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1. Introduction 
American-style option valuation is of great significance in finance. Numerous methods of pricing 

American options have been proposed. For examples, see Cox et al. (1979), Bunch and Johnson (1992), 

Broadie and Detemple (1996), Longstaff and Schwarts (2001), Sullivan (2000), and Medvedev and 

Scaillet (2010). A vast body of empirical finance research has pointed to the existence of jumps in asset 

time series. Bates (1996) found jumps in the exchange rate process, which can explain the volatility 

smile in the Deutsche Mark option. Duffie et al. (1999) examined the implication of jumps for option 

valuation and found that jumps in volatility and price highlight the effect on option “smirks.” Johannes 

(2004) indicated that jumps play an important statistical role in short term interest rate models and 

pointed out that jumps are important for pricing interest rate options. More empirical studies can be 

found in Das and Foresi (1996) and Li and Zhang (2014). However, it is difficult to directly extend the 

abovementioned classical option pricing methods to jump-diffusion situations. 

Kou and Wang (2004) and Cai and Kou (2011) provided analytical approximations to price 

options with double- and mixed-exponential jumps within the Black-Scholes framework. Amin (1993) 

built a tractable discrete time model for American option valuation by constructing multivariate jumps 

that are superimposed on the binomial model. Hilliard and Schwartz (2005) developed a robust and 

flexible bivariate tree approach to option pricing. Ben-Ameur et al. (2016) proposed dynamic 

programming coupled with finite elements for pricing American-style options in Gaussian and double 

exponential jumps. However, the application of these approaches beyond the Black-Scholes 

framework or to different jump distributions for option pricing is somewhat difficult. As pointed out 

by Hilliard and Hilliard (2015), when extending these approaches beyond the Black-Scholes model, 

we may need to use the transformation in Nelson and Ramaswamy (1990), which can be complicated 

if a jump is involved. Beliaeva and Nawalkha (2012) presented mixed jump-diffusion trees under the 

CEV model. However, the tree method, as we discuss in this paper, is not sufficiently robust when the 

jump size is not great relative to the diffusion part. Hilliard and Hilliard (2015) chose lattice 

probabilities by extending the density matching for diffusion to jump diffusions. However, the 

limitation of this technique is that it requires the diffusion and jump components to be cast as 

independent state variables. 

In this paper, we extend the quadrature method introduced by Andricopoulos et al. (2003) to price 

American-style options under jump-diffusion models with arbitrary jump distributions, and achieve 

exceptional accuracy and good speed. The idea is simple and straightforward: we recursively compute 

the price of Bermudan options, which are close in price to American options, with hundreds of 

exercisable dates.  

Under jump-extended models, the main obstacle in applying the quadrature procedure lies in the 



transition densities and additional time steps required. Reviewing the work on the quadrature in 

Sullivan (2000), Andricopoulos et al. (2003), and Chung et al. (2010), we find that when the grid size 

or time step increases, the computation time grows exponentially because a smaller time step usually 

needs more quadrature points and the calculation of the node to node takes much more time. To 

overcome this limitation and reduce the running time, we establish a static point grid and implement 

the recursive process in a simple matrix manipulation, which leads to a substantial reduction in 

computation time. We calculate the density numerically, via the convolution integral. Once the 

densities are calculated, we can recursively value the prices at each time step by comparing the “live 

value” (non-exercise value) to the “intrinsic value” (exercise value) (Ibanez and Zapatero, 2004).  

This paper makes two main contributions to the literature. First, we build the bridge from the 

diffusion model to the jump case and point out the shortcomings of the mixed-tree method of Beliaeva 

and Nawalkha (2012) when dealing with small size jumps. Second, we compute the recursive process 

in matrix form, which means that we manage it by the time step (time to time) based on the static grid 

instead of the price step (node to node) shown in Andricopoulos et al. (2003) and Sullivan (2000). This 

also helps to get rid of the Chebyshev approximation and significantly increases the running speed. 

Specifically, we focus on the popular Gaussian jump model, the double-exponential jump model, and 

the lognormal jump-extended CEV model. To speed up the computation, we develop more efficient 

and universal lattice points for the quadrature method than those in Andricopoulos et al. (2003, 2007) 

and assign probability to these points more reasonably than Beliaeva and Nawalkha (2012), who 

separate diffusion nodes and jump nodes without overlap. Finally, comparing the efficiency and 

accuracy of our approach to that of the tree methods and the least squares approach of Longstaff and 

Schwarts (2001), we find that the quadrature method is robust and the mixed tree method sometimes 

underestimates values as the maturity increases. Our analysis is easily extended to different jump-

diffusion processes and exotic options. 

The remainder of this paper is organized as follows. In Section 2, we discuss the basics of the 

quadrature method, covering topics on the transition density approximation and our suggested static 

lattice points, and compare it with other methods. Section 3 reports the numerical results of the 

application of our technique to different jump models. Section 4 concludes.  

 

2. Quadrature methods  

2.1. Quadrature method for pricing American options  

In this subsection, we briefly introduce the quadrature method for pricing American put options 

that can be exercised on hundreds of dates. The biggest difference between the quadrature method and 



the tree method is that the former can correct the “distribution error” (Figlewski and Gao, 1999; 

Andricopoulos et al., 2003) and allows us to get rid of the transformation in Nelson and Ramaswamy 

(1990). We follow the framework in Ibanez and Zapatero (2004) and Andricopoulos et al. (2003, 2007) 

to describe the general algorithm. 

Consider a put American option written at time 0 with a spot price 𝑋0 , a strike price K, and 

maturity date T. The option can be exercised at equally spaced M dates with the time step ∆= 𝑇 𝑀⁄ . 

Let 𝑉(𝑋𝑛∆, 𝑛∆) be the option price on node 𝑋𝑛∆ at time 𝑛∆. 

𝑉(𝑋𝑛∆, 𝑛∆) = max (exp(−𝑟∆) ∫ 𝑓(𝑥|𝑋𝑛∆) ∗ V(𝑥, 𝑛∆ + ∆)𝑑𝑥
∞

0
, max (0, 𝐾 − 𝑋𝑛∆))      (1) 

𝑛 = 0,1,2, … , 𝑀 − 1, 

where X is the underlying asset price and 𝑓(𝑥|𝑋𝑛∆) is the transition density from node 𝑋𝑛∆ to 𝑥 in 

one time step. 

Generally, the abovementioned integral cannot be calculated in a closed form. However, it can be 

evaluated by quadrature using truncation of domain, where x goes from 𝑋𝑛∆ to 𝑋𝑛∆ instead of from 

0 to positive infinity. 𝑋𝑛∆ is the maximum price at which the underlying asset can arrive a later time 

step, and 𝑋𝑛∆ is the minimum price. Sullivan (2000) used Gaussian quadrature to evaluate the risk-

neutral expectation for its excellent convergence. Andricopoulos et al. (2003) suggested evaluating it 

by Simpson’s rule, which is based on regularly spaced grids and is more convenient to handle than 

other options. Considering its universality and robustness, we use Simpson’s rule to calculate the 

integral. 

At some exercisable time 𝑛∆ , we begin with 𝐺𝑛∆  discretization points {𝑋𝑛∆
1 , 𝑋𝑛∆

2 , … , 𝑋𝑛∆
 𝐺𝑛∆} 

for 𝑋𝑛∆(𝑋𝑛∆
𝑖 < 𝑋𝑛∆

𝑖+1). Let 𝐴 be the maximum price at which the underlying asset can arrive before 

expiration and 𝐴 be the minimum price. In contrast to the “dynamic” (time-varying) lattice points in 

Andricopoulos et al. (2003), we choose “static” nodes, which means 𝑋𝑘∆
𝑖 = 𝑋𝑚∆

𝑖 ,  𝐺𝑘∆ =  𝐺𝑚∆, (0 ≤

𝑘 < 𝑚 ≤ 𝑀). See figure 1 for a basic comparison. Let δ be the step size of the price in grids. The 

vector of lattice points we construct across the exercisable dates is  

((−𝐼𝑚𝑖𝑛): 1: 𝐼max) ∗ 𝛿 + 𝑋0, 

where 𝐼𝑚𝑖𝑛 is the nearest integer less than or equal to (𝑋0 − 𝐴) 𝛿⁄ , 𝐼𝑚ax is the nearest integer greater 

than or equal to (�̅� − 𝑋0) 𝛿⁄ , and (−𝐼𝑚𝑖𝑛): 1: 𝐼max is a regularly spaced vector. Therefore, under this 

scheme, we have a static grid with the maximum price 𝐴𝑛𝛥 = �̅� = 𝐼max ∗ 𝛿 + 𝑋0, the minimum price 

𝐴𝑛𝛥 = 𝐴 = 𝑋0 − 𝐼𝑚𝑖𝑛 ∗ 𝛿 , and  𝑋𝑖 = (𝑖 − 1 − 𝐼min) ∗ 𝛿 + 𝑋0, 1 ≤ 𝑖 ≤ 𝐿 (𝐿 = 𝐼max + 𝐼min + 1)  , here 

L is the grid size. Wu et al. (2015) adopted a similar static grid in pricing exotic options when some 

extensive nodes are included.  



 We build the grid directly on the asset price without the transformation in Nelson and 

Ramaswamy (1990). Our disproportionately dense grid, on which there are more quadrature points for 

a higher price, does not influence the results of the different price nodes. Andricopoulos et al. (2003, 

2007), Chung et al. (2010), and Chen et al. (2014) used “dynamic” lattice points, which require a 

repeated computation in each recursion and a longer running time. If we use the suggested “static” 

points and calculate all of the transition density approximation across the grid points at the beginning, 

we avoid the need for repeated computation, resulting in a substantial reduction in running time.  

Figure 1 Comparison of the dynamic and static grids 

 

Then the following simple equation represents the recursion equation (1) from time  ( 𝑛 +

1)∆ to 𝑛∆: 

𝑉𝑛∆ = max(exp(−𝑟∆) ∗ 𝛿 ∗ 𝐻𝑎𝑑(𝑊, 𝑃) ∗ 𝑉(𝑛+1)∆, 𝐾 − 𝑋𝑛∆),             (2) 

where 𝑊 represents the weight coefficient matrix with size 𝐿 ∗ 𝐿 in applying Simpson’s rule, P is 

an 𝐿 ∗ 𝐿 matrix, 𝑃(𝑖, 𝑗) is the conditional density of 𝑋𝑗|𝑋𝑖

 
in one time step, and Had refers to the 

Hadamard product for matrix W and P. 𝑉𝑛𝛥 ,
 
whose size is 𝐿 ∗ 1, is the option value of 𝑋𝑛∆ at time 

𝑛𝛥, and 𝑋𝑛∆ presents the grid points {𝑋1, 𝑋2, … , 𝑋𝐿}.  

It is straightforward to calculate the recursion between each interval in a matrix form based on (2) 

and repeated computation in (2) implements the recursion from time ( 𝑛 + 1)∆ to 𝑛∆ and saves 

running time compared to node-to-node computation (as in the dynamic grid in Figure 1, we are always 



valuing the price on node E, then node F, then node G, and so on). This approach also makes it possible 

to use a smaller time step, and a smaller time step brings the general jump model (which we introduce 

subsequently) closer to the widely applicable jump model form, especially for a high jump intensity 

and achieve a tight bound for the optimal exercise frontier. 

As indicated in Andricopoulos et al. (2003, 2007), a range of five or six standard deviations away 

from node 𝑋𝑛∆ during a time step is sufficient in their pure diffusion model, but it may call for a wider 

range in the jump-extended model when meeting relatively large size jumps. Fortunately, in the matrix 

form of (2), we can see that it covers the range from 𝐴 to �̅� for each node calculated.  

 

2.2. Transition densities under jump-diffusion models 

As shown in (1) and (2), transition densities play a vital role in the quadrature method. The 

calculation of the transition densities represents the gap between the continuous-time models and 

jump-diffusion models. Here, we start from the general jump-diffusion model,  

                 𝑑𝑋𝑡 = 𝜇(𝑋𝑡, 𝐽)𝑑𝑡 + 𝜎(𝑋𝑡, 𝐽)𝑑𝑊𝑡 + 𝑑(∑ ℎ(𝑋𝑡, 𝐽)𝑁𝑖
𝑖=1 ),                  (3) 

where 𝑁𝑡  is a Poisson process with intensity parameter , and ℎ(𝑋𝑡, 𝐽)
 
is the jump function depending 

on 𝑋𝑡 
and the jump variable 𝐽 with the probability density function (PDF) of 𝜑(𝑦|𝑋𝑡; 𝜃). Obviously, 

the transition density of the general jump-extended model is different from most of the continuous-

time models with discrete observations in which the Euler scheme can be used to approximate the 

transition density directly, because it is not explicitly computable. Amin (1993) replaced jump 

distribution with discrete distribution. Hilliard and Hilliard (2015) chose the lattice probability by 

extending the density matching for diffusions to the density for jump diffusions. However, this setup 

does not permit state-dependent diffusion volatility for local returns in the jump-diffusion process.  

For a tiny time step, we use the following widely applicable form: 

𝑑𝑋𝑡 = 𝜇(𝑋𝑡, 𝐽)𝑑𝑡 + 𝜎(𝑋𝑡, 𝐽)𝑑𝑊𝑡 + ℎ(𝑋𝑡, 𝐽)𝑑𝑁(),                  (4) 

where 𝑁() is a Bernoulli distribution, which takes the value of 1 with a probability of 𝑑𝑡 and the 

value of 0 with a probability of 1 − 𝑑𝑡. Merton (1976) introduced this Poisson-driven process for 

the jump process. Beliaeva and Nawalkha (2012) used the approximation by ignoring the diffusion 

item as follows: 

𝑑𝑋𝑡 =

{
  𝜇(𝑋𝑡, 𝐽)𝑑𝑡 + 𝜎(𝑋𝑡, 𝐽)𝑑𝑊𝑡,                               with probability 1 − 𝑑𝑡

ℎ(𝑋𝑡, 𝐽),                                                                 with probability  𝑑𝑡
.   

(5) 

To be more precise, the PDF in (4) should be  



  𝑑𝑋𝑡 =

{
  𝜇(𝑋𝑡, 𝐽)𝑑𝑡 + 𝜎(𝑋𝑡, 𝐽)𝑑𝑊𝑡,                                  with probability 1 − 𝑑𝑡

𝜇(𝑋𝑡, 𝐽)𝑑𝑡 + 𝜎(𝑋𝑡, 𝐽)𝑑𝑊𝑡 + ℎ(𝑋𝑡, 𝐽),                 with probability  𝑑𝑡
. 

  (6) 

We can easily calculate the transition density of the first (pure diffusion) part  𝜇(𝑋𝑡, 𝐽)𝑑𝑡 +

𝜎(𝑋𝑡, 𝐽)𝑑𝑊𝑡 , which we denote as 𝑃0 through the Gaussian approximation scheme, and the second 

part 𝜇(𝑋𝑡, 𝐽)𝑑𝑡 + 𝜎(𝑋𝑡, 𝐽)𝑑𝑊𝑡 + ℎ(𝑋𝑡, 𝐽), which we denote as 𝑃1 through the convolution integral 

because it is a distribution of the sum of two random variables. Ait-Sahalia (1999, 2002) presented a 

more explicit sequence of closed-form functions using Hermite polynomials, which handles the 

diffusion process well, but his work is difficult to extend to the jump-diffusion process. Moreover, the 

time step we use is less than 0.01 and the Euler scheme produces a similar estimation to that of Ait-

Sahalia. If the diffusion part is a normal distribution with PDF  𝜙(𝑥) , and  ℎ(𝑋𝑡, 𝐽)  has the 

PDF  𝑝(𝑦, 𝛥|𝑋𝑡; 𝜃) , then the second part has the following PDF: 

  𝑃1(𝑋𝑡+1, 𝛥|𝑋𝑡; 𝜃) = ∫ 𝜙(𝑋𝑡+1 − 𝑦|𝑋𝑡; 𝜃)𝑝(𝑦, 𝛥|𝑋𝑡; 𝜃) 𝑑𝑦. (7) 

By Bayes rule, the transition density is 

 𝑃(𝑋𝑡+1, 𝛥|𝑋𝑡; 𝜃) = (1 − 𝛥)𝑃0(𝑋𝑡+1, 𝛥|𝑋𝑡; 𝜃) + 𝛥𝑃1(𝑋𝑡+1, 𝛥|𝑋𝑡; 𝜃). (8) 

For the popular CEV model introduced by Cox and Ross (1976) with the lognormal jump  

𝑑𝑋𝑡 = 𝑟𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡
𝜌

𝑑𝑊𝑡 + 𝑋𝑡(exp(𝐽) − 1)𝑑𝑁(),                   (9) 

where 𝑋𝑡 is the asset price and 𝐽~𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇𝐽, 𝜎𝐽
2). By the Euler approximation scheme, we have the 

density 

  𝑃0(𝑥𝑡+𝛥, 𝛥|𝑥𝑡; 𝜃) =
1

√2

1

𝑥𝑡
𝜌

𝜎√𝛥
exp (−

(𝑥𝑡+𝛥−𝑟𝑥𝑡𝛥−𝑥𝑡)2

2(𝜎𝑥𝑡
𝜌

)
2

𝛥
), (10) 

and 𝑃1(𝑥𝑡+𝛥, 𝛥|𝑥𝑡; 𝜃) is expressed in the convolution integral 

𝑃1(𝑥𝑡+𝛥, 𝛥|𝑥𝑡; 𝜃) = ∫
1

√2𝛥𝜎𝑥𝑡
𝜌 exp (−

(𝑥𝑡+𝛥 − 𝑥 − 𝑟𝑥𝑡𝛥 − 𝑥𝑡)2

2(𝜎𝑥𝑡
𝜌

)
2

𝛥
)

+∞

−𝑥𝑡

∗ 

1

√2(𝑥+𝑥𝑡)𝜎
exp (−

1

2
(

ln(𝑥 𝑥𝑡+1⁄ )−𝜇𝐽

𝜎𝐽
)

2

) 𝑑𝑥.               (11) 

Then we get 𝑃(𝑋𝑡+1, 𝛥|𝑋𝑡; 𝜃).  

Numerous numerical integration methods are available to calculate the convolution integral in 

(11), such as the trapezium rule, Simpson’s rule, and the Gaussian quadrature. For example, we can 

get the 0.1% and 99.9% percentiles of the jump variable, establish an equally spaced grid with 100 

(200 or more) quadrature points between the percentiles, and then naturally and efficiently implement 

the integral in Simpson’s rule based on the grid.  



 

2.3 Comparisons and extensions  

A number of similar methods have been proposed to price American options under jump-extended 

cases, such as the Gaussian quadrature in Sullivan (2000) and the dynamic programming in Ben-

Ameur et al. (2016). Although Sullivan (2000) and Andricopoulos et al. (2003, 2007) both use the 

quadrature method, they deliver a different efficiency considering the quadrature points used. The 

Gaussian quadrature needs irregularly spaced grids and requires an exponential increase in effort to 

calculate the option prices. Despite the function approximation and some extrapolation, the 

computational effort still increases linearly as the observations  𝑀  increase and we find that the 

computation time grows quickly when 𝑀 increases from 64 to 256 from the numerical results in 

Sullivan (2000). Moreover, due to the limit of the small M, the reduced form in (4) sometimes does 

not closely approximate the general jump diffusion model (3). Now we review the recursion in (2) and 

find that the level of effort stays the same during each time step and is available for a larger M. 

Furthermore, this helps us get rid of the function approximation and extrapolation, which saves time 

compared with the framework in Sullivan (2000). 

Ben-Ameur et al. (2016) proposed dynamic programming (DP) coupled with finite elements for 

valuing American-style options under Gaussian and double exponential jumps. The key ingredients 

for the DP to run are the transition tables. They derive the tables in closed form under the setting of 

Merton (1976) and Kou (2002). However, their method is difficult to move beyond the GBM (such as 

CEV) and to different jumps because it seems much more difficult and complex to derive the transition 

tables. Moreover, the running time grows quickly as the grid size increases (see Table 7 in their work 

for example).  

In addition, estimating the optimal exercise boundary is an important topic in American-style 

option pricing. Similar to 𝑔(𝑥) defined in Andricopoulos et al. (2003), we denote 

𝐷𝐼𝐹(𝑋𝑛∆) = exp(−𝑟∆) ∗ 𝛿 ∗ 𝐻𝑎𝑑(𝑊, 𝑃) ∗ 𝑉(𝑛+1)∆ − max(𝐾 − 𝑋𝑛∆),         (12) 

which means the difference between the present value of the expected option price value one time step 

later and the value from an early exercise. The decreasing function is strictly monotonic, so there exists 

a unique solution 𝐹(𝑛∆)  that meets 𝐷𝐼𝐹(𝐹(𝑛∆)) = 0. When 𝑉(𝑋𝑛∆, 𝑛∆) and 𝐷𝐼𝐹(𝑋𝑛∆) of the 

grid are calculated recursively, we find a unique number k  that holds the inequalities:  

 𝐷𝐼𝐹(𝑋𝑘) ≥ 0, 𝐷𝐼𝐹(𝑋𝑘+1) ≤ 0. 

Extrapolation to these estimators can then be performed so that we obtain the solution to the 

equation 𝐷𝐼𝐹(𝑋𝑛∆
∗ ) = 0, which is the optimal exercise boundary at time 𝑛∆. As a result, we involve 

the early exercise boundary F(t) on each time step.  



Now we consider a monthly (quarterly or weekly) monitored Bermudan option pricing. Slightly 

different from (2), the recursion goes as follows: 

𝑉𝑛∆ = max (exp(−𝑟∆) ∗ 𝛿 ∗ 𝐻𝑎𝑑(𝑊, 𝑃) ∗ 𝑉(𝑛+1)∆, 𝐾 − 𝑋𝑛∆)  when 𝑛 = 𝑖 ∗ 𝑀 12⁄    (13) 

and    

  𝑉𝑛∆ = exp(−𝑟∆) ∗ 𝛿 ∗ 𝐻𝑎𝑑(𝑊, 𝑃) ∗ 𝑉(𝑛+1)∆   when 𝑛 ≠ 𝑖 ∗ 𝑀 12⁄ ,        (14) 

where 𝑖 = 0,1, … ,12. 

Option hedging is another significant topic in option trading, because a delta neutralized portfolio 

is preferred by investors. A simple and popular approach is to use a finite difference approximation, 

which requires a reestimation at a spot price of 𝑋0 + 𝜀
 
and 𝑋0 − 𝜀 (let 𝜀 be a number close to zero). 

Our method seems to be much easier based on the static grid scheme introduced in the previous 

subsection. We can calculate the prices on nodes d to h in Figure 1 at time 0 (or𝑛 ∗ ∆). As mentioned 

in Sullivan (2002), function approximation can be used to acquire a close and satisfactory fit for these 

nodes. Thus, hedging coefficients can be easily computed with the fit curve estimated. Here, we select 

the Chebyshev polynomials as the candidate approximation and the first-order (Delta) and second-

order derivative (Gamma) can be derived directly. See Wu et al. (2015) for more details. 

 

3. Numerical study 

3.1. The Gaussian jump model  

First, we apply the quadrature method to the well-known Black-Scholes model. We begin with 

this model because numerous studies have been done on it (see Feng and Linetsky (2008), Hilliard and 

Hilliard (2015), Ben-Ameur et al. (2016) for examples) and there exists an explicit probability density 

function for this process. 

Here, we present the same form of the risk-neutralized version as in Hilliard and Hilliard (2015): 

d𝑦 = (𝑟 −
𝜎2

2
− λ𝐽)̅ d𝑡 + 𝜎𝑑𝑊 + ln(1 + 𝐽) 𝑑 𝑁(),                

where 𝑦 = ln (𝑋𝑡+1 𝑋𝑡⁄ ), ln (1 + 𝐽)~𝑁(𝛾′, 𝛿2) and  𝐽 ̅ = 𝐸(𝐽), 𝛾′ = 𝛾 − 𝛿2 2⁄  . 

Based on the PDF derived and the lattice points set out in the previous section, the application of 

the quadrature process to the model is easy and a comparison with other classical approaches can put 

the quadrature method in perspective.  

Table 1 presents the American put option prices from quadrature method and the estimates from 

the density matching (DM) approach of Hilliard and Hilliard (2015). Type A stands for the equal jump 

and diffusion volatility coefficient, type B stands for the large relative jump volatility coefficient, and 

type C stands for the larger relative jump volatility coefficient. Compared with the benchmark from 

Hilliard and Hilliard (2015), the quadrature method achieves exceptional accuracy, with the errors 



generally less than 0.01 across the different grid sizes and various strike prices and all of the three 

types. Moreover, it can be implemented within 1 second for grid sizes less than 2000, and the 

convergence speed is remarkable. The running time is composed of the transition density computation 

and recursion process. The former occupies about 60% of the total time. Therefore, the recursion in (2) 

under the static grid seems efficient.



 

 

Table 1  American put option prices under a Gaussian jump diffusion 

 
𝐀:  = 5, 𝛾 = 0, 𝛿 = √0.05, 𝜎 = √0.05 

 
𝐁:  = 5, 𝛾 = 0, 𝛿 = 0.3, 𝜎 = 0.1 

 
𝐂:  = 5, 𝛾 = 0, 𝛿 = √0.05, 𝜎 = 0.05 

Strike DM QD-5 QD-10 QD-20  DM QD-18 QD-27 QD-45  DM QD-16 QD-25 QD-32 

30 2.710 2.7156 2.7159 2.7159  4.022 4.0267 4.0267 4.0264  2.262 2.2579 2.2563 2.2563 

35 4.592 4.6009 4.6009 4.6009  6.184 6.1866 6.1865 6.1864  3.955 3.9854 3.9848 3.9848 

40 7.018 7.0254 7.0254 7.0255  8.771 8.7870 8.7869 8.7868  6.299 6.2958 6.2956 6.2957 

45 9.941 9.9471 9.9472 9.9472  11.767 11.7895 11.7895 11.7900  9.154 9.1697 9.1696 9.1696 

50 13.307 13.3063 13.3064 13.3065  15.146 15.1450 15.1450 15.1450  12.554 12.5500 12.5498 12.5500 

Running time(s) 0.06 0.28 1.10   0.85 1.80 5.00   0.70 1.60 2.50 

 

Note: the spot stock price is 40, the risk free rate is 0.08, and the maturity is 1 year. We set 𝑀 = 200, which maintains the same time 

step as Hilliard and Schwartz (2015). DM refers to the density matching approach of Hilliard and Hilliard (2015). QD-P means the 

estimates are from a grid size of P*100, for example, QD-20 means L=20*100=2000. The algorithm is programmed in Matlab and 

executed on an Intel Core i5-2520 CPU @ 3.4GHz with 8 GB RAM. 

 



3.2. The double-exponential jump model 

Now, we consider another popular model, the double exponential jump-diffusion model in Kou 

(2002), which incorporates the leptokurtic feature. We rewrite the model as follows: 

d𝑦 = (𝑟 − 𝑞 −
𝜎2

2
− λκ) d𝑡 + 𝜎𝑑𝑊 + 𝜁𝑑 𝑁(), 

where the PDF of 𝜁   is 𝑓(z) = 𝑝𝜂1 exp(−𝜂1𝑧) ∗ 𝟏(𝑧≥0) + 𝑞𝜂2 exp(𝜂2𝑧) ∗ 𝟏(𝑧<0) . The constants 

𝑝, 𝑞 ≥ 0, 𝑝 + 𝑞 = 1, 𝜂1 > 1, 𝜂2 > 0 and κ = 𝐸(exp(𝜁)) − 1 = 𝑝𝜂1 (𝜂1 − 1)⁄ + 𝑞𝜂2 (𝜂2 + 1)⁄ − 1,

𝑦 = ln(𝑋𝑡+1 𝑋𝑡⁄ ), 𝑟 is the risk-free interest rate, and 𝑞 is the dividend yield. Furthermore, to closely 

approximate any other random variable, such as the Gamma or Weibull distributions, Cai and Kou 

(2011) proposed the mixed-exponential jump-diffusion model (MEM), in which the jump size is a 

weighted average of the exponential distributions. The explicit density over a time interval Δ is easy 

to derive. 

Table 2 provides the monthly monitored Bermudan put option prices from the quadrature method 

and the estimates from Feng and Linetsky (2008). A basic setting for the models goes as follows: 

𝜎 = 0.1, λ = 3, 𝑝 = 0.3, 𝜂1 = 40, 𝜂2 = 12, 𝑟 = 0.05, 𝑞 = 0.02. 

We set M equal to 360 and the options can be exercised at 30 ∗ 𝑖 ∗ ∆ (𝑖 = 0,1,2, … ,12). Again, 

the quadrature method shows high levels of efficiency and accuracy, such that the errors are generally 

less than 0.005 across the different grid sizes and strike prices. Furthermore, the quadrature displays 

consistent convergence to the benchmark and has a satisfactory convergence speed with 1000 or 1500 

grids, which seems sufficiently accurate. 

 

Table 2  Bermudan put option prices under a double exponential jump diffusion 

Spot QD-10 QD-15 QD-20 Feng and Linetsky (2008) 

85 15.0707 15.0695 15.0695 15.0695 

90 11.3660 11.3652 11.3652 11.3662 

95 8.5460 8.5453 8.5453 8.5479 

100 6.4137 6.4134 6.4134 6.4171 

105 4.8182 4.8180 4.8180 4.8225 

110 3.6300 3.6298 3.6298 3.6347 

115 2.7456 2.7455 2.7455 2.7505 

Time(s) 0.42 0.95 1.65  

Note: the strike price is 100 and the maturity is 1 year. QD-P means the estimates are 

from a grid size of P*100.  

 



 

Table 3  American put option prices under the lognormal jump-CEV models 

  = 0 (pure diffusion)   = 2, 𝜇
𝐽

= 0.03, 𝜎𝐽 = 0.02   = 4, 𝜇
𝐽

= 0.03, 𝜎𝐽 = 0.02   = 2, 𝜇
𝐽

= 0.08, 𝜎𝐽 = 0.04 

Maturity 0.5  1.0   0.5  1.0   0.5  1.0   0.5  1.0  

 K=80 

Quad-200 1.509  3.456   1.245  2.710   1.030  2.127   1.003  1.986  

MixedTree 1.510  3.460   1.228  2.589   1.001  1.941   1.000  1.969  

LSM 1.492  3.434   1.234  2.690   1.018  2.111   1.000  1.971  

SE 0.012  0.021   0.011  0.018   0.010  0.016   0.010  0.015  

 K=90 

Quad-200 3.978  6.662   3.419  5.464   2.951  4.506   2.863  4.242  

MixedTree 3.984  6.667   3.387  5.269   2.892  4.198   2.861  4.216  

LSM 3.975  6.648   3.426  5.468   2.966  4.513   2.878  4.239  

SE 0.021  0.030   0.019  0.026   0.017  0.023   0.017  0.022  

 K=100 

Quad-200 8.211  11.203   7.328  9.577   6.590  8.277   6.412  7.886  

MixedTree 8.218  11.211   7.276  9.318   6.497  7.867   6.409  7.855  

LSM 8.206  11.178   7.332  9.577   6.575  8.279   6.422  7.874  

SE 0.030  0.038   0.027  0.034   0.024  0.031   0.024  0.030  

 K=110 

Quad-200 14.242  17.039   13.159  15.132   12.311  13.680   12.081  13.231  

MixedTree 14.251  17.052   13.100  14.845   12.213  13.249   12.082  13.206  

LSM 14.240  17.026   13.165  15.134   12.302  13.671   12.067  13.210  

SE 0.036  0.045   0.033  0.040   0.030  0.035   0.029  0.033  

This table contains the option prices from the least squares method (LSM) by Longstaff and Schwarts (2001), the mixed tree method 

by Beliaeva and Nawalkha (2012), and our results from the quadrature method. Quad-200 means 𝑀 = 200 . The mixed tree 

estimates are computed on a 101-node and 500-step tree. SE is the standard error of the LSM estimates. 



3.3. The lognormal jump-extended CEV model1 

The PDF in the two examples above is analytical tractable and these models have attracted 

sufficient attention in the literature. To further explore the usefulness of the quadrature method, we 

apply the method to a more general case, the CEV model with lognormal jump, whose PDF is 

nonanalytic and makes the quadrature method universal and outstanding. Again, based on the PDF in 

(10) and (11) and the lattice points prepared above, the quadrature method can be easily applied to this 

model. To test the accuracy and the quadrature method, we compare our approximation with the mixed 

tree of Beliaeva and Nawalkha (2012) and the least squares methods of Longstaff and Schwarts (2001). 

Due to a lack of analytic solutions, we treat the LSM estimates as the benchmark. We choose an 

appropriate parameter setting:  𝑟 = 0.03, σ = 0.5, 𝜌 = 0.9  and  𝑋0 = 100, 𝑇 = 1 .  σ  may seem 

slightly higher because we try to keep the instantaneous variance of this model at the same level as the 

GBM model, where 𝜌 = 1(0.3 ∗ 100 = 30, 0.5 ∗ 1000.9 ≈ 31.5). 

Table 3 reports the American put option prices for different combinations of jump sizes and 

intensities. We find that both the jump size and jump intensity have a significant influence on the option 

valuation and all of the quadrature values are located within 95% confidence intervals of the associated 

MC values. The bias between the methods for the no jump case ( = 0) and sharp jump case (𝜇𝐽 =

0.08, 𝜎𝐽 = 0.04 ) is small within different parameters, moneynesses, and maturities for all three 

techniques. In the sharp jump case, the jump size is great relative to the diffusion part and the 

approximation in (5) does not make a big difference to the transition density. Therefore, these methods 

reach consistent valuations. Now, let us pay attention to the prices generated from the mild jump 

case 𝜇𝐽 = 0.03, 𝜎𝐽 = 0.02. The results from the LSM and quadrature are close to each other, while the 

mixed tree underestimates the prices. The bias increases as the maturities and jump intensity increase. 

The estimates from the mixed-tree method are underestimated because the lognormal distribution is 

skewed to the right and we overestimate the probability on the nodes above the diffusion nodes.  

Table 4 shows the computation time and the convergence of the quadrature method under different 

grid sizes and time steps. We take  = 4, 𝜇𝐽 = 0.03, 𝜎𝐽 = 0.02 as an example. We collect the times 

of the PDF calculation and recursion process separately. We can see that when the time steps increase 

to 800, it takes about 0.7 seconds to implement the recursion, which shows excellent speed for the 

quadrature in the static grid. Moreover, it shows consistent convergence to the fourth digit within 2 

seconds. 

 

                                                             
1 We consider this model to show the application of the quadrature method to a model whose PDF is 

nonanalytic and is evaluated from the convolution integral. 



 

Table 4  The convergence in the lognormal-jump extended CEV model 

Strike Quad-2-5 Quad-4-5 Quad-8-5 Quad-2-10 Quad-4-10 Quad-8-10 

80 2.1269  2.1266  2.1265  2.1269  2.1267  2.1263  

90 4.5056  4.5068  4.5071  4.5057  4.5067  4.5069  

100 8.2772  8.2805  8.2816  8.2773  8.2803  8.2813  

110 13.6802  13.6859  13.6882  13.6802  13.6857  13.6877  

PDF time 0.60  0.49  0.41  2.15  1.55  1.40  

Recursion time 0.05  0.09  0.14  0.23  0.38  0.66  

Note: the strike price is 100 and the maturity is 1 year. Quad-m-n means the estimates 

are from time steps of 𝑀 = 𝑚 ∗ 100 and grid size of 𝐿 = 𝑛 ∗ 100.  

 

4. Conclusion 

In this paper, we extend the quadrature method of Andricopoulos et al. (2003) to American option 

valuation under jump-diffusion models and attempt to present our approach in a universal manner. We 

suggest simpler and more robust lattice points for the quadrature method, calculate the transition 

densities via the convolution integral, and recursively value the option prices in a time step. Moreover, 

we demonstrate how to price options under the Gaussian jump model, the double-exponential jump 

model, and the lognormal jump-extended CEV model. Our approach allows for a larger step size and 

grid size because we implement the recursive process in a matrix manipulation based on the static grid 

and reach exceptional accuracy. We also find that the bias from the mixed tree method in Beliaeva and 

Nawalkha (2012) may increase as the jump size or jump intensity vary due to the scheme of probability 

assigned to the points. Finally, based on the universality of the quadrature method, which can just as 

easily be applied to exotic options, and the transition density numerically calculated from the 

convolution integral, we outline more flexible models and jump variables. 
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