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Abstract This study investigates the role of high-frequency data in multivariate volatility 
forecasting for investors with different investment horizons. We use six multivariate volatility 
models with high-frequency and low-frequency data for a sample of 10 Dow Jones stocks and 
evaluate the performance of forecast volatility based on both statistical and economic methods. In 
our statistical evaluation, we find that high-frequency data significantly enhance forecast accuracy 
over the daily horizon, but this improvement is dampened when longer horizons are used. In our 
economic evaluation, we find that high-frequency data cannot improve all economic benefits under 
the short and long horizons. The economic benefits of using high-frequency data depend on the 
evaluation framework. 
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1. Introduction 

Modeling and forecasting covariance matrices play an important role in many areas in finance, 
such as derivative pricing, portfolio selection, and risk management. One popular approach is to use 
multivariate generalized autoregressive heteroscedasticity (MGARCH)-type models. Bollerslev 
(1986) first proposed the univariate GARCH model. After that, Engle and Kroner (1995) and Engle 
(2002a) introduced the Baba–Engle–Kraft–Kroner (BEKK) and dynamic conditional correlation 
(DCC) models, which have become two of the most widely used models for conditional covariance 
matrix forecasting. These MGARCH models only use daily information to forecast the conditional 
covariance matrices and characterize the return vector. However, the daily squared return is the 
noise proxy for measuring the true conditional covariance matrix. Hence, researchers have 
constructed other estimators to measure true volatility and incorporate them into volatility modeling. 

Researchers need high-frequency data to measure true volatility, which are now easily available 
because of advances in technology. Andersen and Bollerslev (1998) introduced realized volatility 
based on high-frequency data. Barndorff-Nielsen and Shephard (2004) proposed the realized 
covariance matrix, a consistent proxy in the absence of market microstructure. Barndorff-Nielsen et 
al. (2011) provided an alternative realized measure, the multivariate realized kernel, which takes 
full advantage of high-frequency data and overcomes the problem of market microstructure. 

Realized volatility can be quickly incorporated into volatility modeling. A natural step is to 
extend the GARCH-type model based on realized measures. The univariate GARCH-X model of 
Engle (2002b) was one of the first GARCH-type models to utilize realized volatility as an exogenous 
variable. Other univariate GARCH-type models soon followed, such as the MEM model (Engle and 
Gallo, 2006), the high frequency-based volatility (HEAVY) model (Shephard and Sheppard, 2010), 
and the Realized GARCH model (Hansen et al., 2012). To incorporate realized measures into 
realized covariance matrix forecasting, researchers have introduced MGARCH models with 
realized volatility, including the multivariate HEAVY model (Noureldin et al., 2011), the Realized 
Wishart GARCH (RWG) model (Gorgi et al., 2019), and the multivariate Realized GARCH (MRG) 
model (Archakov et al., 2020). In addition to GARCH-type models, the multivariate Realized 
Exponentially Weighted Moving Average (REWMA) model (Fleming et al., 2003) and the 
multivariate Heterogeneity Autoregressive (HAR) model (Chiriac and Voev, 2011) have become 
popular in the field of conditional covariance matrix forecasting. 

Many researchers have focused on evaluating the role of high-frequency data in volatility 
forecasting and have reached a consensus that models that use realized measures outperform those 
that use only daily information in terms of volatility forecasting. Martens (2001) and Andersen et 
al. (2003) indicated that GARCH models using intra-day high-frequency data perform better than 
standard GARCH models in daily volatility forecasting. Maheu and McCurdy (2011) demonstrated 
that realized volatility is beneficial for fitting return distributions. Amendola et al. (2020) concluded 
that the combination of low- and high-frequency multivariate covariance forecasts is more accurate 
than covariance forecasts using daily information. 

However, most of these comparisons have been based on short-term daily rebalancing frequency. 
There has been limited evidence of the role of high-frequency data in volatility forecasting over 
long horizons. Although Lyócsa et al. (2021) paid attention to the performance difference between 
high-frequency and low-frequency models over long horizons, they only focused on the univariate 
volatility model. Multi-step forecasts of conditional covariance matrices have broad applications in 



the area of finance. When constructing trading strategies, the position rebalancing frequency is 
typically maintained at a longer horizon due to transaction costs and trading restrictions, so investors 
usually choose to forecast conditional covariances over a longer horizon. Furthermore, volatility has 
a long memory property (Engle et al., 2013), so using realized volatility measures to forecast multi-
period volatility may distort their stability. Thus, evaluating the role of realized volatility in multi-
period volatility forecasting is important, as it guides investors on the necessity of using high-
frequency data. To fill this gap in the literature, this study brings together the literature on 
multivariate volatility modeling and portfolio construction and focuses on the necessity of applying 
advanced multivariate volatility models using high-frequency data to invest in different horizons. 

To achieve this goal, we apply different methods to solve the estimation problems of 
multivariate volatility models (Engle, 2009). We use composite likelihood to estimate large 
covariance matrices to eliminate the problems created by directly estimating a large dimension 
covariance matrix. According to Engle (2009) and Pakel et al. (2021), estimators are 
computationally costly and biased when directly estimating models with a large number of assets. 
Thus, researchers have used various methods to solve this problem (Engle, 2009; Engle and Kelly, 
2012; Engle et al., 2019; Pakel et al., 2021; De Nard et al., 2022). Engle (2009) proposed the 
MacGyver method to forecast a covariance matrix by combining individual volatility forecasts and 
all pairwise correlations. The factor model of Engle and Kelly (2009) and Archakov et al. (2020) 
provides a model structure to reduce dimensions by dividing a covariance matrix into several blocks. 
Engle et al. (2019) proposed the DCC with nonlinear shrinkage estimators (DCC-NL) model with 
nonlinear shrinkage estimation to overcome dimensionality, and De Nard et al. (2022) further used 
open/high/low/close prices instead of simple daily returns to estimate the DCC-NL model, leading 
to better performance by large dynamic covariance matrices. Pakel et al. (2021) introduced 
composite likelihood by converting a 𝑛𝑛 × 𝑛𝑛  problem into several 2 × 2  problems. Composite 
likelihood provides us with consistent estimators and ensures the positive definitiveness of the 
covariance matrix without imposing any restrictions. 

We consider both statistical and economic evaluations of different types of volatility models. 
The statistical evaluation is used to compare the forecast accuracy of different models, which is 
measured by robust loss functions2. We use the mean squared error (MSE) and QLIKE losses as 
robust loss functions (Patton and Sheppard, 2009; Laurent et al., 2013). We use the model 
confidence set (MCS) of Hansen et al. (2011) for the comparison method. Furthermore, we focus 
on economic evaluation methods, which are based on the out-of-sample performance of optimal 
portfolios. We use widely used economic losses (Fleming et al., 2003; DeMiguel et al., 2009; Chiriac 
and Voev, 2011; Callot et al., 2017; Bollerslev et al., 2018; Golosnoy and Gribisch, 2022; Grønborg 
et al., 2022) and compare the performance of the models based on the MCS approach. 

In this study, we use six multivariate volatility models with high- and low-frequency data for a 
sample of 10 Dow Jones stocks to compare the forecast accuracy and portfolio selection 
performance of the models and examine how this pattern changes under daily, weekly, and monthly 
horizons. We demonstrate that high-frequency data have significantly better forecast accuracy than 
daily rebalancing frequency, but this improvement is dampened when we use longer (weekly and 
monthly) horizons. In addition, investors may not obtain significant economic benefits from high-
frequency data, depending on which economic losses they pay more attention to. Compared with 
daily information, high-frequency data significantly reduce portfolio variances but cannot increase 
                                                   
2 For the definition of “robust loss function,” please see Patton (2011). 



investor utilities and refine portfolio structures. The results reveal that asset allocation based on 
high-frequency data does not outperform that based on low-frequency data over long investment 
horizons. 

This study contributes to the literature in the following three aspects. First, we investigate the 
role of high-frequency data in covariance matrix forecasting over different horizons, which has not 
been fully discussed in the literature. Second, we consider a broad class of models. We are the first 
to use RWG and MRG models to analyze the role of high-frequency data in covariance forecasts 
and portfolio performance under different rebalancing frequencies, making our results robust. Third, 
we apply appropriate estimation methods and comprehensive evaluation methods to conduct our 
empirical analysis. 

The remainder of this paper is organized as follows. Section 2 discusses the three types of 
volatility models that we use in our empirical analysis. Section 3 presents additional estimation and 
forecasting details. Section 4 outlines the data and summary statistics. Section 5 reports the out-of-
sample forecasting procedure, forecast evaluation methods, and the corresponding empirical results 
and Section 6 concludes.  

2. Model 

First, we present the three types of multivariate volatility models that we use in this study. As 
we are interested in a model’s forecasting error and its implications for portfolio construction, we 
compare the performance of six models in terms of forecasting ability and portfolio selection. 
Section 2.1 introduces the notations and definitions used. Sections 2.2, 2.3, and 2.4 discuss the three 
types of models. 

These candidate models can be divided into three groups where models in the first group use 
only daily information to forecast the daily covariance matrix and characterize the daily return 
distribution, models in the second group rely on intra-day realized volatility and daily data to 
describe the dynamics of the daily covariance matrix and daily return distribution, and models in 
the third group use both intra-day and daily data to forecast only the daily covariance matrix. 

2.1 Notations and Definitions 

2.1.1 Notations 

Let 𝑟𝑟𝑡𝑡  denote an 𝑛𝑛-dimensional vector of asset returns in period t. In this study, a period 
represents a trading day. The conditional mean and conditional covariance matrix of asset returns 
are denoted by 

𝜇𝜇𝑡𝑡 = 𝐸𝐸(𝑟𝑟𝑡𝑡|ℱ𝑡𝑡−1) 
𝐻𝐻𝑡𝑡 = 𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑡𝑡|ℱ𝑡𝑡−1) 

where ℱ𝑡𝑡 is the natural filtration for {𝑟𝑟𝑡𝑡, 𝑅𝑅𝑉𝑉𝑡𝑡}. Here, 𝑅𝑅𝑉𝑉𝑡𝑡 represents the realized measure of 𝐻𝐻𝑡𝑡.  
We decompose the conditional covariance matrix into conditional variance and correlation,  

 𝐻𝐻𝑡𝑡 = 𝛬𝛬ℎ𝑡𝑡
1/2𝐶𝐶𝑡𝑡𝛬𝛬ℎ𝑡𝑡

1/2  

where 𝛬𝛬ℎ𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑(ℎ𝑡𝑡) = 𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑(ℎ1,𝑡𝑡, … ,ℎ𝑛𝑛,𝑡𝑡)  with ℎ𝑖𝑖,𝑡𝑡 = [𝐻𝐻𝑡𝑡]𝑖𝑖𝑖𝑖 , meaning that ℎ𝑖𝑖,𝑡𝑡  is the 
conditional variance of asset i’s return 𝑟𝑟𝑖𝑖,𝑡𝑡, and 𝐶𝐶𝑡𝑡 is the conditional correlation matrix. 
 We also use realized measures to model conditional variance and correlation. 𝑥𝑥𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑(𝑅𝑅𝑉𝑉𝑡𝑡) 
denotes the realized measure of conditional variance ℎ𝑡𝑡, and the corresponding realized measure of 



the conditional correlation matrix 𝐶𝐶𝑡𝑡 is denoted by 

𝑌𝑌𝑡𝑡 = 𝛬𝛬𝑥𝑥𝑡𝑡
−1/2𝑅𝑅𝑉𝑉𝑡𝑡𝛬𝛬𝑥𝑥𝑡𝑡

1/2 

where 𝛬𝛬𝑥𝑥𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑(𝑥𝑥𝑡𝑡) = 𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑(𝑥𝑥1,𝑡𝑡, … , 𝑥𝑥𝑛𝑛,𝑡𝑡). 

 We let 𝑁𝑁∗ = 𝑛𝑛 × (𝑛𝑛 + 1)/2, 𝑁𝑁 = 𝑛𝑛 × (𝑛𝑛 − 1)/2, and 𝑙𝑙𝑛𝑛 denote the 𝑛𝑛 × 1 vector with all 
elements equal to 1. 

2.1.2 Realized Volatility 

Realized volatility is a key element in volatility forecasting and portfolio selection. We use the 
realized covariance matrix as the realized measure of the conditional covariance matrix. Assume 
that we observe k uniformly spaced intra-day asset returns. We define the realized covariance matrix 
as the sum of the outer product of these intra-day returns: 

𝑅𝑅𝐶𝐶𝑡𝑡 = 𝑅𝑅𝑉𝑉𝑡𝑡 = � 𝑟𝑟𝑡𝑡
(𝑗𝑗)𝑟𝑟𝑡𝑡

(𝑗𝑗)′
𝑘𝑘

𝑗𝑗=1
 

where 𝑟𝑟𝑡𝑡
(𝑗𝑗) denotes the j-th observation of the asset return vector on trading day t. The realized 

covariance matrix is computed using the intra-day return data as described in Section 4. 
According to Barndorff-Nielsen and Shephard (2004), in the absence of market microstructure, 

𝑅𝑅𝐶𝐶𝑡𝑡  is a consistent estimator as 𝑘𝑘 → ∞ . Although 𝑅𝑅𝐶𝐶𝑡𝑡  is biased in the presence of market 
microstructure, we choose to sample sparsely and apply subsampling. One can also choose other 
estimators, such as the multivariate realized kernel of Barndorff-Nielsen et al. (2011), to overcome 
the problem of market microstructure. 

 

2.2 Modeling Using Daily Data 

2.2.1 DCC-GARCH Model 

The DCC model of Engle (2002a) is a widely used multivariate GARCH model that uses only 
daily low-frequency information, is highly parsimonious, and ensures the positive definiteness of 
the covariance matrix. The DCC model describes the dynamics of conditional variance and 
correlation separately as follows: 

 𝑟𝑟𝑡𝑡 = 𝛬𝛬ℎ𝑡𝑡
1/2𝑧𝑧𝑡𝑡,             𝑧𝑧𝑡𝑡~𝑁𝑁(0,𝐶𝐶𝑡𝑡) (1) 

 ℎ𝑡𝑡 = 𝜔𝜔 + 𝛽𝛽ℎ𝑡𝑡−1 + 𝛼𝛼𝑟𝑟𝑡𝑡 ∘ 𝑟𝑟𝑡𝑡 (2) 
 𝐶𝐶𝑡𝑡 = 𝑄𝑄𝑡𝑡

∗−1/2𝑄𝑄𝑡𝑡𝑄𝑄𝑡𝑡
∗−1/2

 (3) 
 𝑄𝑄𝑡𝑡 = 𝑄𝑄�𝑄𝑄�′ + 𝛼𝛼𝑧𝑧𝑡𝑡𝑧𝑧𝑡𝑡′ + 𝛽𝛽𝑄𝑄𝑡𝑡−1 (4) 

where 𝜔𝜔  is an 𝑛𝑛 × 1  vector, 𝛽𝛽  and 𝛼𝛼  are 𝑛𝑛 × 𝑛𝑛  diagonal matrices, 𝑄𝑄𝑡𝑡∗ is a diagonal matrix 
containing the diagonal elements of 𝑄𝑄𝑡𝑡, 𝑄𝑄�  is an 𝑛𝑛 × 𝑛𝑛  lower triangular matrix, and 𝛼𝛼 and 𝛽𝛽 
are scalars. DCC-GARCH can also be estimated using composite likelihood, which is discussed in 
Section 3. 

2.2.2 BEKK-GARCH Model 

The other widely used GARCH model that relies only on daily low-frequency data is the BEKK 
model introduced by Engle and Kroner (1995). Unlike the DCC model, the BEKK model directly 



models the conditional covariance matrix as follows: 
 𝑟𝑟𝑡𝑡 = 𝐻𝐻𝑡𝑡

1/2𝜀𝜀𝑡𝑡,             𝜀𝜀𝑡𝑡~𝑁𝑁(0, 𝐼𝐼𝑛𝑛) (5) 
 𝐻𝐻𝑡𝑡 = 𝐶𝐶𝐶𝐶′ + 𝐵𝐵𝐻𝐻𝑡𝑡−1𝐵𝐵′ + 𝐴𝐴𝑟𝑟𝑡𝑡−1𝑟𝑟𝑡𝑡−1′ 𝐴𝐴′  (6) 

where 𝐶𝐶  is an 𝑛𝑛 × 𝑛𝑛  lower triangular matrix, and 𝐵𝐵  and 𝐴𝐴  are scalars. 𝐶𝐶 , 𝐵𝐵 , and 𝐴𝐴  are 
estimated using the composite likelihood method (see Section 3). 

2.3 Modeling Using Realized Volatility 

2.3.1 MRG Model 

Archakov et al. (2020) introduced a multivariate GARCH model that models the conditional 
covariance matrix using realized variance and correlation. This MRG model is a generalization of 
the realized beta GARCH model proposed by Hansen et al. (2014) and follows the DCC-GARCH 
framework that separately models the conditional variance and correlation matrix. 

We use the following realized GARCH model to measure the dynamics of the vector of 
conditional variance and realized variance: 

 𝑟𝑟𝑡𝑡 = 𝛬𝛬ℎ𝑡𝑡
1/2𝑧𝑧𝑡𝑡,             𝑧𝑧𝑡𝑡~𝑁𝑁(0,𝐶𝐶𝑡𝑡) (7) 

 log (ℎ𝑡𝑡) = 𝜔𝜔 + 𝛽𝛽log (ℎ𝑡𝑡−1) + 𝜏𝜏(𝑧𝑧𝑡𝑡−1) + 𝛾𝛾log (𝑥𝑥𝑡𝑡−1) (8) 
 log (𝑥𝑥𝑡𝑡) = 𝜉𝜉 + 𝜑𝜑log (ℎ𝑡𝑡) + 𝛿𝛿(𝑧𝑧𝑡𝑡) + 𝑣𝑣𝑡𝑡 (9) 

Equation (8) models the dynamic property of the conditional variance vector, where 𝜔𝜔 is an 𝑛𝑛 × 1 
vector, 𝛽𝛽  and 𝛾𝛾  are 𝑛𝑛 × 𝑛𝑛  matrices, 𝜏𝜏(·) is a leverage function with 𝜏𝜏(𝑧𝑧𝑡𝑡) = 𝜏𝜏1𝑧𝑧𝑡𝑡 + 𝜏𝜏2(𝑧𝑧𝑡𝑡 ∘
𝑧𝑧𝑡𝑡 − 𝑙𝑙𝑛𝑛) , 𝜏𝜏1  and 𝜏𝜏2  are 𝑛𝑛 × 𝑛𝑛  matrices, ∘  is Hadamard product. Equation (9) is the 
corresponding measurement equation, where 𝜉𝜉 is an 𝑛𝑛 × 1 vector, 𝜑𝜑 is an 𝑛𝑛 × 𝑛𝑛 matrix, 𝛿𝛿(·) 
is a leverage function with 𝛿𝛿(𝑧𝑧𝑡𝑡) = 𝛿𝛿1𝑧𝑧𝑡𝑡 + 𝛿𝛿2(𝑧𝑧𝑡𝑡 ∘ 𝑧𝑧𝑡𝑡 − 𝑙𝑙𝑛𝑛), 𝛿𝛿1 and 𝛿𝛿2 are 𝑛𝑛 × 𝑛𝑛 matrices, 𝑣𝑣𝑡𝑡 
is a normally distributed error term. We assume that 𝛽𝛽, 𝛾𝛾, 𝜏𝜏1, 𝜏𝜏2, 𝜑𝜑, 𝛿𝛿1, and 𝛿𝛿2 are diagonal 
matrices; for example, 𝛽𝛽 = 𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑(𝛽𝛽11,𝛽𝛽22, … … ,𝛽𝛽𝑛𝑛𝑛𝑛). 

To model the conditional correlation and realized correlation, Archakov et al. (2020) used the 
parameterization approach proposed by Archakov and Hansen (2020) and modeled the vector 
transformation of the conditional correlation and realized correlation matrix instead of directly 
modeling the conditional correlation or covariance matrix. 

𝜚𝜚𝑡𝑡 = 𝑑𝑑(𝐶𝐶𝑡𝑡) = 𝑣𝑣𝑣𝑣𝑣𝑣𝑙𝑙(log (𝐶𝐶𝑡𝑡)) 
𝑦𝑦𝑡𝑡 = 𝑑𝑑(𝑌𝑌𝑡𝑡) = 𝑣𝑣𝑣𝑣𝑣𝑣𝑙𝑙(log (𝑌𝑌𝑡𝑡)) 

This method ensures the positive definiteness of the covariance matrix without imposing additional 
restrictions. The dynamics are as follows: 

 𝜚𝜚𝑡𝑡 = 𝜔𝜔� + 𝛽𝛽�𝜚𝜚𝑡𝑡−1 + 𝛾𝛾�𝑦𝑦𝑡𝑡−1 (10) 
 𝑦𝑦𝑡𝑡 = 𝜉𝜉 + 𝜑𝜑�𝜚𝜚𝑡𝑡 + 𝑣𝑣𝑡𝑡�  (11) 

Equation (10) describes the modeling of the vector representation of the conditional correlation 
matrix, where 𝜔𝜔� is an 𝑁𝑁 × 1 vector. Equation (11) models the realized conditional correlation, 
where 𝜉𝜉  is an 𝑁𝑁 × 1  vector and 𝑣𝑣𝑡𝑡�  is a normally distributed error term. We denote 𝑢𝑢𝑡𝑡 =
(𝑣𝑣𝑡𝑡′,𝑣𝑣𝑡𝑡� ′)′  to stack the error terms in the measurement equations and assume that 𝑢𝑢𝑡𝑡  is i.i.d. 
𝑁𝑁(0,Σ), which is independent of 𝑧𝑧𝑡𝑡. We assume that 𝛽𝛽�, 𝛾𝛾�, and 𝜑𝜑�  are scalars to make it easier for 
the model to converge. 

We estimate the parameters using quasi-maximum likelihood estimation (QMLE) and use the 
two-stage estimation and composite likelihood approaches to speed up the estimation process. 
Section 3 shows further estimation details. 



2.3.2 RWG Model 

The RWG model of Gorgi et al. (2019) is a new class of MGARCH models using the realized 
measure of the covariance matrix. Let 𝑠𝑠𝑡𝑡 be a mean-zero and finite variance martingale difference 
sequence. The model specification is as follows: 

 𝑟𝑟𝑡𝑡 = 𝐻𝐻𝑡𝑡
1/2𝜀𝜀𝑡𝑡,             𝜀𝜀𝑡𝑡~𝑁𝑁(0, 𝐼𝐼𝑛𝑛) (12) 

 𝐻𝐻𝑡𝑡 = Λ𝑉𝑉𝑡𝑡Λ′ (13) 
 𝑅𝑅𝑉𝑉𝑡𝑡 = 𝑉𝑉𝑡𝑡

1/2𝜂𝜂𝑡𝑡𝑉𝑉𝑡𝑡
1/2,             𝜂𝜂𝑡𝑡~𝑊𝑊𝑛𝑛(𝐼𝐼𝑛𝑛/𝜈𝜈, 𝜈𝜈) (14) 

where Λ  is an 𝑛𝑛 × 𝑛𝑛  matrix, 𝜈𝜈  is a scalar such that 𝜈𝜈 > 𝑛𝑛3 , 𝜀𝜀𝑡𝑡  and 𝜂𝜂𝑡𝑡  are, serially and 
mutually, i.i.d. processes, and 𝑉𝑉𝑡𝑡  is the mean of the Wishart distribution 𝑊𝑊𝑛𝑛(𝐼𝐼𝑛𝑛/𝜈𝜈, 𝜈𝜈) . The 
dynamic property of 𝑉𝑉𝑡𝑡 is as follows: 

 𝑉𝑉𝑡𝑡 = 𝑣𝑣𝑣𝑣𝑣𝑣ℎ(𝑓𝑓𝑡𝑡) (15) 
 𝑓𝑓𝑡𝑡+1 = 𝜔𝜔 + 𝐵𝐵𝑓𝑓𝑡𝑡 + 𝐴𝐴𝑠𝑠𝑡𝑡 (16) 

where 𝜔𝜔 is an 𝑁𝑁∗ × 1 vector, 𝑠𝑠𝑡𝑡 is a finite variance martingale difference sequence, and 𝐵𝐵 and 
𝐴𝐴 are scalars. These parameters are estimated using composite likelihood. Section 3 shows further 
estimation details. 

2.4 Direct Modeling 

2.4.1 HAR Model 

The HAR model proposed by Corsi (2009) is used widely in volatility forecasting with realized 
measures. Chiriac and Voev (2010) extended the univariate HAR model to a multivariate setting. 
The scalar version of this model is as follows: 

 𝑝𝑝𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑝𝑝𝑡𝑡−1 + 𝛽𝛽2𝑝𝑝𝑡𝑡−5|𝑡𝑡−1 + 𝛽𝛽3𝑝𝑝𝑡𝑡−22|𝑡𝑡−1 + 𝜖𝜖𝑡𝑡 (17) 
where 𝑝𝑝𝑡𝑡 = 𝑣𝑣𝑣𝑣𝑣𝑣ℎ(𝑃𝑃𝑡𝑡) is the 𝑁𝑁∗ × 1 vector derived by stacking the lower triangular components 
of matrix 𝑃𝑃𝑡𝑡, and 𝑃𝑃𝑡𝑡 is the Cholesky decomposition of 𝑅𝑅𝑉𝑉𝑡𝑡, such that 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡′ = 𝑅𝑅𝑉𝑉𝑡𝑡. 𝑝𝑝𝑡𝑡−ℎ|𝑡𝑡−1 =
1/ℎ∑ 𝑝𝑝𝑡𝑡−𝑖𝑖ℎ

𝑖𝑖=1 . 𝛽𝛽0 is an 𝑁𝑁∗ × 1 intercept vector, while 𝛽𝛽1, 𝛽𝛽2, and 𝛽𝛽3 are all set to be scalar, 
which can be easily estimated by ordinary least squares. This specification ensures that the predicted 
realized covariance matrix is positive definite, and the scalar version improves the running speed 
while making it easier to converge.  

2.4.2 REWMA Model 

Longerstaey and Spencer (1996) first introduced the Exponentially Weighted Moving Average 
(EWMA) filter, which is widely used in practice. Fleming et al. (2003) proposed a Realized EWMA 
(REWMA) filter that uses intra-day high-frequency data. Let 𝒽𝒽𝑡𝑡 = 𝑣𝑣𝑣𝑣𝑣𝑣ℎ(𝐻𝐻𝑡𝑡)  and 𝑟𝑟𝑣𝑣𝑡𝑡 =
𝑣𝑣𝑣𝑣𝑣𝑣ℎ(𝑅𝑅𝑉𝑉𝑡𝑡). The model specification is as follows: 

 𝒽𝒽𝑡𝑡 = (1− 𝛼𝛼)𝒽𝒽𝑡𝑡−1 + 𝛼𝛼𝑟𝑟𝑣𝑣𝑡𝑡−1 (18) 
where 𝛼𝛼 is a scalar denoted as the decay rate. When 𝛼𝛼 is low, 𝒽𝒽𝑡𝑡 is more persistent. If we assume 
that the initial value 𝐻𝐻0 is positive definite, then the predicted covariance matrix will be positive 
definite. While Longerstaey and Spencer (1996) provided a standard choice method for 𝛼𝛼 (𝛼𝛼 is 
equal to 0.03 for monthly data and 0.06 for daily data), the parameter can still be estimated using 
standard QMLE. We use composite likelihood (see Pakel et al., 2021) to estimate 𝛼𝛼 based on the 
assumption that the daily return vector is conditionally normally distributed to facilitate 
implementation. Section 3 provides further estimation details. 
                                                   
3 To ensure that 𝑅𝑅𝑉𝑉𝑡𝑡 is a Wishart distribution. 



3. Estimation and Forecasting 

3.1 Estimation 

 We estimate all models using QMLE except the HAR model. For the sake of brevity, the 
following likelihoods omit the constant terms. 

3.1.1 DCC-GARCH Model 

 We also use the two-stage estimation method. In the first stage, we estimate the conditional 
variance series using the univariate GARCH model (Equation 2) and get the estimated 𝜃𝜃1 =
(𝜔𝜔,𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑(𝛼𝛼),𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑(𝛽𝛽)). In the second stage, we take the estimated conditional variance series as 
fixed and focus on estimating the correlation matrix using the following likelihood function: 

 log𝐿𝐿(𝜃𝜃2) =
1
𝑇𝑇
� −

1
2

(𝑙𝑙𝑙𝑙𝑑𝑑|𝐶𝐶𝑡𝑡| + 𝑧𝑧𝑡𝑡′𝐶𝐶𝑡𝑡−1𝑧𝑧𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
 (19) 

where 𝜃𝜃2 = (𝛼𝛼,𝛽𝛽). We use (1− 𝛼𝛼 − 𝛽𝛽)(𝑇𝑇−1 ∑ 𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡′𝑇𝑇
𝑡𝑡=1 ∘ 𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑(ℎ𝑡𝑡)−1) to estimate 𝑄𝑄�𝑄𝑄�′. 

3.1.2 BEKK-GARCH Model 

 The log-likelihood function is as follows: 

 log𝐿𝐿(𝜃𝜃) =
1
𝑇𝑇
� −

1
2

(log |𝐻𝐻𝑡𝑡| + 𝑟𝑟𝑡𝑡′𝐻𝐻𝑡𝑡−1𝑟𝑟𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
 (20) 

where 𝜃𝜃 = (𝐴𝐴,𝐵𝐵). We use (1 − 𝐴𝐴 − 𝐵𝐵)𝐸𝐸𝐻𝐻4 to estimate 𝐶𝐶𝐶𝐶′. 

3.1.3 MRG Model 

We apply the two-stage estimation method to get the estimated parameters using the following 
steps. 

1. Use the univariate realized GARCH model (Hansen et al., 2012) to estimate the conditional 
variance series. The unknown parameters are 𝜃𝜃1 = (𝜃𝜃1,1,𝜃𝜃1,2, … ,𝜃𝜃1,𝑛𝑛) , where 𝜃𝜃𝑖𝑖,𝑛𝑛 =
(𝜔𝜔𝑖𝑖,𝛽𝛽𝑖𝑖𝑖𝑖 , 𝛾𝛾𝑖𝑖𝑖𝑖 , 𝜏𝜏1𝑖𝑖𝑖𝑖 , 𝜏𝜏2𝑖𝑖𝑖𝑖 , 𝜉𝜉𝑖𝑖 ,𝜑𝜑𝑖𝑖𝑖𝑖 ,𝛿𝛿1𝑖𝑖𝑖𝑖 ,𝛿𝛿2𝑖𝑖𝑖𝑖 ,𝜎𝜎𝑖𝑖) and 𝜎𝜎𝑖𝑖 = Σ𝑖𝑖𝑖𝑖 . The likelihood function for 𝜃𝜃𝑖𝑖,𝑛𝑛 
is as follows: 

 log𝐿𝐿(𝜃𝜃𝑑𝑑,𝑛𝑛) =
1
𝑇𝑇
� −

1
2

(𝑙𝑙𝑙𝑙𝑑𝑑ℎ𝑖𝑖,𝑡𝑡 +
𝑢𝑢𝑖𝑖,𝑡𝑡
𝜎𝜎𝑖𝑖2

)
𝑇𝑇

𝑡𝑡=1
 (21) 

We use the sample average to fix the values of the initial conditional variance vector ℎ0. 
These likelihood functions are directly estimated. We obtain the estimator  𝜃𝜃1�  and 
calculate the time series {ℎ𝑡𝑡, 𝑧𝑧𝑡𝑡,𝑢𝑢𝑡𝑡}, 𝑡𝑡 = 1, … ,𝑇𝑇. 

2. Apply the covariance targeting approach (Engle and Mezrich, 1996) to estimate the 
intercept parameters using the following empirical moments: 

𝜔𝜔� = 𝐸𝐸𝜚𝜚 − 𝛽𝛽�𝐸𝐸𝜚𝜚 − 𝛾𝛾�𝐸𝐸𝑦𝑦 
𝜉𝜉 = 𝐸𝐸𝑦𝑦 − 𝜑𝜑�𝐸𝐸𝜚𝜚 

where 𝐸𝐸𝜚𝜚 and 𝐸𝐸𝑦𝑦 are the sample averages of the corresponding series {𝜚𝜚𝑡𝑡,𝑦𝑦𝑡𝑡}4F

5. With 
this method, we only have to estimate 𝜃𝜃2 = �𝛽𝛽�, 𝛾𝛾�,𝜑𝜑��. Let 𝑢𝑢�𝑡𝑡 be the estimation residuals 
of Equations (10) and (11). It can be shown that the MLE of Σ is Σ� = 𝑇𝑇−1 ∑ 𝑢𝑢�𝑡𝑡𝑢𝑢�𝑡𝑡′𝑇𝑇

𝑡𝑡=1 , so 
we can simplify the likelihood function as follows: 

                                                   
4 Here, 𝐸𝐸𝐻𝐻 is the simple average of {𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡′}. 
5 Here, we define 𝜚𝜚𝑡𝑡 = 𝑑𝑑(𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡′ ∘ 𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑(ℎ𝑡𝑡)−1). 



 log𝐿𝐿(𝜃𝜃2) =
1
𝑇𝑇
� 𝑙𝑙𝑟𝑟,𝑡𝑡

𝑇𝑇

𝑡𝑡=1
+

1
𝑇𝑇
� 𝑙𝑙𝑥𝑥,𝑦𝑦|𝑟𝑟,𝑡𝑡

𝑇𝑇

𝑡𝑡=1
 (22) 

 𝑙𝑙𝑟𝑟,𝑡𝑡(𝜃𝜃2) = −
1
2

(� 𝑙𝑙𝑙𝑙𝑑𝑑ℎ𝑘𝑘,𝑡𝑡

𝑛𝑛

𝑘𝑘=1
+ 𝑙𝑙𝑙𝑙𝑑𝑑|𝐶𝐶𝑡𝑡| + 𝑧𝑧𝑡𝑡′𝐶𝐶𝑡𝑡−1𝑧𝑧𝑡𝑡) (23) 

 
𝑙𝑙𝑥𝑥,𝑦𝑦|𝑟𝑟,𝑡𝑡(𝜃𝜃2) = −

1
2
𝑙𝑙𝑙𝑙𝑑𝑑 �

1
𝑇𝑇
� 𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡′

𝑇𝑇

𝑡𝑡=1
� (24) 

To satisfy the stationarity condition, we require that max�diag(𝛽𝛽 + 𝛾𝛾𝜑𝜑)� < 1 and 𝛽𝛽� + 𝛾𝛾�𝜑𝜑� <
1. We do not have to impose any restrictions to ensure the positive definiteness of the correlation 
matrix (Archakov and Hansen, 2020). 

3.1.4 RWG Model 

 Gorgi et al. (2019) used the score-driven method to describe the dynamics of 𝑠𝑠𝑡𝑡; we can derive 
the log-likelihood function as follows: 

 log𝐿𝐿(𝜃𝜃) =
1
𝑇𝑇
� 𝑙𝑙𝑟𝑟,𝑡𝑡

𝑇𝑇

𝑡𝑡=1
+

1
𝑇𝑇
� 𝑙𝑙𝑅𝑅𝑅𝑅,𝑡𝑡

𝑇𝑇

𝑡𝑡=1
 (25) 

 
𝑙𝑙𝑟𝑟,𝑡𝑡(𝜃𝜃) = −

1
2

(𝑙𝑙𝑙𝑙𝑑𝑑|Λ𝑉𝑉𝑡𝑡Λ′| + 𝑡𝑡𝑟𝑟(Λ𝑉𝑉𝑡𝑡Λ′)−1𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡′) (26) 

 
𝑙𝑙𝑅𝑅𝑅𝑅,𝑡𝑡(𝜃𝜃) =

𝜈𝜈 − 𝑛𝑛 − 1
2

𝑙𝑙𝑙𝑙𝑑𝑑|𝑅𝑅𝑉𝑉𝑡𝑡|−
𝜈𝜈
2
𝑙𝑙𝑙𝑙𝑑𝑑|𝑉𝑉𝑡𝑡|−

𝜈𝜈
2
𝑡𝑡𝑟𝑟(𝑉𝑉𝑡𝑡−1𝑅𝑅𝑉𝑉𝑡𝑡) (27) 

where 𝜃𝜃 = (𝜈𝜈,𝐴𝐴,𝐵𝐵,𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑(Λ)) . We use (1− 𝐴𝐴 − 𝐵𝐵)𝑣𝑣𝑣𝑣𝑣𝑣ℎ(𝑇𝑇−1 ∑ 𝑅𝑅𝑉𝑉𝑡𝑡𝑇𝑇
𝑡𝑡=1 )  to fix the value of 

𝜔𝜔. All of the parameters are estimated using the composite likelihood method discussed in Section 
3.2. 

3.1.5 REWMA Model 

 In Section 2.4.2, we assume that the return vector 𝑟𝑟𝑡𝑡 is conditionally normally distributed with 
a mean of 0 and a covariance matrix of 𝐻𝐻𝑡𝑡. The only parameter is 𝛼𝛼, so the likelihood function for 
REWMA is:  

 log𝐿𝐿(𝛼𝛼) =
1
𝑇𝑇
� −

1
2

(log |𝐻𝐻𝑡𝑡| + 𝑟𝑟𝑡𝑡′𝐻𝐻𝑡𝑡−1𝑟𝑟𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
 (28) 

The log-likelihood is estimated using the composite likelihood approach (see Section 3.2). 

3.2 Composite Likelihood Approach 

 The composite likelihood approach of Pakel et al. (2021) is widely used in estimating large 
dimensional volatility models. The basic idea of the approach is as follows. Let 𝐻𝐻𝑡𝑡 be the 𝑛𝑛 × 𝑛𝑛 
conditional covariance matrix of the 𝑛𝑛 × 1 return vector, 𝑟𝑟𝑡𝑡. Assuming that 𝑟𝑟𝑡𝑡 is conditionally 
normally distributed, the standard quasi-likelihood function is 

 log (𝐿𝐿(𝜃𝜃; 𝑟𝑟)) = 1
𝑇𝑇
∑ − 1

2
(log(|𝐻𝐻𝑡𝑡|) + 𝑟𝑟𝑡𝑡′𝐻𝐻𝑡𝑡−1𝑟𝑟𝑡𝑡)𝑇𝑇

𝑡𝑡=1   (29) 

We have to calculate the determinant and inverse of the 𝑛𝑛 × 𝑛𝑛  conditional covariance matrix. 
When n is large, the estimation process is computationally costly and the estimators are 
meaningfully biased (Engle, 2009). However, the composite likelihood approach prevents these 
issues. Instead of directly estimating the whole likelihood function in Equation (29), the composite 
likelihood approach approximates the likelihood function with a number of two-dimensional 
marginal densities, thus changing an n-dimensional problem into a few two-dimensional problems. 



Here, we use the all contiguous-pair likelihoods to approximate Equation (29). Let 𝑅𝑅1,𝑡𝑡 = �𝑟𝑟1,𝑡𝑡, 𝑟𝑟2,𝑡𝑡�, 
𝑅𝑅2,𝑡𝑡 = (𝑟𝑟2,𝑡𝑡, 𝑟𝑟3,𝑡𝑡), …, 𝑅𝑅𝑛𝑛−1,𝑡𝑡 = (𝑟𝑟𝑛𝑛−1,𝑡𝑡, 𝑟𝑟𝑛𝑛,𝑡𝑡), and 𝐻𝐻𝑗𝑗,𝑡𝑡 be the conditional covariance matrix of the 
return pair 𝑅𝑅𝑗𝑗,𝑡𝑡, so the composite likelihood is 

 𝐶𝐶𝐿𝐿(𝜃𝜃; 𝑟𝑟) = 1
𝑇𝑇(𝑛𝑛−1)

∑ ∑ −1
2

(log��𝐻𝐻𝑗𝑗,𝑡𝑡��+ 𝑅𝑅𝑗𝑗,𝑡𝑡
′ 𝐻𝐻𝑗𝑗,𝑡𝑡

−1𝑅𝑅𝑗𝑗,𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑛𝑛−1
𝑗𝑗=1   (30)  

By solving this composite likelihood, we obtain consistent and asymptotically normal estimators. 

3.3 Forecasting 

We use a rolling window to estimate the parameters and rebalance forecasting and portfolio 
selection at the short (daily) and long (weekly and monthly) horizons, which means that the model 
parameters are updated daily, weekly, and monthly.  

Our estimation window consists of 1,991 observations. The out-of-sample period is from 
January 1, 2009 to 1 December 31, 2009. The daily horizon means that for each trading day in the 
out-of-sample period, we estimate all of the model parameters using the last 1,991 known 
observations. After parameter estimation, we calculate the one-step-ahead predicted covariance 
matrices. The weekly and monthly horizons indicate that we estimate the parameters and rebalance 
portfolio selection every week or month and obtain forecasts over the weekly and monthly horizons. 

3.3.1 Forecasting Procedure 

One-step ahead forecasts are quite straightforward because 𝐻𝐻𝑡𝑡+1  is ℱ𝑡𝑡 -measurable. After 
observing ℱ𝑡𝑡 and estimating the parameters for period t+1, 𝐻𝐻𝑡𝑡+1 can be directly computed from 
the dynamic equations.  

We define the forecasts over the weekly and monthly horizons as follows: 

 𝐻𝐻�𝑡𝑡+𝑘𝑘|𝑡𝑡+1 =
1
𝑘𝑘
� 𝐻𝐻�𝑡𝑡+𝑠𝑠

𝑘𝑘

𝑠𝑠=1
 (31) 

where 𝐻𝐻�𝑡𝑡+𝑠𝑠 denotes s-step ahead covariance matrix forecasts and k = 5 or 22.  
 In REWMA, we directly calculate multi-step forecasts because the model does not have an 
error term. We assume that the conditional expectation of the realized covariance matrix is equal to 
that of the conditional covariance matrix, that is, 𝐸𝐸(𝒽𝒽𝑡𝑡+𝑠𝑠|ℱ𝑡𝑡) = 𝐸𝐸(𝑟𝑟𝑣𝑣𝑡𝑡+𝑠𝑠|ℱ𝑡𝑡), for s = 1,2,…,k. Thus, 
the s-step ahead forecasts are ℎ�𝑡𝑡+𝑠𝑠 = 𝐸𝐸(𝒽𝒽𝑡𝑡+𝑠𝑠|ℱ𝑡𝑡) = 𝐸𝐸(𝒽𝒽𝑡𝑡+𝑠𝑠−1|ℱ𝑡𝑡) = ⋯ = 𝒽𝒽𝑡𝑡+1. As 𝒽𝒽𝑡𝑡+1 is ℱ𝑡𝑡-
measurable, the forecasts over the weekly and monthly horizons are 𝐻𝐻�𝑡𝑡+𝑘𝑘|𝑡𝑡+1 = 𝐻𝐻𝑡𝑡+1. 

However, the multi-step forecasts in the other models depend on the future realization of some 
error item series, such as 𝑧𝑧𝑡𝑡 and 𝑢𝑢𝑡𝑡, which is not straightforward. Hence, we use the bootstrap 
method of Lunde and Olesen (2014) as the multi-step forecasting scheme. We draw M = 1,000 re-
samples of the error term series from the estimated models and iteratively calculate the multi-step 
forecasts as follows, taking the MRG model as an example: 

1. Determine the s-step ahead forecasts of this model depending on the error term series 
{(�̂�𝑧𝑡𝑡+1,𝑢𝑢�𝑡𝑡+1), … , (�̂�𝑧𝑡𝑡+𝑠𝑠−1,𝑢𝑢�𝑡𝑡+𝑠𝑠−1)} 

2. Generate the required error term series {(�̂�𝑧𝑡𝑡+1𝑚𝑚 ,𝑢𝑢�𝑡𝑡+1𝑚𝑚 ), … , (�̂�𝑧𝑡𝑡+𝑠𝑠−1𝑚𝑚 ,𝑢𝑢�𝑡𝑡+𝑠𝑠−1𝑚𝑚 )},𝑚𝑚 =
1,2, … ,𝑀𝑀 from the bootstrap estimation results {(�̂�𝑧1,𝑢𝑢�1), … , (�̂�𝑧𝑡𝑡,𝑢𝑢�𝑡𝑡)} 

3. Use each generated error term series to iteratively calculate the s-step ahead forecasts and 

calculate the average of these s-step ahead forecasts as, 𝐻𝐻�𝑡𝑡+𝑠𝑠 = 1
𝑀𝑀
∑ 𝐻𝐻�𝑡𝑡+𝑠𝑠𝑚𝑚𝑀𝑀
𝑚𝑚=1  

4. Obtain forecasts over the weekly and month horizons based on Equation (31) 



4. Data 

We use intra-day high-frequency and daily low-frequency data on 10 Dow Jones stocks: Bank 
of America (BAC), JP Morgan Chase (JPM), Alcoa (AA), American Express (AXP), Microsoft 
(MSFT), Exxon Mobil (XOM), Dupont de Nemours (DD), General Electric (GE), and Coca-Cola 
(KO). The names are shown in Table 1. We extract 5-minute returns from the New York Stock 
Exchange’s Daily Trade and Quote database. The data span from February 1, 2001 to December 31, 
2009, with a total of 2,242 daily observations. 

We exclude the opening and closing 15 minutes of a trading day to prevent the overnight effects 
and then use 5-minute returns with subsampling to calculate the realized covariance matrix. We 
focus our analysis on open-to-close returns to ensure consistency in the interval of daily returns and 
the realized covariance matrix. The summary statistics of returns and the realized covariance matrix 
is shown in Tables 1 and 2. Note that we use demeaned returns in our models.  
 
Table 1. Summary Statistics for Daily Returns and Realized Variance 

 BAC JPM IBM MSFT XOM AA AXP DD GE KO 
Panel A: Daily returns (× 100) 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SD 2.39 2.20 1.30 1.44 1.29 2.11 2.08 1.45 1.64 1.06 
Skew 0.33 0.58 0.01 0.25 -0.19 -0.68 0.32 0.03 0.22 0.10 
Kurt 21.81 17.05 6.32 6.16 11.64 9.90 11.23 7.28 10.96 6.92 
Min -19.36 -17.02 -6.60 -8.20 -12.56 -17.08 -15.69 -9.48 -10.67 -7.39 
Max 19.69 22.11 7.66 8.78 9.70 12.01 14.79 7.85 12.62 6.40 
Panel B: Realized variance (in annual units) 
Mean 0.25 0.28 0.19 0.22 0.20 0.30 0.26 0.22 0.23 0.17 
SD 0.27 0.22 0.11 0.12 0.11 0.18 0.20 0.12 0.17 0.09 
Skew 3.44 2.70 2.76 1.96 3.86 2.98 2.39 2.41 2.97 2.83 
Kurt 18.19 14.59 15.46 8.91 31.02 17.01 12.88 12.97 16.22 18.14 
Min 0.04 0.05 0.04 0.05 0.06 0.09 0.04 0.06 0.05 0.03 
Max 2.64 2.11 1.20 1.04 1.71 2.01 2.26 1.27 1.70 1.19 

Note: Realized variance in annual units is defined as √252 × �𝑥𝑥𝑡𝑡. The statistics in this table are based on the sample 

period from February 1, 2002 to December 31, 2009. 

 
 Tables 1 and 2 show the summary statistics of open-to-close returns and the realized covariance 
matrix. Returns in 2008 are more volatile because of the global financial crisis, thereby eliminating 
the previously accumulated asset returns. According to the standard deviation of returns and the 
mean realized variance, KO has the lowest volatility while BAC, JPM, AA, and AXP have the 
highest volatility. As for the average realized correlation, BAC and JPM have the strongest 
correlation because both are financial firms. 
 
 
 
 
 



Table 2. Average Realized Correlations 
 BAC JPM IBM MSFT XOM AA AXP DD GE KO 
BAC           
JPM 0.50          
IBM 0.38 0.38         
MSFT 0.37 0.38 0.44        
XOM 0.33 0.33 0.35 0.35       
AA 0.30 0.31 0.31 0.30 0.34      
AXP 0.44 0.44 0.38 0.37 0.33 0.31     
DD 0.37 0.37 0.38 0.36 0.36 0.37 0.37    
GE 0.41 0.40 0.41 0.40 0.37 0.32 0.40 0.39   
KO 0.31 0.31 0.33 0.32 0.30 0.25 0.31 0.32 0.34  

Note: Realized correlations are defined in Section 2.1. The statistics in this table are based on the sample period from 

February 1, 2002 to December 31, 2009. 

5. Empirical Analysis 

In this section, we conduct our empirical analysis to explore the necessity of using high-
frequency data under different forecast horizons at the statistical and economic levels. Section 5.1 
presents the statistical evaluation method for comparing the different models, especially their ability 
to forecast covariance. Section 5.2 elaborates on economic loss functions based on portfolio 
selection. 

5.1 Statistical Evaluation 

This part discusses how to evaluate the accuracy of conditional covariance matrix forecasts 
based on a range of robust statistical loss functions. We need to specify the measure of the true 
conditional covariance matrices to evaluate the differences in the forecasts of our models. In this 
study, we use the realized covariance as the true conditional covariance matrix. 

5.1.1 Statistical Loss Functions 

Following Patton and Sheppard (2009) and Laurent et al. (2013), we use robust6 loss functions, 
such as the MSE and QLIKE robust loss functions, as follows: 

 ℒ𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁2 𝑣𝑣𝑣𝑣𝑣𝑣�𝐻𝐻�𝑡𝑡 − 𝑅𝑅𝑉𝑉𝑡𝑡�

′𝑣𝑣𝑣𝑣𝑣𝑣(𝐻𝐻�𝑡𝑡 − 𝑅𝑅𝑉𝑉𝑡𝑡) (32) 

 ℒ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑀𝑀 = 𝑙𝑙𝑙𝑙𝑑𝑑|𝐻𝐻�𝑡𝑡| + 𝑡𝑡𝑟𝑟(𝐻𝐻�𝑡𝑡−1𝑅𝑅𝑉𝑉𝑡𝑡) (33) 
where 𝐻𝐻�𝑡𝑡  denotes the predicted conditional covariance matrix, 𝑅𝑅𝑉𝑉𝑡𝑡  is the realized covariance 
matrix and the measure of the true conditional covariance matrix, 𝑣𝑣𝑣𝑣𝑣𝑣(⋅) represents the column 
stacking operator, and 𝑡𝑡𝑟𝑟(⋅) denotes the trace of the matrix. Small loss function values indicate 
high forecast accuracy. MSE is a symmetric loss function that gives the same penalty for volatility 
overestimation and underestimation, while QLIKE is an asymmetric loss function that imposes a 
larger penalty for volatility underestimation. Thus, the evaluation results of QLIKE are more reliable 
for risk management and portfolio selection. 

                                                   
6 According to Pattern (2009), “robust” means that the results for volatility comparison are the same irrespective 
of using true volatility or some conditional unbiased volatility proxy. 



 We apply the MCS approach of Hansen et al. (2011) to compare the model forecasts to 
investigate whether the values of these two loss functions significantly differ across our models. 
This method provides a set of models, which contain the best forecasting model with a given 
probability (we set it to 90%). The result of the MCS approach is a set of p-values, one for each 
model. If a model’s p-value, denoted by 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(ℒ𝑥𝑥) , is below 0.1, the corresponding model is 
excluded from the best model subset. This subset of models may contain all of the models or none.  

5.1.2 Out-of-sample Forecast Evaluation 

 The out-of-sample forecast evaluation is based on short (daily) and long (weekly and monthly) 
forecast horizons. The daily forecast horizon requires the parameters to be updated on each trading 
day of the out-of-sample period using the last 1,991 known observations and forecasting the 
corresponding 1-day ahead covariance matrix. Under the weekly and monthly forecast horizons, we 
estimate the models and forecast covariance matrices over the specific horizon. 

Tables 3, 4, and 5 present the results of the daily, weekly, and monthly forecast horizons, 
respectively, for our statistical evaluation of forecast accuracy. The models are divided into three 
groups. The second and third groups of models both rely on intra-day realized volatility and daily 
information to forecast the daily covariance matrix. The difference between these two types of 
models is that “Direct Modeling” only focuses on the covariance matrix forecast but “Modeling 
with Realized Volatility” also characterizes the daily return distribution.  

Table 3 shows that the forecasts of models using high-frequency information are more accurate 
than those of models using only low-frequency daily information. When we use MSE as the loss 
function, only the BEKK model is excluded from the 90% MCS. Although the DCC model is also 
included in the 90% MCS, its MCS p-value is the smallest out of all of the models included, and the 
mean value of the loss function is also the largest among all included models, meaning that the 
forecast error of the DCC model is higher than that of the other models incorporating intra-day 
realized volatility. When we use QLIKE as the loss function, only the REWMA model is included 
in the 90% MCS, while the BEKK and DCC models are the first two models to be excluded from 
the MCS in the corresponding algorithm. Thus, the 1-day ahead forecast performance of models 
using only daily information (DCC and BEKK) is worse than that of models using intra-day high-
frequency information. In other words, using high-frequency data significantly improves forecast 
accuracy over the daily horizon.  

 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3. Out-of-sample Forecasts over the Daily Horizon, Comparison Results 
 Modeling with Daily 

Information 
Modeling with Realized 
Volatility 

Direct Modeling 

 DCC BEKK MRG RWG HAR REWMA 
ℒ𝑀𝑀𝑀𝑀𝑀𝑀������� 21.152 24.430 16.441 17.344 16.978 16.806 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(ℒ𝑀𝑀𝑀𝑀𝑀𝑀) 0.106 0.033 1.000 0.482 0.577 0.577 
ℒ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑀𝑀��������� 18.924 20.118 18.957 18.674 18.393 18.252 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(ℒ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑀𝑀) 0.000 0.000 0.000 0.000 0.007 1.000 
Note: The table reports the statistical evaluation of short-horizon (daily) forecasts. ℒ𝑀𝑀𝑀𝑀𝑀𝑀������� and ℒ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑀𝑀��������� represent the 

average values of the MSE and QLIKE loss functions. 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(ℒ𝑀𝑀𝑀𝑀𝑀𝑀) and 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(ℒ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑀𝑀) denote the MCS p-values 

based on the values of the two robust loss functions. When the MCS p-value is small, the model is more likely to be 

excluded from the 90% MCS. All entries in boldface indicate that the models are included in the 90% MCS for that 

row. 

 
 Although the forecasts of models using realized volatility are more accurate over the daily 
horizon, this improvement become nonsignificant over longer horizons. Tables 4 and 5 show the 
forecast results for the weekly and monthly horizons. The results for the long forecast horizons 
average all possible weekly (Monday-to-Monday, Tuesday-to-Tuesday, etc.) and monthly (1st day-
to-1st day, 2nd day-to-2nd day, etc.) combinations. Tables 4 and 5 show that the benefit of using high-
frequency data diminishes with a longer forecast horizon. The average value of the MSE loss 
function for models using only daily information is higher than that of models using realized 
volatility. The DCC and BEKK models are both excluded from the 90% MCS over the weekly and 
monthly forecast horizons. Hence, reducing the forecast frequency to weekly and monthly 
rebalancing does not change the conclusion we draw from Table 3. However, when using the QLIKE 
loss function, we find that the difference in forecast accuracy between models using daily and intra-
day information becomes smaller. The forecast error of the BEKK model is less than that of the 
RWG model. The average loss function value of the DCC model is lower than that of the MRG, 
RWG, and HAR models. Under the monthly forecast horizon, only the DCC and REWMA models 
are included in the 90% MCS. As the QLIKE loss function is more suitable for analyzing risk 
management-related topics, our main results are based on the QLIKE loss function. Thus, a long 
forecast horizon reduces the improvements in forecast accuracy resulting from the use of high-
frequency data. 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4. Out-of-sample Forecasts over the Weekly Horizon, Comparison Results 
 Modeling with Daily 

Information 
Modeling with Realized 
Volatility 

Direct Modeling 

 DCC BEKK MRG RWG HAR REWMA 
ℒ𝑀𝑀𝑀𝑀𝑀𝑀������� 14.119 15.411 10.070 10.620 10.397 10.215 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(ℒ𝑀𝑀𝑀𝑀𝑀𝑀) 0.009 0.003 1 0.360 0.707 0.732 
ℒ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑀𝑀��������� 18.375 18.652 18.640 18.749 18.396 18.247 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(ℒ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑀𝑀) 0.000 0.000 0.000 0.000 0.002 1.000 
Note: The table reports the statistical evaluation of long-horizon (weekly) forecasts. ℒ𝑀𝑀𝑀𝑀𝑀𝑀������� and ℒ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑀𝑀��������� represent 

the average values of the MSE and QLIKE loss functions. 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(ℒ𝑀𝑀𝑀𝑀𝑀𝑀) and 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(ℒ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑀𝑀) denote the MCS p-

values based on the values of the two robust loss functions. When the MCS p-value is small, the model is more likely 

to be excluded from the 90% MCS. All entries in boldface indicate that the models are included in the 90% MCS 

for that row. 

 
Table 5. Out-of-sample Forecasts over the Monthly Horizon, Comparison Results 

 Modeling with Daily 
Information 

Modeling with Realized 
Volatility 

Direct Modeling 

 DCC BEKK MRG RWG HAR REWMA 
ℒ𝑀𝑀𝑀𝑀𝑀𝑀������� 14.102 13.527 10.646 9.563 10.750 10.764 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(ℒ𝑀𝑀𝑀𝑀𝑀𝑀) 0 0 0.006 1 0.006 0.033 
ℒ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑀𝑀��������� 18.375 18.652 18.640 18.749 18.396 18.247 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(ℒ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑀𝑀) 0.134 0.000 0.000 0.000 0.061 1.000 
Note: The table reports the statistical evaluation of short-horizon (monthly) forecasts. ℒ𝑀𝑀𝑀𝑀𝑀𝑀������� and ℒ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑀𝑀��������� represent 

the average values of the MSE and QLIKE loss functions. 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(ℒ𝑀𝑀𝑀𝑀𝑀𝑀) and 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(ℒ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑀𝑀) denote the MCS p-

values based on the values of the two robust loss functions. When the MCS p-value is small, the model is more likely 

to be excluded from the 90% MCS. All entries in boldface indicate that the models are included in the 90% MCS 

for that row. 

5.2 Economic Evaluation 

The economic evaluation of the three types of models focuses on the use of forecasts in the 
construction of an optimal portfolio. From an economic perspective, the portfolios thus obtained 
should have excellent properties. 

The optimal portfolio is defined as the global minimum variance (GMV) portfolio. GMV 
portfolios are typically used in the economic evaluation of volatility models (Bollerslev et al., 2018; 
Ledoit and Wolf, 2018; Engle et al., 2019). Estimating the GMV portfolio is a clean framework for 
evaluating covariance forecasts because it prevents us from estimating the expected return vector, 
whose estimation error distorts the optimal weights. Furthermore, the out-of-sample properties (i.e., 
in terms of the Sharpe ratio) of GMV portfolios usually outperform mean-variance portfolios 
(Jagannathan and Ma, 2003; DeMiguel et al., 2009). 

5.2.1 GMV Portfolio 

 Investors follow a dynamic strategy over a fixed investment horizon, in which the model 
parameters are updated, the conditional covariance matrices, 𝐻𝐻�𝑡𝑡+ℎ|𝑡𝑡+1 , are predicted over the 
investment horizon, and the optimal portfolio weights, 𝑤𝑤𝑡𝑡 , are adjusted correspondingly. We 



assume that investors do not face transaction costs and short-selling constraints as follows:  

 𝑚𝑚𝑑𝑑𝑛𝑛
𝑤𝑤𝑡𝑡

 𝑤𝑤𝑡𝑡′𝐻𝐻�𝑡𝑡+ℎ|𝑡𝑡+1𝑤𝑤𝑡𝑡 (34) 

 𝑠𝑠. 𝑡𝑡.𝑤𝑤𝑡𝑡′𝑙𝑙 = 1 (35) 
where h denotes the daily, weekly, or monthly investment horizon, 𝐻𝐻�𝑡𝑡+ℎ|𝑡𝑡+1  is the predicted 
covariance matrix over the corresponding horizon, 𝑤𝑤𝑡𝑡 is the portfolio weight determined on trading 
day t and unchanged from trading day t to trading day t+h-1, and 𝑙𝑙 is the 𝑛𝑛 × 1 vector of ones. 
Equation (35) ensures that the sum of the portfolio weights is 1. From Equations (34) and (35), we 
obtain the explicit solution of the optimal portfolio weight as follows: 

 
𝑤𝑤𝑡𝑡 =

𝐻𝐻�𝑡𝑡+ℎ|𝑡𝑡+1
−1 𝑙𝑙

𝑙𝑙′𝐻𝐻�𝑡𝑡+ℎ|𝑡𝑡+1
−1 𝑙𝑙

 

(36) 

Next, we denote the 𝑑𝑑th element of 𝑤𝑤𝑡𝑡 and 𝑟𝑟𝑡𝑡 by 𝑤𝑤𝑖𝑖,𝑡𝑡 and 𝑟𝑟𝑖𝑖,𝑡𝑡, respectively, and the weight based 
on the 𝑚𝑚th model’s forecasts by 𝑤𝑤𝑡𝑡

(𝑚𝑚). 
 

5.2.2 Economic Loss Functions 

We discuss the economic loss functions used in this study to evaluate the performance of the 
selected portfolios based on the covariance forecasts of the different models. Next, we introduce six 
economic loss functions: portfolio variance, MSE weight, utility-based framework, turnover, 
concentration, and short positions. 
 We directly compare the portfolio variances during the out-of-sample period to evaluate 
forecasting performance (Chiriac and Voev, 2011). For each horizon in the out-of-sample period, 
the optimal portfolio weight is derived using different forecasts. We use the realized covariance as 
the true conditional covariance matrix of the return vector 𝑟𝑟𝑡𝑡  and calculate the variance of the 
portfolio as follows: 

ℒ1 = 𝜎𝜎𝑝𝑝,𝑡𝑡+ℎ|𝑡𝑡+1
2 = 𝑤𝑤𝑡𝑡′𝑅𝑅𝑉𝑉𝑡𝑡+ℎ|𝑡𝑡+1𝑤𝑤𝑡𝑡 

 Another related criterion used for volatility evaluation is the MSE weight (Golosnoy and 
Gribisch, 2022): 

ℒ2 = (𝑤𝑤𝑡𝑡 − 𝑤𝑤𝑡𝑡∗)′(𝑤𝑤𝑡𝑡 − 𝑤𝑤𝑡𝑡∗) 
where 𝑤𝑤𝑡𝑡∗ denotes the ex-post realization—the weight calculated after knowing the true conditional 
covariance matrix. 
 The third economic loss function we use is the utility-based framework of Fleming et al. (2003). 
They assumed that investors have quadratic utility, whereas we use the negative value of this utility 
as our third economic loss function as follows: 

ℒ3 = −𝑈𝑈(𝑟𝑟𝑝𝑝,𝑡𝑡;𝛾𝛾) = −[ �1 + 𝑟𝑟𝑝𝑝,𝑡𝑡� −
𝛾𝛾

2(1 + 𝛾𝛾) �1 + 𝑟𝑟𝑝𝑝,𝑡𝑡�
2 ] 

where 𝑟𝑟𝑝𝑝,𝑡𝑡 is the portfolio return on trading day t, and 𝛾𝛾 is the risk aversion set to 1. 
 We also consider other widely used evaluation frameworks. According to DeMiguel et al. 
(2009), Callot et al. (2017), Bollerslev et al. (2018), and Grønborg et al. (2022), total portfolio 
turnover measures the change in trading volume. Low turnover indicates low transaction costs 
(proportional transaction costs). We define turnover as follows:  

ℒ4 = 𝑇𝑇𝑂𝑂𝑡𝑡 = � |𝑤𝑤𝑖𝑖,𝑡𝑡+1 − 𝑤𝑤𝑖𝑖,𝑡𝑡
1 + 𝑟𝑟𝑖𝑖,𝑖𝑖

1 + 𝑤𝑤𝑡𝑡′𝑟𝑟𝑡𝑡
|

𝑛𝑛

𝑖𝑖=1
 



The next economic loss function we use is portfolio concentration, which measures extreme 
portfolio allocation risk. Following Bollerslev et al. (2018), portfolio concentration is calculated as 
follows: 

ℒ5 = 𝐶𝐶𝑂𝑂𝑡𝑡 = �� 𝑤𝑤𝑖𝑖,𝑡𝑡2
𝑛𝑛

𝑖𝑖=1
�
1/2

 

Bollerslev et al. (2018) and Grønborg et al. (2022) also used total portfolio short positions because 
the implementation of short positions is costlier than that of long positions. 

ℒ6 = 𝑆𝑆𝑃𝑃𝑡𝑡 = � 𝑤𝑤𝑖𝑖,𝑡𝑡𝕀𝕀(𝑤𝑤𝑖𝑖,𝑡𝑡 < 0)
𝑛𝑛

𝑖𝑖=1
 

where 𝕀𝕀(⋅) is the indicator function. 

5.2.3 Economic Performance Results 

Similar to the statistical evaluation in Section 5.2, our economic evaluation is based on daily, 
weekly, and monthly horizons. We evaluate the performance of the covariance forecasts based on 
the above economic loss functions. Tables 6, 7, and 8 show the daily, weekly, and monthly results, 
respectively. 
 Realized volatility cannot significantly reduce all of the economic loss functions in the daily 
investment horizon; that is, the economic improvement in high-frequency data depends on the 
evaluation framework. High-frequency data can make the optimal weight more accurate, thus 
effectively reducing out-of-sample portfolio variances. However, its performance of high-frequency 
data under the utility and portfolio structure (TO, CO, and SP) frameworks is not significantly better 
than that using low-frequency data. From Table 6, the MCS p-values of direct modeling are higher 
than those of the other models, indicating that the HAR and REWMA models significantly reduce 
out-of-sample portfolio variance. The portfolios generated by models using daily information have 
the largest out-of-sample portfolio variance. Moreover, modeling with realized volatility constructs 
portfolios closest to the ex-post optimal realization and is included in the 90% MCS, while the 
weight of models using daily information has the highest MSE of all ex-post optimal weights. Thus, 
the models using high-frequency data significantly outperform those using daily information in 
terms of portfolio variance and MSE weights in the daily investment horizon. However, when 
focusing on other economic losses, all of the models are included in the 90% MCS of negative utility, 
and the DCC model has the highest MCS p-value. Furthermore, the 90% MCS of turnover loss only 
has the DCC model, which indicates that the DCC model significantly reduces transaction costs in 
reality compared with the other models, even over the daily investment horizon. In addition, the 
DCC, RWG, and REWMA models are all included in the 90% MCS of portfolio concentration and 
short-selling position losses, which means that high-frequency data cannot significantly reduce 
these losses related to portfolio structures. Thus, high-frequency data improve portfolio performance 
in terms of variance and MSE weights but not in terms of investor utility and portfolio structures. 
 
 
 
 
 
 
 



Table 6. Out-of-sample Economic Evaluation over the Daily Horizon 
 Modeling with Daily 

Information 
Modeling with Realized 
Volatility 

Direct Modeling 

 DCC BEKK MRG RWG HAR REWMA 
𝜎𝜎𝑝𝑝��� 0.898 1.130 0.847 0.822 0.820 0.814 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝜎𝜎𝑝𝑝) 0.005 0.005 0.011 0.011 0.069 1 
𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀������� 0.070 0.073 0.036 0.032 0.041 0.052 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀) 0.000 0.000 0.000 0.000 0.000 0.000 
−𝑈𝑈(𝑟𝑟𝑝𝑝, 𝛾𝛾)���������� -0.572 -0.550 -0.561 -0.566 -0.565 -0.572 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑈𝑈(𝑟𝑟𝑝𝑝,𝛾𝛾)) 1.000 0.671 0.671 0.671 0.671 0.987 
𝑇𝑇𝑂𝑂���� 0.152 0.167 0.270 0.292 0.360 0.231 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑂𝑂) 1.000 0.019 0.000 0.000 0.000 0.000 
𝐶𝐶𝑂𝑂���� 0.672 0.729 0.688 0.661 0.676 0.661 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝐶𝐶𝑂𝑂) 0.365 0.000 0.000 0.667 0.000 1.000 
𝑆𝑆𝑃𝑃���� 0.210 0.329 0.228 0.197 0.210 0.197 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑃𝑃) 0.574 0.000 0.000 0.878 0.000 1.000 
Note: The table reports the economic evaluation of short-horizon (daily) forecasts. 𝜎𝜎𝑝𝑝���, 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀�������, −𝑈𝑈(𝑟𝑟𝑝𝑝,𝛾𝛾)����������, 𝑇𝑇𝑂𝑂����, 𝐶𝐶𝑂𝑂����, 

and 𝑆𝑆𝑃𝑃���� respectively represent the average values of out-of-sample portfolio variance, MSE weight, negative utility, 

turnover, concentration, and short position. 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(⋅) denotes the corresponding MCS p-values of these economic 

loss functions. When the MCS p-value is small, the model is more likely to be excluded from the 90% MCS. All 

entries in boldface indicate that the models are included in the 90% MCS for that row. 

 
Similarly, in the weekly and monthly horizons, investors cannot obtain significant economic 

gains from realized volatility. High-frequency data can only reduce portfolio variance but are 
mediocre in other aspects compared with the models using daily information over the weekly and 
monthly investment horizons. The results for the long forecast horizons average all possible weekly 
(Monday-to-Monday, Tuesday-to-Tuesday, etc.) and monthly (1st day-to-1st day, 2nd day-to-2nd day, 
etc.) combinations. Tables 7 and 8 show that the HAR/REWMA and MRG/HAR/REWMA models 
perform best in terms of portfolio variance over the weekly and monthly investment horizons. As 
for the MSE weights, the RWG/HAR models are included in the 90% MCS. These results related 
to portfolio variance and MSE weights are consistent with those over the daily investment horizon. 
Nonetheless, the role of high-frequency data in portfolio performance changes when we concentrate 
on other economic losses. No models are excluded from the 90% MCS of investor utility. The BEKK 
model is the best in terms of turnover with weekly rebalancing frequency. Moreover, the DCC model 
is one of the best models regarding portfolio concentration and selling position over the weekly and 
monthly investment horizons. Thus, a long investment horizon does not change the results of the 
short investment horizon—that high-frequency data significantly enhance portfolio performance 
with regard to portfolio variance, while the role of high-frequency data in promoting investor utility 
and refining portfolio structures is no different from that of low-frequency data. 
 
 
 
 
 



Table 7. Out-of-sample Economic Evaluation over the Weekly Horizon 
 Modeling with Daily 

Information 
Modeling with Realized 
Volatility 

Direct Modeling 

 DCC BEKK MRG RWG HAR REWMA 
𝜎𝜎𝑝𝑝��� 0.896 1.083 0.841 0.833 0.821 0.821 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝜎𝜎𝑝𝑝) 0.001 0.001 0.010 0.010 0.810 1.000 
𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀������� 0.018 0.022 0.010 0.009 0.010 0.011 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀) 0.000 0.000 0.022 1.000 0.274 0.016 
𝑈𝑈(𝑟𝑟𝑝𝑝,𝛾𝛾)���������� -0.729 -0.731 -0.728 -0.739 -0.736 -0.739 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑈𝑈(𝑟𝑟𝑝𝑝,𝛾𝛾)) 0.501 0.747 0.501 0.844 0.747 1.000 
𝑇𝑇𝑂𝑂���� 0.263 0.245 0.257 0.297 0.244 0.231 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑂𝑂) 0.000 0.229 0.003 0.000 0.003 1.000 
𝐶𝐶𝑂𝑂���� 0.672 0.718 0.681 0.660 0.673 0.661 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝐶𝐶𝑂𝑂) 0.329 0.000 0.000 1.000 0.000 0.685 
𝑆𝑆𝑃𝑃���� 0.206 0.309 0.219 0.195 0.205 0.197 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑃𝑃) 0.559 0.000 0.002 1.000 0.046 0.559 
Note: The table reports the economic evaluation of long-horizon (weekly) forecasts. 𝜎𝜎𝑝𝑝���, 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀�������, −𝑈𝑈(𝑟𝑟𝑝𝑝,𝛾𝛾)����������, 𝑇𝑇𝑂𝑂����, 

𝐶𝐶𝑂𝑂����, and 𝑆𝑆𝑃𝑃���� respectively represent the average values of out-of-sample portfolio variance, MSE weight, negative 

utility, turnover, concentration, and short position. 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(⋅)  denotes the corresponding MCS p-values of these 

economic loss functions. When the MCS p-value is small, the model is more likely to be excluded from the 90% 

MCS. All entries in boldface indicate that the models are included in the 90% MCS for that row. 

 
Table 8. Out-of-sample Economic Evaluation over the Monthly Horizon 

 Modeling with Daily 
Information 

Modeling with Realized 
Volatility 

Direct Modeling 

 DCC BEKK MRG RWG HAR REWMA 
𝜎𝜎𝑝𝑝��� 0.820 0.861 0.788 0.799 0.780 0.786 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝜎𝜎𝑝𝑝) 0.011 0.003 0.122 0.058 1.000 0.179 
𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀������� 0.013 0.014 0.010 0.008 0.008 0.010 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀) 0.006 0.008 0.017 0.401 0.000 0.087 
𝑈𝑈(𝑟𝑟𝑝𝑝,𝛾𝛾)���������� -0.761 -0.757 -0.759 -0.765 -0.763 -0.767 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑈𝑈(𝑟𝑟𝑝𝑝,𝛾𝛾)) 0.453 0.437 0.437 0.453 0.453 1.000 
𝑇𝑇𝑂𝑂���� 0.263 0.220 0.215 0.306 0.180 0.230 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑂𝑂) 0.000 0.000 0.000 0.000 1.000 0.000 
𝐶𝐶𝑂𝑂���� 0.657 0.675 0.659 0.653 0.667 0.661 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝐶𝐶𝑂𝑂) 0.620 0.000 0.620 1.000 0.001 0.006 
𝑆𝑆𝑃𝑃���� 0.189 0.235 0.192 0.187 0.197 0.197 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑃𝑃) 0.895 0.000 0.850 1.000 0.017 0.017 
Note: The table reports the economic evaluation of long-horizon (monthly) forecasts. 𝜎𝜎𝑝𝑝���, 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀�������, −𝑈𝑈(𝑟𝑟𝑝𝑝,𝛾𝛾)����������, 𝑇𝑇𝑂𝑂����, 

𝐶𝐶𝑂𝑂����, and 𝑆𝑆𝑃𝑃���� respectively represent the average values of out-of-sample portfolio variance, MSE weight, negative 

utility, turnover, concentration, and short position. 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(⋅)  denotes the corresponding MCS p-values of these 

economic loss functions. When the MCS p-value is small, the model is more likely to be excluded from the 90% 

MCS. All entries in boldface indicate that the models are included in the 90% MCS for that row. 



6. Conclusion 

In this study, we investigate the role of using high-frequency data in covariance forecasts and 
portfolio performance under different rebalancing frequencies based on three types of models. We 
use the composite likelihood approach to estimate the required model parameters and forecast the 
corresponding covariance matrices over daily, weekly, and monthly horizons. We statistically 
evaluate the forecast accuracy of the different models based on the QLIKE loss function and find 
that high-frequency data significantly improve forecast accuracy over the daily rebalancing 
frequency, but this improvement is dampened when longer (weekly and monthly) horizons are used. 
We also evaluate forecasts from an economic perspective and demonstrate that investors may not 
obtain significant economic benefits from using high-frequency data, depending on the type of 
economic loss they pay attention to. In the daily investment horizon, high-frequency data can make 
the optimal weight more accurate, thus reducing out-of-sample portfolio variance. However, 
investors cannot enhance their utility or refine their portfolio structure by using high-frequency data. 
These results are robust to weekly and monthly investment horizons. 
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