further characterization of the dependence of the
likelihood of the incumbent keeping winning on the variables of its production
experiences, the number of competitors, the winner’s rewards, the loser’s payoff, and
the expected innovative time of research project, etc. We obtain an analytical result
in Theorem 2.

Theorem 2. The likelihood of persistent leadership is positive. It increases with the
marginal production experience (0) but decreases with the number of challengers (n).

Proof. Since exp{—AX(7)}A[u!(t) + 0]dt of (la) is the incumbent’s instantaneous
winning probability, and the instantaneous probability for the incumbent to lose at
time 7 is exp{—AX(7)}A > "_, u‘(r)dt of (2a), for a sufficiently large value of 0, we
must have 0>nu¢ — ul. In other words, there is a positive probability of persistent
leadership in the R&D race if 0 >nu — ul, and this probability increases with 6, and
declines with n. [

From Result 2, for a given value 6 and n, the difference between challenger’s and
incumbent’s investment rates decrease with v® and vf, but increase with the value of
1/A and R. Hence, by Theorem 2, the likelihood of persistent leadership (or
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0>nut — ul) increases if v or v becomes sufficiently large, or if 1/4 or R becomes
sufficiently small. The following result shows that the variations of the incumbent’s
and the challengers’ equilibrium investment strategies with these factors: (v, vf, 4
and R) and are the same as Reinganum’s (1985) conclusions (# = 0) no matter
whether the incumbent’s production experiences are positive (the case of 6>0) or
zero (0 =0). Thus, from Result 2, we obtain that the likelihood of persistent
leadership increases in v® and v’ but decreases with 1/ and R. Note that the
likelihood of persistent leadership is just the opposite of that of destructive
innovation.

Result 3. For any given 0 (0>0) and n (n>1), the likelihood of persistent leadership
increases with the value of being a winner (v’) and the value of being a loser (v) but
decreases with the expected waiting time of an innovation (1/4) and the flow of
monopoly profit (R).

Similar with the impact of the reward of being a loser on the firms’ investment
strategies (Results 2 and 3), increasing R&D competition decelerates the incumbent’s
investment relative to those of its rivals as in Result 4.

Since the incumbent’s instantaneous probability of losing the race,
exp{—AX(D)}AY_"_, u‘(r)dr, and the challengers’ instantaneous probabilities of
losing the race, exp{—2X (0)}[A(u'(v) + 0 + >}, ;. . #/(v)]dz, both increase with the
number of competitors, their investment intensities decrease in competition (Fig. 7).
But, as shown in Fig. 8, the difference of investment rates between the incumbent
and challengers increase with the number of competitors. Therefore, the likelihood

of persistent leadership can decrease with the number of challengers (see Fig. 9).

Result 4. For any given 0 (6=0), (i) the incumbent’s and challengers’ investment
intensities decrease with the number of challengers; (ii) the difference between the

50
- f(n=2)
40 us (n=15) l
wsF Yy ==
N R B
~ 1
= 20F L n=15)
ul (n=2)
R po
0 T T : _ : :
0 0.5 1 1.5 2 25 3 35 4
time
Fig. 7. The impact of n on u! and «¢ for Result 4. Parameter specification: n = 2,15, y = 0.1, 2= 0.3,

v®” =200, v’ = 50, R =150, 0 = 50 and T = 4.
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30

time

Fig. 8. The impact of n on u¢ — ul for Result 4. Parameter specification: n =2,3,5, y = 0.1, 1 = 0.3,
v” =200, v¥ =50, R=150, 0 =50 and T = 4.

250
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~: 150 | l _______________________
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Fig. 9. The impact of n to the likelihood of persistent leadership for Result 4. Parameter specification:
n=257=0.1,7.=0.3, v” =200, v’ =50, R=150, 0 =50 and T = 4.

incumbent’s and challengers’ investment intensities increases with the number of
challengers; and (iii) the likelihood of persistent leadership decreases with the
number of challengers.

Furthermore, if the production experiences play an important role (i.e.,
0>nu¢ —ul) as in Theorem 2, the persistent leadership can become even more
likely given other things being equal. Our numerical analysis with Fig. 9 reveals that
the persistent leadership can take place under quite general situations so long as the
incumbent’s production experiences is sufficiently large to satisfy the condition
0>nu¢ — ul. For instance, with parameter values specified in Fig. 9, the persistent
leadership can occur when the number of challengers equals to 2 and the
accumulated production experience is 0t with 7 € [0,2.234] such that 6 = 50>2u$ —

I

u', 1s satisfied.
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Table 1

The determining factors of the firms’ investment rates and the likelihood of persistent leadership®

Investment rates/Factors Ve pt R A 0 n
ul + - - + - -
U + - - + + -
u; — ui >0 - - + - + +
Likelihood of persistent leadership + + - + + -

4The symbol + indicates that the relationship is positive.

4. Concluding remarks

We summarize the similarities and differences among the results of this paper and
those of Reinganum (1983, 1985) and Malueg and Tsutsui (1997) in Table 1. First,
for the influence of production experiences, we extend the theoretical analyses of
Reinganum’s (1983) and show that the incumbent can keep its persistent leadership
even when its optimal investment is less than those of the challengers. The realities of
CPU competition mentioned before provided a good example. On the other hand,
the persistent leadership is less likely to occur in an industry with low-tech entry
barrier and hence with many challengers, as in the OPC industry mentioned before.
This has been demonstrated in Theorem 2 and recorded in the last two cells of the
last row of Table 1. This result constitutes a part of the new contributions of this
paper.

Secondly, by applying numerical method, we show for the first time how the
incumbent’s and the challengers’ investment rates change with production
experiences. This has been our Result 1 and recorded in the fifth column of Table 1.

Thirdly, in addition to confirming how the perspective investment rates of the
incumbent and the challengers are influenced by factors, ¥, ¥‘ and R (as in
Reinganum, 1985) and / (as in Malueg and Tsutsui, 1997), we also analyze how the
difference between the challengers’ and the incumbent’s investment rates changes
with these determining factors (Result 2). This has been recorded in the first three
rows of Table 1.

Fourthly, we also analyze the dependence of the likelihood of persistent leadership
on the determining factors, ¥, V¢, 1 and R (Result 3). Our results, as recorded in
the last row of Table 1, confirm and extend those of Reinganum (1985) and Malueg
and Tsutsui (1997).

Lastly, we show how the increase in the number of challengers affects the
investment rates of participants and hence the difference between their investment
rates (Result 4). Our results extend the existing analysis (see Malueg and Tsutsui,
1997) to the case with production experiences and are recorded in the last column of
Table 1.

The realities of the CPU and EPROMs industries unveil that production
experiences play an important role in the patent race of new generation products.
Hence, it seems unreasonable to assume that all participants are identical in sharing



178 S.-C. Chang, H.-M. Wu | Journal of Economic Dynamics & Control 30 (2006) 163—183

prior resources before participating in the patent race, as in Reinganum (1982). The
major feature of our model is that the incumbent enjoys an advantage of learning
from production experiences and receives monopoly profit from the post-innovation
products in the R&D competition, while each challenger has to pay a lump sum
entry cost and recurrent flow costs under the R&D competition. Our model can also
provide useful insights to industries other than the examples mentioned in the paper,
such as races in medicine research. Consequently, we can say that our results provide
a quite complete analysis of the R&D competition with production experiences and
other exogenous influences.
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Appendix A. The proof of Theorem 1

We first prove the existence of a Nash equilibrium. From the Theorems of
Friedman (1971), we know that the optimal strategies must satisfy a system of
Bellman equations (see the discussion in Section 2.2). Since the left-hand sides of the
Bellman equations in (8) and (9) are strictly concave in / and u¢, respectively, the
necessary conditions are also sufficient for optimal solutions. We will focus on the
interior solutions of these Bellman equations, which are given by

ui = e”e)‘X(T)(D;, (1, X), (A.1)

U = " O DG (z, X). (A2)

The boundary solutions include: #, = 0 as (13’ (1,X)<0, and o/, = K as <D’ (1, X)>0,
j=1,1,2,...,n. The solutions of (A 1) and (A 2) can be substltuted into the Bellman
equations of (8) and (9). Therefore, if we can solve the value functions (6) and (7)
with the Hamilton—Jacobi equations, (8) and (9), then the firms’ Nash equilibrium
investment strategies exist as u! = u/(t, X, @' (1, X)) and v = u’(t, X, (7, X)).

Note that firms’ value functions obtained in Egs. (A.1) and (A.2) with the terminal
conditions of Egs. (10) and (11) are continuously differentiable in X. Since ul =
ul(t, X, QI);,(T, X)) and u = u’(t, X, 5c(1, X)), ¢ = 1,2,...,n satisfy the hypothesis
of the sufﬁciency Theorem 1 (Stalford and Leitman, 1973) the n + 1-firms’ strategy
tuple (u ul,i2,...,u") is a Nash equilibrium for (u!,u u) e Q' x Q' x
Q@ x-x Q.

Once we prove this, then we can show the existence of an unique equilibrium by
Theorem 18.1 of Bernstein (1950).

Recall that ul(r, X) = —2e"b! (1) and uS(t, X) = —2e"b"(z) from (12) and (13).
Since the strategy space satisfies continuity, boundary and the Lipschitz conditions
(Eq. (5)) in X by Assumption 1, and b’(r) and b°(r) are also continuously

2
*7 *9*”7
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differentiable in X, then there exists an unique Nash equilibrium, (uf,u!,u2,... u")
in Q' x Q' x @ x --- x Q" such that the firms’ value functions are of class C* in
(t, X, @5c(t, X)), and the terminal conditions are of class C* in X, respectively
(Bernstein’s (1950) Theorem 18.1).

Therefore, we verify that each firm’s value function as characterized by a pair of
Eqgs. (6) and (7) is of class C* in (7, X, ®$(7, X)) and the terminal conditions of Eqs.
(10) and (11) are of class C* in X after substituting u! = e""e*®@’ (¢, X) and
U = e e¥@4. (1, X) into the Bellman equations of (8) and (9). There exists only
one solution to (6) (10) and (7), (11). Consequently, the n+ 1 tuple (ul, ul,2,. .. u"
is the unique Nash equilibrium in Q' x Q' x @* x ... x Q". O

Appendix B. An algorithm for the Runge—Kutta—Fehlberg method

Because the numerical simulation processes of both (16) and (17) are similar, we
use (12) to introduce the methodology and its regularity conditions. For developing
the relationship between b”(t*) (b!(z*) of Eq. (12)) and 7* by the Taylor series (see
Judd, 1998), we find the coefficients of the Taylor series where b”(t*) expands around
the point t* = T

//A ( T) b///A ( T)

bA(t*) = bN(T) + b (T)h 40 "+ PB4, o= T=h.

The Taylor-series method and the (modiﬁed) Euler method are not suitable for our
first-order nonlinear differential equations. We find that it is far better to use a more
efficient method such as the following (modified) Runge—Kutta methods rather than
to use many re-corrections in the modified Euler method. The Runge-Kutta
methods are the equivalent of approximating the exact solution by matching the first
n terms of the Taylor-series expansion. For example, in a second-order Runge-Kutta
method (see Hubbard and West, 1990), we let the increment of %, be a weighted

average of two estimates of the increment, k; and k,, where

n+1

ky = hf(z*,bY) and ko = hf (¥ + ah, b + Bki) (B.1)

for db” Jdt* = f (b, 7*). Eq. (B.1) suggests that the Runge—Kutta methods use the
Euler estimate as the first estimate of Ab” (i.e. k;); the second estimate is created by
the increments of v* and b” with the fractions o and  of 4 and of the earlier estimate
k1. The second step is to devise a scheme of choosing the four parameters, a, b, « and
B. We find that the modified Euler method is a special case of a second-order
Runge—Kutta method. There exist three equations to be satisfied by four unknowns
in a second-order Runge—Kutta method.

b = b+ hf (L7 + PGS o + L pa ) (B.2)

bt = bt +ahf (b, ) + bhf[c* + ah, b + Bhf (b, 7)), (B.3)
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by = by + (@ + DS (b, <) + W (abf o + Bbf ). (B.4)
In general, the fourth-order Runge-Kutta methods (see Judd, 1998) are

most widely used. However, the higher order Runge-Kutta method becomes
more complicated and expensive in re-computing the values. One of better
approaches is using two Runge—Kutta methods, though of different orders of
errors, to move from (b7, %) to (b1, 7%,,). The Runge-Kutta-Fehlberg method
was introduced by Fehlberg to compare the methods of two different orders
to increase the efficiency of the Runge—Kutta methods (see Fehlberg, 1969; Gerald
and Wheatley, 1994). Since this method requires far less function evaluations
than the Runge—Kutta methods and provides a mechanism to adjust the step
size h depending on the value of the estimated error, it has become a very useful
method.

The Runge—Kutta—Fehlberg method contains the following three steps. The first
step is to compute two Runge—Kutta estimates for be, though of different orders
(fourth- and fifth-order Runge—Kutta formulas) of the errors. Secondly, we compare
the two estimates of b;’H created by the fourth- and fifth-order Runge-Kutta
formulas, respectively. The final step is the adjustment of the step size 4 depending
on the value of the estimated error as required. As with the above algorithm for the
Runge-Kutta—Fehlberg method, we only need six function evaluations. In addition,
instead of comparing estimates of be for the step sizes i and /&/2, we can choose a
reasonable value of / from the value of estimated error. Thus, we choose to apply the
following algorithm of the Runge-Kutta—Fehlberg method to our numerical
problems.

kl = hf(xﬂsyn)9
ky = hf (z* +1h, by + Lky),
ky = hf (@* +3h,b) + Sk + ko),

e 2 T T
oo+ 2
(S e 1)

5f+1 = bf + <2251k61 13(5)2];3 2411?(7){:4 — %), with global error O(h4),
e (55 s 3 2

with global error O(h°),
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Appendix C. The benchmark parameter case (6 = 0)

In this appendix, we consider the benchmark case of 0 =0 (the absence of
production experiences). We show that the challenger invests more than the
incumbent and their investment rates increase with v® but decrease with v’ and R
(Figs. 10-13), confirming the results of Reinganum (1985). In addition, their
investment rates decrease with the expected waiting time of an innovation (1/1),
supporting the conclusion of Malueg and Tsutsui (1997).

35
30
o5 | , u€ (v = 250)
I( 0 =200 (1 =250) uf (v =200)
©x 20 us (VY =

time

Fig. 10. The influence of v on u! and u¢. Parameter specification: v” = 200,250; 7 = 0.1, A = 0.2, 0 = 0.0,
v[:SO,R:ISO,n:Iand T =4.
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Fig. 11. The influence of v’ on u! and u¢. Parameter specification: v’ = 0,50; R = 150; 1 = 0.2; y = 0.1;
0=0.0;0v”=200;n=1and T =4.
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Fig. 12. The influence of 1 on u! and u¢. Parameter specification: 2 = 0.2,0.3, y = 0.1, 6 = 0.0, v® = 200,
v{=50,R=150;n=1and T = 4.
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Fig. 13. The influence of R on u! and u¢. Parameter specification: R = 50,150; 2 = 0.2; y = 0.1; 0 = 0.0;
2 =200; 0! =50;n=1and T = 4.
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