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Abstract: Based on methods from Bollerslev et al. (2016), we explicitly account for the 

heteroskedasticity in the measurement errors and high volatility in Chinese stock prices and propose 

a new realized volatility forecasting model, LogHARQ, to forecast the realized volatility of Chinese 

stock index futures and options. Out-of-sample findings suggest that the LogHARQ model performs 

better than existing logarithmic and linear forecast models, particularly when the realized quarticity 

is large. In an economic sense, using the LogHARQ model for volatility forecasting leads to 

significant utility gains for investors. 
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1. Introduction 

The fast growth in the capitalization of the Chinese stock market has led to academic interest. 

The Chinese stock market is highly volatile due to features of the types of listed firms and of 

investors. Individual investors, who are more likely to be noise traders, play a major role in driving 

Chinese stock price movements, while the lack of security supplies makes the market vulnerable to 

speculation, further worsening the situation. The highly volatile nature of the Chinese stock market 

demands a suitable econometric specification to model and forecast market volatility. 

Studies of volatility in the Chinese stock market use various econometric models. GARCH class 

models are frequently used in modeling and forecasting the volatility of stock index futures and 

options (e.g., see Yang et al., 2012; Hou and Li, 2014; So and Tse, 2004; Fabozzi et al., 2004). Chen 

et al. (2012), who study the effect of index futures trading on spot volatility in the Chinese stock 

market, adopt a panel data evaluation approach to avoid the potential omitted variable bias. Wei et 
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al. (2011) compare the hedging effectiveness of the copula-MFV model with copula-GARCH 

models using the prices of Chinese stock index spots and futures. They show that the copula-MFV 

model has a better hedging effectiveness than the copula-GARCH models. Resent literature focused 

on the importance of realized measures and variety of models are proposed such as the Realized 

GARCH model (Hansen et al., 2012, Hansen and Huang, 2016), the HEAVY model (Shephard and 

Sheppard, 2010) etc. 

The HAR model, proposed by Corsi (2009), captures the long-memory characteristics of 

financial data and is parsimonious and easy to estimate. The HAR model has been widely used for 

volatility forecasting in the Chinese stock market (e.g., see Wang and Huang, 2012; Ma et al., 2014, 

Huang et al., 2016). 

However, Bollerslev et al. (2016) argue that the HAR model ignores time variability in the 

magnitude of the realized volatility measurement errors and so suffers from an errors-in-variables 

problem. The errors are proved to attenuate the parameters of the model. As a solution, they propose 

the linear HARQ model, which allows the parameters of the model to change with the magnitude 

of measurement error, and show that the linear HARQ model outperforms the forecasts from the 

HAR model. Similar to the HARQ model, the HARS model put forth by Bekierman and Manner 

(2018) captures the effect of measurement errors by including a time-varying state variable. 

Following Bollerslev et al. (2016), we derive a logarithmic version of the linear HARQ model 

using infill large sample theory and the asymptotic distribution of realized volatility. Inspired by the 

spirit of the EGARCH model (Nelson, 1991) and empirical evidence showing the superior volatility 

forecasting performance of the EGARCH model compared with the GARCH model in volatile times, 

we assume log-linear measurement errors to derive the LogHARQ model. Compared with the linear 

HARQ model, our model is better at forecasting realized volatility when the realized quarticity is 

large. In particular, the LogHARQ model is suitable for forecasting the volatility of Chinese stock 

index futures and options because the prices of these assets are highly volatile and the measurement 

errors are relatively large. We use the China Securities Index (hereafter CSI) 300 stock index and 

SSE 50ETF to represent Chinese stock index futures and options, respectively, and predict their 

volatility. Our empirical findings suggest that the LogHARQ model significantly improves on out-

of-sample forecasting accuracy relative to several commonly used volatility prediction models. The 

improvement is more pronounced when the realized quarticity is large. 

 In addition to the out-of-sample forecast improvements, we evaluate the economic benefit of 

using the LogHARQ model as a volatility forecasting model for investment decisions. Fleming et 

al. (2001) develop a framework of assessing the economic value of volatility timing strategies. They 

consider a risk-averse investor who has mean-variance preferences and allocates her wealth across 

different assets. Based on Fleming et al. (2001), Fleming et al. (2003) use the realized volatility to 

form estimates of the conditional covariance matrix of asset returns and find that volatility timing 

performance can be improved by using high frequency data. Marquering and Verbeek (2004) 

propose a framework for evaluating the economic value of volatility timing strategies when 



allocating between two assets, one risky and the other risk-free. Building on Marquering and 

Verbeek (2004), Nolte and Xu (2015) include realized jumps in the information set and find that a 

risk-averse investor can significantly improve her portfolio performance by incorporating realized 

jumps into her volatility timing strategy. 

 Following Marquering and Verbeek (2004), we investigate the economic benefits of using the 

LogHARQ model as the volatility forecast model in a volatility timing based portfolio allocation 

strategy. We use the CSI 300 stock index and SSE 50ETF as risky assets and a one-year fixed deposit 

as the risk-free asset. Using the HAR, HARQ, and LogHAR models as benchmarks, we show that 

an investor would be willing to pay a fee to use the LogHARQ model as a forecast model, which 

indicates that the LogHARQ model is better than the HAR, HARQ, and LogHAR models when 

forecasting Chinese stock market volatility. 

The remainder of the paper is organized as follows. Section 2 provides the notation and derives 

the LogHARQ model. Section 3 describes our dataset and reports the volatility forecasting accuracy 

of LogHARQ model and other benchmark models. Section 4 discusses the economic value of using 

the LogHARQ model as a volatility forecast model. Section 5 presents the results of robustness 

checks and the conclusion comes in Section 6. 

 

2.Models 

The stylized fact that volatility clustering implies autocorrelation between future volatility and 

current or past volatilities. One simple way to model such a volatility process is a Log-AR (1) model 

of integrated variance: 

0 1 1ln ln tt tIV IV   ò  

IV is defined as the integral of the instantaneous variance of the return process over a given 

period: 
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Andersen and Bollerslev (1998) show that 

   t 1 t 1| var |t tE IV F r F   

where 1tF  denotes the information set at time (t-1). 

Because IV is positive and highly right-skewed, we take its logarithm to reduce the possibility 

of parameter distortion from extreme IV values. Directly measuring IV with data is not possible 

because we do not know the exact process of the instantaneous variance. Andersen and Bollerslev 

(1998) propose an approximate measure which uses a summation of high-frequency returns, named 

the “realized variance”: 
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, ( 1)r ln lnt i t i t iP P       defines the -period intraday return, where   is defined as one over the 

number of samples for each trading day (M).  



 Bandorff-Nielsen and Shephard (2006) suggest that when M tends to infinity, ln tRV  

approaches ln tIV  plus a mean zero distribution: 

2ln ln                (0, c )t t t t t tRV IV MN IQ IV    :  

2( ) 0            )( ct t ttE Var IQ IV    

where 4 2
1 1( 2 5) /c M      and 

1 2 / M  . This implies that the autoregression estimated 

with ln tRV , 

0 1 1ln ln tt tRV RV e    , 

suffers from a measurement error problem and the corresponding parameter is biased toward zero.  

Assuming independence between ( , )tt ò , the bias can be quantified as 
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where we have used the approximation given above. IQ is called the integrated quarticity: 
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A feasible estimate of IQ, as suggested by Bollerslev et al. (2016), is the “realized quarticity”: 
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Taking the inverse of the equation gives the relationship between the correct parameter (
1 ) and the 

OLS estimated parameter ( 1̂ ): 

 1 1
21 / ( (ln ))ˆ

t ttcIQ IV Var IV    

If we assume (ln )tVar IV  is time invariant and collect terms with respect to their time variability, 

we have 

 1 1 1
2ˆ ˆ /Q ttIQ IV     

Using the estimated versions of IQ and IV leads to a feasible correction equation: 

 1 1 1
2ˆ ˆ /Q ttRQ RV     

Inserting the correction equation into the Log-AR (1) model, we have the corrected version and 

name it Log-ARQ (1): 
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For HAR-type models, two correction versions are proposed. The first version only corrects the 

lagged daily variance (referred to as LogHARQ): 
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The idea behind this is that weekly and monthly averaged variances have smaller measurement error 

due to their sample average nature. Therefore, we can leave them uncorrected and save two 

parameters. The second version corrects all lagged variances (referred to as LogHARQ-F): 
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We use the first version in the current paper. Results from the second version are similar and 

available upon request. 

For the linear HARQ model, Bollerslev et al. (2016) propose the following structure based on 

the approximation of IV. They consider the effect of the measurement error and then adjust the 

coefficients of 1tRV   to get the equation 

 1/ 2
10 1 1 1 1| 1352 | 22+t tQ t tt t t tRV RQ RV RV RV u             

The functional transformation of the integrated variance has a non-trivial effect on the correction 

process of the model. Similar non-trivial effects can also be found when other realized measures are 

used to approximate IV because different realized measures may have different asymptotic 

distributions. 

 

3. Modeling and Forecasting Volatility 

3.1 Data 

We focus our empirical studies on the CSI 300 stock index and SSE 50ETF, which play leading 

roles in stock index futures and options. Intraday prices at 5-minute intervals are obtained from the 

RESSET database. Our sample starts on January 4, 2007 and ends on December 30, 2016 for a total 

of 2407 observation days.1 We split the sample into two subsamples, one covering 2007-2011 and 

the other covering 2012-2016.  

Table 1 reports descriptive statistics of the daily realized volatilities and logarithmic realized 

volatilities for the CSI 300 stock index and SSE 50ETF in the two subsamples. Results of ADF tests 

reject the null hypothesis of a unit root for every single series at the 1% level.  

Table 1 

Summary Statistics 

 SSE 50ETF CSI 300 

 2007-2011 2012-2016 2007-2011 2012-2016 

 RV lnRV RV lnRV RV lnRV RV lnRV 

Mean 2.76E-04 -8.555 2.09E-04 -9.141 3.34E-04 -8.408 1.96E-04 -9.162 

Median 1.84E-04 -8.600 9.46E-05 -9.266 2.11E-04 -8.465 9.31E-05 -9.282 

Maximum 4.09E-03 -5.498 4.87E-03 -5.324 4.76E-03 -5.348 4.77E-03 -5.345 

Minimum 1.91E-05 -10.864 6.89E-06 -11.885 2.32E-05 -10.673 9.55E-06 -11.559 

                                                              
1 The Chinese stock market experienced a market breakdown on January 4 and 7, 2016, which triggered a circuit 
breaker. Data for these two days are excluded from our sample. 



Std. Dev. 3.11E-04 0.817 4.29E-04 1.024 3.73E-04 0.876 3.80E-04 0.989 

Skewness 4.918 0.284 6.502 0.653 3.956 0.254 6.552 0.680 

Kurtosis 43.177 3.007 54.849 3.770 30.172 2.656 58.578 3.834 

ADF Stat. -8.765
***

 -5.491
***

 -7.540
***

-4.347
***

-8.472
***

-5.598
***

-7.540
***

 -4.347
***

Note. The ADF tests use 5 lags. *** denotes significance at the 1% level. 

Figures 1 and 2 present the time variation of log RV for the CSI 300 stock index and SSE 

50ETF, respectively. During the 2015 Chinese stock market crash, log RV for both assets 

experienced a significant increase, which motivates investigating volatility forecasting performance 

in the two subsamples separately. 

 

Fig. 1. Time variation of logarithmic realized volatility of SSE 50ETF. 

 

Fig. 2. Time variation of logarithmic realized volatility of the CSI 300 stock index. 

 

3.2 In-sample estimation results 

Table 2 presents the parameter estimates for the full sample for the LogARQ and LogHARQ 

models, together with the benchmark LogAR and LogHAR models. We report the adjusted R-

squares for comparison between different models. 

 Table 2 shows that measurement error plays an important role in forecasting realized volatility 

for both assets, as indicated by the significance of 𝛽ଵொ. By taking into account the time-varying 

measurement error in the daily RV, the LogARQ and LogHARQ models assign a greater weight to 



the daily lag, which is in line with in Bollerslev et al. (2016). Consistent with previous studies on 

HAR models (e.g., see Corsi, 2009; Corsi et al., 2010), 𝛽ଵ, 𝛽ଶ, and 𝛽ଷ are also significant in the 

LogHARQ model. 

 

 

 

 

Table 2 

Estimation results for the full sample 

SSE 50ETF CSI 300 

LogAR LogHAR LogARQ LogHARQ LogAR LogHAR LogARQ LogHARQ 

β0 -2.098
***

 -0.517
***

 -1.558
*** 0.032 -1.703

***
-0.425

***
 -1.577

***
 -0.135 

s.e. (0.136) (0.137) (0.214) 0.212 (0.115) (0.116) (0.171) (0.166) 

β1 0.763
***

 0.294
***

 0.829
***

0.364
***

0.807
***

0.353
***

 0.822
***

 0.386
***

s.e. (0.015) (0.032) (0.025) (0.034) (0.013) (0.027) (0.020) (0.031) 

β2 0.417
***

 0.399
***

0.381
***

 0.374
***

s.e. (0.047) (0.045) (0.042) (0.043) 

β3 0.231
***

 0.246
***

0.219
***

 0.228
***

s.e. (0.037) (0.037) (0.035) (0.035) 

β1Q 2.13E-03 2.11E-03
*** 4.99E-04 1.08E-03

***

s.e. (7.04E-04) (5.77E-04) (4.36E-04) (4.08E-04) 

Adj.R2 0.471 0.479 0.482 0.496 0.456 0.473 0.456 0.479 

Note: *** denotes significance at the 1% level. Robust standard errors are reported in parentheses. 

 

3.3 Out-of-sample forecast results 

We assess the one-day-ahead forecast performance for the realized volatilities of the CSI 300 

stock index and SSE 50ETF. The forecast series are obtained by estimating the parameters of the 

models with a fixed length rolling window comprised of the previous 1000 observations. The 

recursive estimation method is also used and the results are reported for comparison. 

 To compare with the results obtained from the linear HAR model, we assume that the residuals 

of the LogHAR model and LogHARQ models are normally distributed, so that the forecast of the 

LogHARQ model can be expressed as 
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 Consistent with the literature (e.g., see Bollerslev et al., 2016), we use a standard MSE measure 



and the QLIKE loss to evaluate the out-of-sample performance of the different models: 
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where 𝐹௧ refers to the one-step-ahead forecasts and 𝑅𝑉௧ denotes the true realized volatilities. 

 The MSE and QLIKE for the full sample are reported in Table 3. Panel A shows the ratios of 

the losses of the different linear models relative to the losses of the HAR model. Panel B presents 

the loss ratios for the logarithmic models relative to the LogHAR model.  

Table 3 

Out-of-sample forecast losses of different models for the full sample 

Note: The table reports the ratio of the losses for the linear and log models. Panel A shows the ratio 

of losses for the linear models relative to the losses of the HAR model. Panel B presents the loss 

ratios for the logarithmic models relative to the LogHAR model. Both MSE and the QLIKE losses 

are adopted to evaluate the out-of-sample performance of the different models. The forecast series 

are obtained using both a rolling window (RW) estimation and an increasing window (IW) 

estimation. We report the loss ratios for all loss functions and window lengths combinations. 

 Table 3 provides evidence that the LogHARQ model performs better than all other logarithmic 

models for all loss functions and window lengths combinations. The LogHARQ model gains nearly 

2% in forecast accuracy relative to the benchmark LogHAR model as measured by QLIKE. 

 We compare the out-of-sample forecast performance of the different models in the two 

subsamples and report the results in Table 4. Table 4 presents the ratio of the losses for the different 

models relative to the losses of the HAR model (columns 3-5 and 7-9) and the LogHAR model 

 SSE 50ETF CSI 300 

Panel A AR HAR ARQ HARQ AR HAR ARQ HARQ 

MSE 
RW 1.050  1.000  0.952  1.035  1.107  1.000  1.148  1.101  

IW 1.077  1.000  0.997  0.966  1.150  1.000  1.093  1.002  

QLIKE 
RW 1.349  1.000  1.160  1.006  1.439  1.000  1.321  1.035  

IW 1.406  1.000  1.175  0.963  1.551  1.000  1.150  0.939  

Panel B LogAR LogHAR LogARQ LogHAR LogAR LogHAR LogAR LogHARQ 

MSE 
RW 1.132  1.000  1.072  0.986  1.186  1.000  1.128  0.989  

IW 1.029  1.000  0.998  0.986  1.074  1.000  1.046  0.995  

QLIKE 
RW 1.228  1.000  1.141  0.990  1.224  1.000  1.144  0.981  

IW 1.151  1.000  1.089  0.990  1.139  1.000  1.080  0.983  



(columns 6 and 10). Panel A shows the results for the 2007-2011 sample period; Panel B reports the 

loss ratios for 2012-2016.  

 

 

 

 

Table 4 

Out-of-sample forecast losses of different models for the two subsamples 

 

SSE 50ETF CSI 300 

HARQ 

/HAR 

LogHAR 

/HAR 

LogHARQ 

/HAR 

LogHARQ 

/LogHAR 

HARQ 

/HAR 

LogHAR

/HAR 

LogHARQ 

/HAR 

LogHARQ 

/LogHAR 

Panel A  2007-2011 

MSE 
RW 1.030 0.817  0.802  0.981  0.976 0.793  0.789  0.995  

IW 0.983 0.748  0.733  0.979  0.971 0.743  0.735  0.989  

QLIKE 
RW 0.984 0.899  0.870  0.968  0.921 0.853  0.861  1.009  

IW 0.960 0.855  0.827  0.967  0.902 0.809  0.807  0.998  

Panel B  2012-2016 

MSE 
RW 1.106 0.789  0.774  0.981  1.046 0.882  0.854  0.967  

IW 1.146 0.818  0.803  0.982  1.053 0.892  0.862  0.967  

QLIKE 
RW 0.961 0.779  0.754  0.968  0.895 0.823  0.814  0.989  

IW 1.029 0.822  0.798  0.971  0.919 0.858  0.847  0.988  

Note: This table shows the ratios of the losses for the different models relative to the losses of the 

HAR model (columns 3-5 and 7-9) and the LogHAR model (columns 6 and 10). Panel A shows the 

results for 2007-2011. Panel B reports the loss ratios for 2012-2016. Both MSE and the QLIKE 

losses are adopted to evaluate the out-of-sample performance of the different models. The forecast 

series are obtained using both a rolling window (RW) estimation and an increasing window (IW) 

estimation. We report the loss ratios for all loss functions and window lengths combinations. 

Table 4 shows that for each asset, the loss ratios HARQ/HAR, LogHAR/HAR, and 

LogHARQ/HAR are decreasing, which is a supportive evidence for the superior forecasting 

performance of LogHARQ model compared to HARQ, LogHAR, and the basis HAR model. The 

results are consistent across Panels A and B, so the higher forecast accuracy holds for both sample 

periods. The improvements in the forecast accuracy of the LogHARQ model relative to the HAR 

model range from 12% to 26%. 

 Table 5 reports the loss ratios stratified according to RQ. After further splitting the forecasting 

results in Table 4 into forecasts for days when the previous day’s RQ was very high and forecasts 



for the rest of the sample, we find that the LogHARQ model achieves even better forecast 

performance when RQ is high. This verifies our hypotheses that the LogHARQ model has more 

predictive power for realized volatility when volatility is highly volatile. To sum up, by explicitly 

accounting for the heteroskedasticity in the measurement errors and high volatility in Chinese stock 

prices, LogHARQ model performs better than existing logarithmic and linear models, particularly 

when RQ is large. The LogHARQ model improves the forecasting accuracy of realized volatility in 

the Chinese stock market. 

Table 5 

RQ Stratified out-of-sample forecast losses 

Note: The table reports the loss ratios stratified according to the relative magnitude of the realized 

quarticity. Panels B and D show the ratios for days following a day with an RQ value in the top 5% 

in sample covering 2007-2011 and the 2012-2016 sample, respectively. Panels A and C present the 

results for the remaining 95% of the days in the two subsamples. Both MSE and the QLIKE losses 

are adopted to evaluate the out-of-sample performance of the different models. The forecast series 

are obtained using both a rolling window (RW) estimation and an increasing window (IW) 

 

SSE 50ETF CSI 300 

HARQ

/HAR 

LogHAR 

/HAR 

LogHARQ 

/HAR 

LogHARQ 

/LogHAR 

HARQ

/HAR 

LogHAR

/HAR 

LogHARQ 

/HAR 

LogHARQ

/LogHAR

Panel A  Bottom 95% RQ （2007-2011） 

MSE 
RW 0.968 0.834 0.820 0.983 0.902 0.814 0.820 1.000 

IW 0.956 0.790 0.777 0.984 0.887 0.779 0.780 0.994 

QLIKE 
RW 0.969 0.907 0.888 0.979 0.896 0.863 0.884 1.015 

IW 0.953 0.871 0.853 0.979 0.875 0.822 0.831 1.003 

Panel B  Top 5% RQ (2007-2011) 

MSE 
RW 1.552 0.671 0.647 0.964 1.468 0.655 0.585 0.950 

IW 1.149 0.492 0.460 0.935 1.447 0.543 0.487 0.947 

QLIKE 
RW 1.214 0.767 0.593 0.773 1.208 0.739 0.596 0.907 

IW 1.058 0.653 0.490 0.751 1.176 0.668 0.555 0.909 

Panel C Bottom 95% RQ (2012-2016) 

MSE 
RW 0.945 0.815 0.795 0.975 0.965 0.893 0.881 0.982 

IW 0.986 0.851 0.830 0.976 0.977 0.908 0.896 0.981 

QLIKE 
RW 0.945 0.787 0.763 0.969 0.880 0.823 0.821 0.996 

IW 1.015 0.833 0.810 0.972 0.905 0.860 0.857 0.995 

Panel D  Top 5% RQ (2012-2016) 

MSE 
RW 1.793 0.679 0.686 1.011 1.141 0.871 0.822 0.950 

IW 1.807 0.684 0.693 1.013 1.141 0.872 0.824 0.951 

QLIKE 
RW 1.311 0.606 0.569 0.939 1.120 0.815 0.702 0.883 

IW 1.323 0.606 0.574 0.947 1.121 0.819 0.707 0.885 



estimation. We report the loss ratios for all loss functions and window lengths combinations. 

 

 

4. Economic Value Test 

 We now focus on the economic value of the model. We measure the economic value of the 

LogHARQ model as the cost an investor is willing to pay to use the LogHARQ model as a volatility 

forecasting model instead of other models. 

 To evaluate the economic value, we first construct volatility timing based portfolio allocation 

strategies. We assume the investor is risk averse. Her portfolio contains risky assets and risk-free 

assets. A one-year fixed deposit is used as the risk-free asset; the risky assets are the CSI 300 stock 

index and SSE 50ETF. Daily returns for these assets are used as the basis of the portfolio allocation. 

The economic intuition for the strategy is quite simple. Given the expected return, the investor puts 

more weight on the risky asset when the volatility of the risky asset is low and she turns to the risk-

free asset when the volatility is high. The investor maximizes her utility: 

, 1 , 1[ ( ), ( )]
t

t p t t p tMaxU E r Var r
w

  , 

where , 1( )t p tE r   is the conditional expected return of the portfolio, , 1( )t p tVar r   denotes the 

conditional variance, and t  is the optimal weight on the risky asset. The expected return is 

, 1 , 1 , 1 , 1( ) ( ( )t p t f t t t m t f tE r r E r r      ）, 

where , 1( )t m tE r   is the conditional expected return of the risky assets and , 1f tr   is the risk-free 

return. 

 Although we could use more sophisticated utility functions, we choose simple mean-variance 

preferences because our primary interest is whether the improvements in volatility forecast accuracy 

provided by the LogHARQ model gain an additional economic value. The mean-variance utility 

function is 

𝑈ൣ𝐸௧൫𝑟௣,௧ାଵ൯, 𝑉𝑎𝑟௧൫𝑟௣,௧ାଵ൯൧ ൌ 𝐸௧൫𝑟௣,௧ାଵ൯ െ
𝛾
2
𝑉𝑎𝑟௧൫𝑟௣,௧ାଵ൯ 

Thus, the expression of the optimal weight on the risky asset is 

, 1 , 1

, 1

( )

( )
t m t f t
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t m t

E r r

Var r



 




 , 



where   is the investor’s risk aversion coefficient.  

We compute the conditional variance of the portfolio as 

1, 1( ) tt m tVar r BCF RV    

2 2
1, 1 m, 1( ) ( ) tt P t t tVar r Var r BCF RV      . 

1tRV   is the realized volatility forecast obtained from the predictive models. BCF (Nolte and Xu, 

2015) is used to match the realized volatility of 6.5 hours’ high frequency trading to daily variance: 

2

1

1

1/

1/

n
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n
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n r
BCF

n RV




 


. 

We estimate the optimal weight on the risky assets t  based on the daily return and realized 

volatility and then compute the average realized utility of the portfolio as 

  
1

, 1 , 1
0

1
( ) [ ( )]

2

T

p p t t p t
t

U R r Var r
T



 


  , 

which measures the average realized utility of the portfolio using the LogHARQ model to forecast 

RV. To evaluate the economic value of using LogHARQ as a forecasting model, we compute the 

“performance fee,” a cost the investor is willing to pay to use LogHARQ as a forecasting model 

instead of other models (e.g., HAR model). We compute the performance fee (denoted as Δ) by 

solving the equation 

1 1

, 1 , 1 , 1 , 1
0 0

1 1
[( ) ( )] [ ( )]

2 2

T T

p t t p t bm t t bm t
t t

r Var r r Var r
T T

  

   
 

      . 

Table 6 reports the performance fee using different models as the benchmark model. We use 

the HAR, HARQ, and LogHAR models as benchmarks and report the results in Panels A, B, and 

C, respectively. We use the CSI 300 stock index and SSE 50ETF as risky assets and construct the 

portfolio with risk-free assets individually. Two subsamples are used, one covering 2007-2011 and 

the other covering 2012-2016. Risk aversion coefficients of 1, 2, and 3 are used and we present 

the results in Table 6. 

 

 

 



 

 

Table 6 

Daily performance fee 

 2007-2011 2012-2016 

 SSE 50ETF CSI 300 SSE 50ETF CSI 300 

Panel A LogHARQ-HAR 

γ=1 0.00084 0.00110 0.00189 0.00225 

γ=2 0.00042 0.00055 0.00094 0.00112 

γ=3 0.00028 0.00037 0.00063 0.00075 
Panel B LogHARQ-HARQ 

γ=1 0.00042 0.00049 0.00146 0.00057 

γ=2 0.00021 0.00025 0.00073 0.00029 

γ=3 0.00014 0.00016 0.00049 0.00019 
Panel C LogHARQ-LogHAR 

γ=1 0.00002 0.00011 0.0003 0.0005 

γ=2 0.00001 0.00005 0.0001 0.0002 

γ=3 0.00001 0.00004 0.0001 0.0002 

Note: The table reports the performance fee the investor is willing to pay to use LogHARQ as a 

forecasting model instead of other models (e.g., HAR model). We use the HAR, HARQ, and 

LogHAR models as benchmarks and report the results in Panels A, B, and C, respectively. SSE 

50ETF and the CSI 300 stock index are each used as the risky asset. Results of two subsamples 

are presented. γ is the risk aversion coefficient. 

Table 6 shows that the performance fee is positive for every asset, sample period, and risk 

aversion coefficient combination, indicating that the investor is willing to pay a fee to use the 

LogHARQ model. As a forecast model, LogHARQ is superior to the HAR, HARQ, and LogHAR 

models when forecasting Chinese stock market volatility. The results are consistent across both 

sample periods. 

 

5. Robustness Checks 

To investigate the sensitivity of our results to the sampling frequency of prices, we consider 

10- and 15-minute RVs as alternative RV measures and compare the out-of-sample performance of 

the LogHARQ model using these different RV measures. We consider a 1-minute realized kernel as 

a proxy for the true volatility series. The results are reported in Table 7. The left panel shows the 



loss ratios for the LogHARQ model relative to the HARQ model using 5-, 10-, and 15-minute RVs. 

The right panel presents the ratios of the losses of the LogHARQ model using different RV measures 

to the losses of using the 5-minute RV.  

The LogHARQ model based on the 5-minute RV outperforms the LogHARQ model based on 

the alternative RV measures, as indicated by the lowest ratio in the “RV5” column in the right panel. 

Despite the superior performance of the 5-minute RV, the LogHARQ models based on these 

alternative RV measures still offer significant forecast improvements relative to the HARQ models 

based on the same RV measures. The results hold for both assets considered. 

Table 7 

Alternative RV measures 

 LogHARQ/HARQ LogHARQ/LogHARQ(RV5) 

SSE 50ETF CSI 300 SSE 50ETF CSI 300 

RV5 RV10 RV15 RV5 RV10 RV15 RV5 RV10 RV15 RV5 RV10 RV15

MSE RW 0.694  0.689  0.654  0.796 0.850 0.831 1.000 1.016 1.041 1.000  1.052  1.054 

IW 0.694  0.689  0.688  0.799 0.854 0.840 1.000 1.015 1.040 1.000  1.052  1.054 

QLIK

E 

RW 0.837  0.816  0.674  0.975 0.932 0.860 1.000 1.034 1.028 1.000  0.996  0.957 

IW 0.831  0.808  0.711  0.981 0.951 0.893 1.000 1.035 1.030 1.000  0.995  0.958 

Note: The table reports the loss ratios for the LogHARQ model relative to the HARQ model using 

5-, 10-, and 15-minute RVs (in the left panel), and the ratios of the losses for the LogHARQ model 

using different RV measures to the losses of using the 5-minute RV (in the right panel). “RV5,” 

“RV10,” and “RV15” stand for 5-, 10-, and 15-minute RVs, respectively. Both MSE and the QLIKE 

losses are adopted to evaluate the out-of-sample performance. The forecast series are obtained using 

both a rolling window (RW) estimation and an increasing window (IW) estimation. We report the 

loss ratios for all loss functions and window length combinations. 

 

6. Conclusions 

 We propose a new realized volatility forecasting model. Based on methods in Bollerslev et al. 

(2016), we explicitly account for the heteroskedasticity in the measurement errors and high volatility 

in Chinese stock prices to derive the LogHARQ model for forecasting the realized volatility of stock 

index futures and options. Our LogHARQ model performs better than other logarithmic models and 

linear models, particularly when RQ is large. Importantly, using the LogHARQ model as volatility 

forecasting model leads to significant gains for investors compared to other forecasting models. The 



LogHARQ model improves the accuracy of forecasting realized volatility, benefitting risk 

management and portfolio allocation decisions. 
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