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1 Introduction

This paper presents an analysis of a mechanism design problem with a principal (she)

and two agents (he), and without monetary transfers. The principal needs to make

two decisions, one for each agent, but the relevant information is dispersed between

the agents. While each agent only cares about the decision for himself, the principal

also cares about the interactions of the two decisions.

An application of our analysis is to the delegation problem within multidivisional

organizations. As pointed out by Roberts (2004) and Alonso et al. (2008), multidi-

visional organizations exist primarily to coordinate the activities of their divisions.

Coordinated decision making by the headquarters manager requires aggregation of

the relevant information, which is usually dispersed among the individual division

managers as they are best informed of their local conditions. But there is a conflict of

interest between the headquarters manager, who cares more about coordination, and

the division managers, who care more about adaptation: more coordinated decisions

are less adapted to the local conditions of each division. In such an environment,

how should the headquarters manager delegate to the division managers to reflect

the trade-off between adaptation and coordination? This question is unexplored in

the prior literature on authority allocation within multidivisional organizations.1 Our

paper fills the gap as a direct application of our main result can shed light on the

optimal design of delegation rules.

Formally, each of the two agents in our model has a quadratic-loss payoff function

that only depends on his own state and the decision for him. Each agent’s most

preferred decision is equal to his state. By contrast, the principal’s payoff function

consists of three additively separable components. Two of them are called adaptation

payoffs, which represent her potentially different preferences over each agent’s deci-

sion and the corresponding state. In general, we allow incentive misalignment in the

sense that these payoffs are different from the agents’ ones. The third component is

a supermodular function that only depends on the agents’ actions. The complemen-

tarity of the two actions captures the principal’s coordination motive: if one agent

makes a higher decision, she would like the other agent to make a higher decision too.

Thus, we refer to this component as the principal’s coordination payoff.

The principal can commit to any deterministic dominant strategy incentive com-

patible mechanism, which can be implemented by a contingent delegation mechanism.

In such a mechanism, agents report their states to the principal and then the princi-

1See further elaboration in the literature review.
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pal offers each agent a delegation set that depends on the other agent’s report. After

reporting and receiving his own delegation set, each agent chooses his favorite action

from it. Our goal is to understand the principal’s optimal contingent delegation.

To see the main problems faced by the principal in her design, consider the previ-

ously mentioned coordination problem in multidivisional organizations. If the head-

quarters manager only cared about whether the decisions of the local divisions were

adapted to their local conditions and had no coordination concern at all, then she

could simply grant full discretion and delegate all the decision rights to the local divi-

sions, since their interests were perfectly aligned. However, this decision rule should

not be optimal in the presence of the coordination motive, as the local divisions’ fully

adapted decisions may not be well coordinated, leading to a large coordination loss.

To mitigate such miscoordination, the headquarters manager can give less discretion

to the local divisions. By ruling out some decisions for a division, she can induce this

division to coordinate with the other one at the cost of reduced adaptation of this

division. Thus, the optimal level of discretion for each division must trade off the cost

from reduced adaptation against the benefit from better coordination. The difficulty

here is that each division’s trade-off depends on the other division’s decision, which

in turn is determined by the discretion the other division is granted. Therefore, the

optimal design must resolve both divisions’ trade-offs jointly.

Our first main result, Theorem 1, sheds light on how these trade-offs are resolved

jointly at the optimum. It characterizes the optimal contingent interval delegations,

under which the contingent delegation sets that the principal offers to the agents are

always intervals. We construct the optimal solution via a “two-step procedure.” The

first step treats each agent’s trade-off separately, while the second step deals with the

joint design problem.

In the first step, we consider the principal’s optimal interval contingent delegation

problem for agent i, assuming that agent −i is granted full discretion. This involves

a series of simple single-agent problems, in each of which the principal determines

agent i’s delegation interval to maximize the expected sum of her adaptation payoff

from agent i and her coordination payoff, given that agent −i’s state is s−i and he

chooses a−i = s−i. We assume that for each s−i, the optimal interval [c∗i (s−i), d
∗
i (s−i)]

is uniquely determined and non-degenerate.2 Both boundary functions c∗i and d∗i are

nondecreasing in s−i, because the principal would like agent i to take higher action

to coordinate better with agent −i when −i takes a higher action. We refer to the

2This is condition U in Section 3.2. Sufficient conditions on the model primitives are provided in

Lemma 3.
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pair of functions (c∗i , d
∗
i ) as the unilaterally constrained delegation rule for agent i,

because it is obtained by assuming that agent −i is never constrained. Panel (a) in

Figure 1 provides an illustration of the unilaterally constrained delegation rules for

both agents. The square is the s1, s2-plane.
3 The blue and red curves represent the

unilaterally constrained delegation rules for agents 1 and 2, respectively.
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Figure 1: Optimal contingent interval delegation

These two unilaterally constrained delegation rules together give the principal

a contingent interval delegation ((c∗1, d
∗
1), (c

∗
2, d

∗
2)). But intuitively it is not optimal,

precisely because it neglects the joint design problem: changing from full discretion

to delegation rule (c∗−i, d
∗
−i) changes agent −i’s behavior, which in turn affects agent

i’s coordination problem and makes (c∗i , d
∗
i ) for agent i suboptimal. To see this,

consider, for example, a sufficiently low s2 so that action s2 is never available to agent

2 under (c∗2, d
∗
2). Under this contingent delegation rule, agent 2’s action will always

be higher than what he would take under full discretion, i.e., s2. This implies that

the delegation interval [c∗1(s2), d
∗
1(s2)] for agent 1 is no longer optimal, because the

principal would like to move this interval upward for better coordination.

Nonetheless, we resolve this issue in the second step by modifying ((c∗1, d
∗
1), (c

∗
2, d

∗
2)),

under the additional assumption that c∗1 and d
∗
1 intersect c

∗
2 and d

∗
2, respectively, only

once in the s1, s2-plane, as is the case in panel (a).4 Theorem 1 states that an

3For ease of exposition, we assume that the state space and the action space are the same for

both agents.
4This is condition R in Section 3.2. Sufficient conditions on the model primitives are provided in

Lemma 4.
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optimal contingent interval delegation is immediately obtained by bounding the uni-

laterally constrained delegation rules with the intersections. The resulting contingent

delegation is illustrated in panel (b).5 The curve
¯
ϕ∗
i is the lower bound and ϕ̄∗

i is

the upper bound so that the delegation interval for agent i when −i reports s−i is

[
¯
ϕ∗
i (s−i), ϕ̄

∗
1(s−i)].

To gain some intuition on the construction of the optimal mechanism, consider

again the example where s2 is sufficiently low so that action s2 is never available to

agent 2 under (c∗2(s1), d
∗
2(s1)). We employ an iterative process of modifications in this

case by first increasing agent 2’s action, a2, to the lower bound c∗2(s1). This change of

a2 implies that the delegation interval [c∗1(s2), d
∗
1(s2)] for agent 1 is no longer optimal,

and intuitively we change it to [c∗1(c
∗
2(s1)), d

∗
1(c

∗
2(s1))]. If s1 is contained in the interval

[c∗1(c
∗
2(s1)), d

∗
1(c

∗
2(s1))], we can stop further modifications and let a1 = s1. This is how

we use the arrow to modify point A in panel (c) in Figure 1. But if s1 is outside the

interval, we need to change a1 to the boundary, and this triggers further modifications

of agent 2’s delegation interval. This iterative process continues until it converges to

(s̄1, s̄2), as illustrated by the arrow starting from point B in panel (c). Consequently,

the optimal delegation is flat over the corner.

Our second main result, Theorem 2, establishes sufficient conditions for the opti-

mal contingent interval delegation in Theorem 1 to be optimal among all the contin-

gent delegation mechanisms. These sufficient conditions are expressed in terms of the

principal’s adaptation and coordination payoffs and the state distributions. A more

general result, which provides sufficient conditions for any given contingent interval

delegation to be optimal and on which Theorem 2 is based, is also provided in Theo-

rem 3 in the appendix. It extends the main sufficiency result in Amador and Bagwell

(2013) to our two-agent setting.

Finally, we apply the above general results to study the previously mentioned

optimal design problem within a multidivisional organization. Under the quadratic-

loss specification of the principal’s payoff function and log-concavity of the state

distributions, all the conditions for Theorems 1 and 2 are satisfied. Therefore, the

optimal contingent interval delegation we found in Theorem 1 is indeed an optimal

mechanism. Due to the simple structure of this optimal contingent interval delegation,

a set of intuitive comparative statics results are easily obtained. For one example,

if coordination becomes more important to the principal, then both divisions will

receive less discretion. For another example, if one division becomes more important

to the principal, then this division must be better off in that it will be granted larger

5The dashed curves correspond to the unilaterally constrained delegation rules.
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discretion. But the other division will suffer as it will receive less discretion.

Related literature. Our work relates to two main strands of the literature. The

first is the research on mechanism design without contingent transfers. In the single-

agent setting, it is well known that such a problem is equivalent to the delegation

problem. Holmström (1977, 1984) was the first to pose the general class of delegation

problems. Since then, a number of other researchers, including Melumad and Shibano

(1991), Martimort and Semenov (2006), Alonso and Matouschek (2008), Amador and

Bagwell (2013), and Amador et al. (2018), have studied and characterized the solution

to the single-agent delegation problem under various assumptions on the preferences

and state distributions. This literature places particular emphasis on the optimality

of interval delegation since it is the most natural form and is commonly observed in

reality. By focusing on dominant strategy incentive compatible mechanisms, we es-

tablish a similar equivalence between mechanism design and delegation in our general

framework with two actions and two agents.

To our knowledge, Alonso et al. (2014) were the first to study optimal mechanism

design without contingent transfers in an environment with multiple actions and mul-

tiple agents. In their model, a principal allocates limited resources to three agents.

Two of them are privately informed of their own ideal demand, and the ideal demand

of the third agent is known to the principal. Agents are biased only in one direction

so only a cap will be used in the optimal unilaterally constrained delegation rules and

consequently in the optimal mechanism. Our analysis points out that the decompo-

sition result holds with general functional form and, in particular, in the presence of

biases in both directions.6 There are two other papers studying optimal non-monetary

design with two agents and one action: Martimort and Semenov (2008) and Fuchs

et al. (2022). Because the policy chosen by the principal is only one-dimensional, the

models are more closely related to the single-agent case. For example, Fuchs et al.

(2022) point out that when agents’ type spaces are disjoint, the principal might find

it optimal to delegate the decision right to just one agent.

The second strand studies authority allocation within multidivisional organiza-

tions. Similar to our setting, this literature assumes that multiple decisions must

be coordinated and the relevant information for decision making is horizontally dis-

persed. However, related studies including Alonso et al. (2008), Rantakari (2008),

6When the principal has enough resources so that it is always feasible to meet the two privately

informed agents’ ideal demands, their model becomes a special case of ours after substituting the

allocation of the third agent by the resource constraint. See also footnote 8.
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Dessein et al. (2010), Friebel and Raith (2010), and Li and Weng (2017), assume a

lack of commitment power in the sense that the organization can commit only to an

ex ante allocation of decision rights, and explore strategic communication equilibria

given an authority allocation mechanism in such settings.7 For example, Alonso et al.

(2008) compare the efficiency of centralization, in which case the division managers

communicate vertically with the headquarters manager who will make the decisions,

and decentralization, in which case the division managers who will make their own in-

dividual decisions communicate horizontally with each other. While all these papers

study equilibria under certain exogenously given mechanisms, we apply our main re-

sult to this environment to investigate the optimal mechanism under full commitment

power. To the best of our knowledge, our paper is the first to study the optimal de-

sign of delegation rules to reflect the trade-off between adaptation and coordination

in multidivisional organizations, although admittedly our framework simplifies the

setup by assuming that division managers only care about themselves, while papers

such as Alonso et al. (2008) allow agents also to care about coordination (just to a

lesser degree).

The rest of the paper is organized as follows. Section 2 describes the model.

Section 3 contains the analysis and our main results. In Section 4, we apply our

general results to the multidivisional organization problem. Section 5 concludes. The

proofs for Section 3 are deferred to the appendix. The proofs for Section 4 can be

found in the online appendix.

2 Model Setting

There are one principal and two agents. The principal needs to make one decision for

each agent. She can commit to a deterministic decision rule but is unable to commit

to contingent transfers.

Preferences: The principal’s and the agents’ payoffs depend on both the decision

and the state of the world. A decision consists of a pair of actions, a1 ∈ [0, 1] for

agent 1 and a2 ∈ [0, 1] for agent 2. A state of the world is a pair (s1, s2) ∈ [0, 1]2,

with the interpretation that si is agent i’s state.

Agent i’s payoff only depends on his own state si and the decision ai for him. In

particular, we assume that i’s payoff function takes the quadratic loss form vi(ai, si) =

7There are also related models where the communication is not strategic. See, for instance, Aoki

(1986), Hart and Moore (2005), Dessein and Santos (2006), and Cremer et al. (2007).
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1
2
(ai − si)

2. That is, each agent always wants the decision for him to be as close to

his state as possible.

The principal, in contrast, cares about both decisions for the two agents and their

states. Her payoff function is denoted by u(a1, a2, s1, s2). Throughout the paper, we

assume that u takes the following form:

u(a1, a2, s1, s2) ≡ u0(a1, a2) + u1(a1, s1) + u2(a2, s2).

All the components u0, u1 and u2 are twice continuously differentiable and concave

in (a1, a2). The principal’s payoff is a generalization of the literature on adapta-

tion versus coordination in multidivisional organizations, for example, Alonso et al.

(2008), Rantakari (2008), Alonso et al. (2014), and Li and Weng (2017). In partic-

ular, ui(ai, si) for i = 1, 2 can be viewed as an adaptation payoff that measures how

ai is adapted to state si. This includes the case where ui(ai, si) is proportional to

−(ai− si)
2, which is the specification in our application in Section 4. More generally,

we can allow incentive misalignment in the sense that the principal values the adap-

tation payoff in a way that is different from the agents. Following the literature, we

introduce u0(a1, a2) as a coordination payoff that measures how well the decisions are

coordinated. For this interpretation, we assume that u0 is supermodular so that the

two decisions are complementary to each other.8 This additively separable form of

the principal’s payoff function makes the interaction between the two decisions state-

independent. As we shall see, this assumption implies that agent −i’s state s−i has

no direct effect on the design of agent i’s decision. Its effect is only indirect through

its effect on agent −i’s decision.

Information: Agent i perfectly knows his own state si, but not the other agent’s

state s−i. The principal knows neither s1 nor s2. She believes that s1 and s2 are

independently distributed over the interval [0, 1], with cumulative distribution func-

tion F1 and F2. We assume that state si has full support and continuous density fi.

Because we focus on mechanisms that are dominant strategy incentive compatible,

we do not need to specify each agent’s belief about the other agent’s state. Even

the principal’s prior belief can be completely subjective. It need not reflect the true

distribution of the states.

8 Our analysis can also deal with the case where u0 is submodular by the simple trick of changing

variables in (3): s̃2 = 1−s2 and ã2 = 1−a2. In this way, ũ0(a1, ã2) ≡ u0(a1, 1−a2) is supermodular

in (a1, ã2). In this case, all the conditions that we impose later on u0 should be understood as

conditions on ũ0.
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Mechanism design problem: Throughout this paper we focus on deterministic

mechanisms that are dominant strategy incentive compatible (DSIC), which requires

that reporting truthfully is always optimal regardless of the other agent’s report.

Invoking the revelation principle, we can focus on direct mechanism (a1, a2), where

each ai is a measurable function that maps the reported states (s1, s2) ∈ [0, 1]2 to the

action ai(s1, s2) ∈ [0, 1] for agent i.9 The design problem can be expressed as:

max
(a1, a2)

∫ 1

0

∫ 1

0

u (a1(s1, s2), a2(s1, s2), s1, s2) dF1(s1)dF2(s2) (1)

s.t. vi(ai(si, s−i), si) ≥ vi(ai(ŝi, s−i), si) ∀i, si, ŝi, s−i.

3 Optimal Mechanism

In this section, we solve the principal’s mechanism design problem (1) under some ad-

ditional conditions. Section 3.1 introduces the notion of contingent delegation mech-

anisms, and establishes its equivalence to DSIC mechanisms in out setting. Sections

3.2 - 3.5 focus on contingent interval delegations, in which the delegation set offered

to each agent is always an interval, and find an optimal contingent interval delegation.

Section 3.6 provides conditions for this optimal contingent interval delegation to be

optimal among all DSIC mechanisms.

3.1 Contingent delegation mechanisms

In single-agent settings, it is well known that the principal’s direct mechanism design

problem is equivalent to the delegation problem where the principal offers the agent

a delegation set, from which the agent chooses his most preferred action (Holmström

(1977, 1984), Melumad and Shibano (1991), Alonso and Matouschek (2008)). The

following lemma essentially establishes a similar equivalence in our two-agent setting.

Lemma 1. A direct mechanism (a1, a2) is a DSIC mechanism if and only if there

exist closed-valued correspondences Di : [0, 1] ⇒ [0, 1] for i = 1, 2 such that, for all i,

si, and s−i,

ai(si, s−i) ∈ argmax
a′i∈Di(s−i)

vi(a
′
i, si). (2)

9The revelation principle for the deterministic DSIC mechanisms holds if DSIC means each

agent’s report best replies to any strategies of other agents (in contrast to the definition of ex-post

mechanisms). See Jarman and Meisner (2017) for details.
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Lemma 1 states that any DSIC mechanism (a1, a2) is equivalent to a contingent

delegation mechanism (D1, D2). In such a mechanism, the agents report their states

to the principal. Instead of making decisions for the agents according to (a1, a2),

the principal offers each agent i a delegation set Di(s−i), which is contingent on −i’s
report and from which i is free to choose his favorite action. In this mechanism, every

agent is willing to report truthfully because his payoff is completely determined by

his own action. Equation (2) then states that the same decisions will be implemented

under the DSIC mechanism and this corresponding contingent delegation mechanism.

In single-agent settings, interval delegation, where the principal offers an inter-

val as the delegation set, is the most salient class of delegation mechanisms. This

notion can also be naturally generalized to the current two-agent setting. A contin-

gent delegation mechanism (D1, D2) is a contingent interval delegation if there exist

measurable functions
¯
ϕ1, ϕ̄1,

¯
ϕ2, ϕ̄2 : [0, 1] → [0, 1] such that, for all i,

¯
ϕi ≤ ϕ̄i and

Di(s−i) = [
¯
ϕi(s−i), ϕ̄i(s−i)], ∀s−i ∈ [0, 1].

In such a mechanism, the delegation set that the principal offers to each agent is

always an interval, and this interval varies with the other agent’s report. From now

on, we directly write this contingent interval delegation as (ϕ1, ϕ2), where ϕi = (
¯
ϕi, ϕ̄i)

is referred to as the interval delegation rule for agent i.

For i = 1, 2 and 0 ≤ c ≤ d ≤ 1, define

σi(si; c, d) ≡


c, if si < c,

si, if c ≤ si ≤ d,

d, if si > d.

Given agent i’s quadratic-loss payoff function, σi(si; c, d) is just i’s most preferred

decision at state si, when he is restricted to choose from the interval [c, d]. Given any

contingent interval delegation (ϕ1, ϕ2), the corresponding DSIC mechanism, denoted

by (σϕ1

1 , σ
ϕ2

2 ), is then given by10,11

σϕi

i (si, s−i) ≡ σi(si;
¯
ϕi(s−i), ϕ̄i(s−i)), ∀i, si, s−i.

10Measurability of σϕi

i is guaranteed by measurability of ϕi.
11Conversely, any DSIC mechanism (a1, a2) that is continuous in one’s own state, i.e., ai is continu-

ous in si for i = 1, 2, is equivalent to the contingent interval delegation defined by
¯
ϕi(s−i) = ai(0, s−i)

and ϕ̄i(s−i) = ai(1, s−i) for i = 1, 2. This is analogous to the well-known result in the single-agent

delegation literature that a direct mechanism is equivalent to an interval delegation if and only if it

is continuous.
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3.2 Unilaterally constrained delegation rule

By Lemma 1, solving the principal’s DSIC mechanism design problem (1) is equiv-

alent to finding out the principal’s optimal contingent delegation. For this, we first

restrict our attention to contingent interval delegations and characterize the optimal

contingent interval delegation (Theorem 1). Then, we show that under certain con-

ditions, this optimal contingent interval delegation is optimal among all contingent

delegations (Theorem 2).

The design of optimal contingent interval delegation can be written as

max
(ϕ1, ϕ2)

∫ 1

0

∫ 1

0

u
(
σϕ1

1 (s1, s2), σ
ϕ2

2 (s1, s2), s1, s2

)
dF1(s1)dF2(s2), (3)

s.t.
¯
ϕi(s−i) ≤ ϕ̄i(s−i), ∀s−i.

To solve this problem, we need to impose two additional conditions and introduce

a special interval delegation rule for each agent. The basic purpose of doing so is

to decompose the principal’s design problem into two classes of single-agent delega-

tion problems. These additional conditions will guarantee that the solutions to these

single-agent delegation problems are nicely behaved. As Theorem 1 will show, a cer-

tain modification of the solutions to these single-agent problems becomes an optimal

contingent interval delegation.

Suppose agent −i’s state is s−i and he chooses his most preferred action a−i =

s−i. Given agent −i’s behavior, consider the principal’s optimal interval delegation

problem for agent i. We can write it as

max
0≤c≤d≤1

∫ 1

0

[u0(σi(si; c, d), s−i) + ui(σi(si; c, d), si)] dFi(si). (4)

By continuity of u0 and ui, an optimal solution to (4) always exists. The first condition

we impose requires that the optimal delegation interval for this single agent problem

be always unique and non-degenerate.

Condition U. For every s−i ∈ [0, 1], there is a unique solution (c∗i (s−i), d
∗
i (s−i)) to

(4). It satisfies c∗i (s−i) < d∗i (s−i).

Sufficient conditions on the payoff and distribution functions for condition U to

hold are provided in Section 3.5. Viewing both c∗i and d∗i as boundary functions,

(c∗i , d
∗
i ) forms a delegation rule for agent i. It is indeed the principal’s optimal interval

delegation rule for agent i if agent−i is always free to choose his most preferred action.

For this reason, we refer to (c∗i , d
∗
i ) as the unilaterally constrained delegation rule for

agent i.
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Condition U and supermodularity of u0 give us two basic properties of the unilat-

erally constrained delegation rules.

Lemma 2. Under condition U, both c∗i , d
∗
i : [0, 1] → [0, 1] are continuous and in-

creasing, for i = 1, 2.

Continuity is standard. Monotonicity comes from complementarity between the

two actions under supermodularity of u0. When−i takes a higher action, the principal
would like i to take a higher action as well. Hence, both the lower and upper bounds

of the optimal delegation interval for i increase.

The second condition is a regularity condition for the two agents’ unilaterally

constrained delegation rules.

Condition R. In the s1, s2-plane, the graphs of c∗1 and d∗1 intersect those of c∗2 and

d∗2 only once, respectively.

s1

s2
c∗1

d∗1

c∗2

d∗2

¯
L2

¯
L1

H̄1

H̄2

L̄1

¯
H2

L̄2

¯
H1

Figure 2: Unilaterally constrained delegation rules

Similar to condition U, sufficient conditions on the primitives for condition R are

provided in Section 3.5. Figure 2 provides an illustration of typical pairs of unilaterally

constrained delegation rules that satisfy condition R, which requires that any red

curve and blue curve intersect only once. There are in total four intersections. We

carefully label them in the graph and will follow this notation throughout the paper.
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3.3 Optimal contingent interval delegation

Based on the unilaterally constrained delegation rules, we are now ready to state

our first main result. We say that a contingent interval delegation (ϕ1, ϕ2) is in-

creasing if all the boundary functions
¯
ϕ1, ϕ̄1,

¯
ϕ2, and ϕ̄2 are increasing. For example,

(c∗1, d
∗
1, c

∗
2, d

∗
2) is increasing according to Lemma 2. Let M be the set of all increasing

contingent interval delegations. The following theorem constructs an optimal con-

tingent interval delegation by modifying the unilaterally constrained delegation rules

in a certain way according to their intersections. Moreover, this optimal contingent

interval delegation is in M, and it is essentially unique in M.

Theorem 1. Suppose conditions U and R hold. Denote the intersection of c∗1 and c∗2

by (
¯
L1,

¯
L2), that of c

∗
1 and d∗2 by (

¯
H1, L̄2), that of d

∗
1 and c∗2 by (L̄1,

¯
H2), and that of

d∗1 and d∗2 by (H̄1, H̄2). For i = 1, 2, define

¯
ϕ∗
i (s−i) ≡


¯
Li, if s−i ∈ [0,

¯
L−i],

c∗i (s−i), if s−i ∈ (
¯
L−i, L̄−i),

¯
Hi, if s−i ∈ [L̄−i, 1],

(5)

and

ϕ̄∗
i (s−i) ≡


L̄i, if s−i ∈ [0,

¯
H−i],

d∗i (s−i), if s−i ∈ (
¯
H−i, H̄−i),

H̄i, if s−i ∈ [H̄−i, 1].

(6)

Then, (ϕ∗
1, ϕ

∗
2) is an optimal contingent interval delegation, that is, it solves (3).

Moreover, (ϕ∗
1, ϕ

∗
2) ∈ M and if (ϕ1, ϕ2) ∈ M is also optimal, then (ϕ1, ϕ2) = (ϕ∗

1, ϕ
∗
2)

over (0, 1).

The construction of the optimal mechanism is illustrated by Figure 3. Panels (a)

and (b) depict the resulting delegation rules (
¯
ϕ∗
1, ϕ̄

∗
1) and (

¯
ϕ∗
2, ϕ̄

∗
2) for the two agents,

respectively. Take panel (a) as an example. The blue curves represent
¯
ϕ∗
1 and ϕ̄

∗
1. As

(5) defines,
¯
ϕ∗
1 coincides with c∗1 when s2 ∈ (

¯
L2, L̄2). It remains constant

¯
L1 when

s2 ∈ [0,
¯
L2] and constant

¯
H1 when s2 ∈ [L̄2, 1]. Analogously, ϕ̄∗

1 coincides with d∗1

when s2 ∈ (
¯
H2, H̄2). It remains constant L̄1 when s2 ∈ [0,

¯
H2] and constant H̄1 when

s2 ∈ [H̄2, 1].

Panel (c) depicts the outcome, or equivalently the corresponding direct mechanism

(σ
ϕ∗
1

1 , σ
ϕ∗
2

2 ), under the optimal contingent interval delegation. The arrows indicate how

a state is mapped to an action profile. The optimal mechanism divides the state

space into four kinds of regions according to who is constrained. Region I is the

13



¯
L1

¯
ϕ∗1

¯
H1

L̄1

ϕ̄∗1

H̄1

¯
L2

H̄2

L̄2

¯
H2

c∗1

d∗1

(a) Illustration of ϕ∗1

¯
H1

L̄1

H̄1

¯
L1

¯
L2

¯
ϕ∗2

¯
H2

L̄2

ϕ̄∗2
H̄2

d∗2

c∗2

(b) Illustration of ϕ∗2

¯
H1

L̄1

I
II

II

III

III

IV

IVIV

IV

(c) Outcomes under (ϕ∗1, ϕ
∗
2)

Figure 3: Optimal mechanism

unconstrained region in the sense that both agents are able to choose their own most

preferred actions. Regions II and III are the unilaterally constrained regions. In these

regions, one agent (agent 2 in region II and agent 1 in region III) chooses his most

preferred action, but the other agent will choose either the lower bound or the upper

bound of the delegation interval for him, depending on whether his state is too low or

too high. Lastly, region IV is the jointly constrained region. At each of these states,

no one is able to choose his most preferred action.

The particular structure of the direct mechanism makes it group strategy-proof.

That is, there is no joint misreporting that can make one agent strictly better off

without hurting the other. For example, if s belongs to region II or III, one agent,

say i, takes his most preferred action under truthful reporting. It is easy to see from

panel (c) that there is no other decision within region I (including the boundaries)

that delivers the same action for i but at the same time makes −i strictly better off.

If s is in region IV, the decision σϕ∗
(s) is just at one of the “vertices” of region I.

It is again easy to see from the graph that there is no other decision within region I

that Pareto improves upon σϕ∗
(s).12 The following proposition summarizes the above

observation.

Proposition 1 (Group strategy-proofness). The direct mechanism (σ
ϕ∗
1

1 , σ
ϕ∗
2

2 ) is group

strategy-proof. That is, for any states (s1, s2) and (ŝ1, ŝ2), if vi(σ
ϕ∗
i

i (ŝi, ŝ−i), si) >

vi(σ
ϕ∗
i

i (si, s−i), si), then we must have v−i(σ
ϕ∗
−i

−i (ŝi, ŝ−i), s−i) < v−i(σ
ϕ∗
−i

−i (si, s−i), s−i).

12The above argument only applies to the direct mechanism. In the indirect contingent delegation

mechanism, because the range of action pairs that can arise under misreporting is strictly larger

than region I, it is possible to make both agents strictly better off by joint misreporting.
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3.4 A nontechnical explanation

The proof of Theorem 1 is quite involved. To explain the basic idea behind the

result, we provide an informal analysis that is based on the first-order conditions.

A necessary condition for (ϕ∗
1, ϕ

∗
2) to be an optimal contingent interval delegation is

that, for any s−i, [
¯
ϕ∗
i (s−i), ϕ̄

∗
i (s−i)] is an optimal single-agent delegation interval for

agent i, given the other agent’s behavior σ
ϕ∗
−i

−i ( · , s−i). Taking i = 1 as an example,

this means that for any s2, the pair (
¯
ϕ∗
1(s2), ϕ̄

∗
1(s2)) must be a solution to

max
0≤c≤d≤1

∫ 1

0

[
u0(σ1(s1; c, d), σ

ϕ∗
2

2 (s1, s2)) + u1(σ1(s1; c, d), s1)
]
dF1(s1). (7)

If σ
ϕ∗
2

2 ( · , s2) ≡ s2, then this problem reduces to the unilaterally constrained delegation

problem (4), and we immediately know that the solution to (7) is (c∗1(s2), d
∗
1(s2)) by

condition U. Given ϕ∗
2 from Theorem 1, this situation corresponds to the case when

s2 takes intermediate values, i.e.,
¯
H2 ≤ s2 ≤ L̄2 from panel (b) of Figure 3. For these

values of s2, Theorem 1 indeed states that
¯
ϕ∗
1(s2) = c∗1(s2) and ϕ̄

∗
1(s2) = d∗1(s2).

However, when s2 takes a value outside this intermediate range, σ
ϕ∗
2

2 ( · , s2) is no

longer a constant. To fix ideas, consider an extremely low state s2 so that s2 <
¯
L2.

At this state, agent 2’s constrained optimal action σ
ϕ∗
2

2 (s1, s2) =
¯
ϕ∗
2(s1) for every s1 is

always higher than his unconstrained optimal action s2. As we have mentioned in the

introduction, the principal’s coordination concern then would like to induce agent 1

to take higher actions. This can be done by shifting the delegation interval for agent

1 to the right of [c∗1(s2), d
∗
1(s2)], as is indeed the case of [

¯
ϕ∗
1(s2), ϕ̄

∗
1(s2)] = [

¯
L1, L̄1]

from panel (a) of Figure 3.13

But why is this particular interval optimal? The fundamental driving force behind

this optimality is the fact that the optimal delegation interval for agent 1 is determined

only by agent 2’s behavior at the extreme s1’s. Intuitively, when determining the

delegation interval for agent 1, the principal is considering which agent 1’s extreme

states to pool. From coordination point of view, this means that what matters most

is agent 2’s behavior at these extreme s1’s, rather than that at intermediate s1’s.

Consequently, if agent 2 behaves the same at the extreme s1’s under two different

contingent delegation rules, the principal’s optimal action bounds for agent 1 should

be the same. In particular, if agent 2’s behavior is constant at the extreme s1’s, the

optimal bounds for agent 1 should be the same as in the unilaterally constrained

delegation problem. This is exactly the case of σ
ϕ∗
2

2 ( · , s2): σ
ϕ∗
2

2 (s1, s2) =
¯
L2 when

13Lemma 6 in Appendix B.1 provides a formal comparative statics result of this intuition. It also

deals with potential multiplicity of the optimal intervals.
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s1 ∈ [0,
¯
L1] and σ

ϕ∗
2

2 (s1, s2) =
¯
H2 when s1 ∈ [L̄1, 1]. Therefore, the optimal lower

bound for agent 1 is c∗1(¯
L2) =

¯
L1 and the optimal upper bound is d∗1(¯

H2) = L̄1, which

is just the construction of
¯
ϕ∗
1(s2) and ϕ̄

∗
1(s2).

To see this intuition more precisely, let us first consider the determination of c∗1(¯
L2)

in the principal’s unilaterally constrained delegation problem. Its first order condition

is ∫ c∗1(¯
L2)

0

[
∂u0
∂a1

(c∗1(¯
L2),

¯
L2) +

∂u1
∂a1

(c∗1(¯
L2), s1)

]
dF1(s1) = 0. (8)

To understand this first order condition, note that a change in the lower bound has

two effects. First, it changes the pooling interval. Second, it changes agent 1’s action

over the original pooling interval. Marginally speaking, the first effect is of second

order, and what really matters is the second effect. The left hand side of (8) measures

this second effect. It is the change in the principal’s payoff due to a marginal increase

in agent 1’s action over the interval s1 ∈ [0, c∗1(¯
L2)]. If c∗1(¯

L2) is the optimal lower

bound, this payoff change must be zero. That is, (8) must hold. It is important to

note that this particular payoff change only depends on how agent 2 behaves over

interval s1 ∈ [0, c∗1(¯
L2)], and is independent of agent 2’s behavior when s1 > c∗1(¯

L2).

Now, consider the above s2 <
¯
L2. Although agent 2’s overall behavior under ϕ∗

2

at this state may differ from that when his state is
¯
L2 and he is given full discretion,

they coincide when s1 ∈ [0, c∗1(¯
L2)] by construction, i.e., σ

ϕ∗
2

2 (s1, s2) =
¯
L2 for all

s1 ∈ [0, c∗1(¯
L2)]. Therefore, given σ

ϕ∗
2

2 ( · , s2), the principal should not find changing

agent 1’s action away from c∗1(¯
L2) profitable either. Using c∗1(¯

L2) =
¯
L1 =

¯
ϕ∗
1(s2) by

construction, we have∫
¯
ϕ∗
1(s2)

0

[
∂u0
∂a1

(
¯
ϕ∗
1(s2), σ

ϕ∗
2

2 (s1, s2)) +
∂u1
∂a1

(
¯
ϕ∗
1(s2), s1)

]
dF1(s1) = 0. (9)

That is,
¯
ϕ∗
1(s2) satisfies one of the first order conditions for (7). Similarly, ϕ̄∗

1(s2)

also satisfies the other first order condition, suggesting that [
¯
ϕ∗
1(s2), ϕ̄

∗
1(s2)] is indeed

optimal.14

This derivation also explains why the boundaries of region IV (recall panel (c) of

Figure 3) are all straight since it holds for any s2 <
¯
L2. The fundamental reason is

the additively separable form of the principal’s payoff function. Under this form, the

optimal delegation interval for agent 1 depends only on agent 2’s behavior. Agent

2’s state affects the optimal boundaries for agent 1 only through its effect on the

behavior.

14See Lemma 11 in Appendix B.3 for a formal and general statement of this result.
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The above explanation is based on the first order conditions, which is suggestive

but far from rigorous. For instance, proving the optimality of ϕ∗
i given ϕ∗

−i requires

checking the second order conditions. Moreover, the fact that ϕ∗
i is optimal given ϕ∗

−i

is not enough for the optimality of joint design. To deal with these difficulties, we

take a different technical approach in the formal proof, which does not explicitly rely

on the first order conditions. The proof consists of two major steps. First, we indeed

show that ϕ∗
i is optimal given ϕ∗

−i. More importantly, we show that (ϕ∗
1, ϕ

∗
2) is the

unique one in M that satisfies this property. Second, we show that among all the

contingent interval delegations, there always exists an optimal one in M. These two

steps together immediately imply the optimality of (ϕ∗
1, ϕ

∗
2).

Throughout the proof, complementarity of the two agents’ decisions, i.e., super-

modularity of u0, guarantees that the optimal interval for one agent is monotonically

increasing with respect to the other agent’s behavior.15 This property allows us to

restrict attention to increasing contingent interval delegations, and it is repeatedly

used in establishing both uniqueness and existence. Condition R also plays a crucial

role in establishing the uniqueness.16

3.5 Sufficient conditions for conditions U and R

We now provide easy-to-check sufficient conditions on the payoff functions and the

distributions of the states for conditions U and R to hold. These conditions are also

important for (ϕ∗
1, ϕ

∗
2) to be optimal among all the DSIC mechanisms.

The following lemma provides the conditions for condition U.

Lemma 3. Condition U holds if the following conditions are satisfied:

(U1) For all i and s−i, both

x 7→
∫ x

0

[u0(x, s−i)) + ui(x, si)]dFi(si) +

∫ 1

x

[u0(si, s−i)) + ui(si, si)]dFi(si),

x 7→
∫ x

0

[u0(si, s−i)) + ui(si, si)]dFi(si) +

∫ 1

x

[u0(x, s−i)) + ui(x, si)]dFi(si),

are strictly quasi-concave.

(U2) For all i, ai, si,
∂2ui

∂ai∂si
(ai, si) > 0.

15See footnote 13.
16Otherwise, each set of the corresponding four intersections induces a delegation rule that can

potentially satisfy this property because it also satisfies the first order conditions that we discussed

above.
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(U3) For all i and s−i,
∂u0

∂ai
(0, s−i) +

∂ui

∂ai
(0, 0) ≥ 0 and ∂u0

∂ai
(1, s−i) +

∂ui

∂ai
(1, 1) ≤ 0.

The first condition implies that if the principal is restricted to imposing only a

floor (cap) on an agent’s action in the unilaterally constrained delegation problem,

the optimal floor (cap) is unique. The second condition states that if only agent i is

concerned, the principal’s most preferred action for agent i is strictly increasing with

his state. The last condition guarantees that delegating the degenerate interval {0} or

{1} is never a solution to the principal’s unilaterally constrained delegation problem.

Conditions U2 and U3 together ensure that any solution to (4) is non-degenerate,

based on which condition U1 then implies that the solution is unique.

The next lemma provides the conditions for condition R on top of U.17

Lemma 4. Suppose condition U is satisfied. Condition R holds if the following con-

ditions are satisfied:

(R1) For all i, the density function fi is log-concave.

(R2) For all i, a and s,
∂2u0
∂a1∂a2

(a1, a2) ≤ −∂
2u0
∂a2i

(a1, a2). (10)

(R3) For all i, a and s,

0 <
∂2ui
∂ai∂si

(ai, si) ≤ −∂
2ui
∂a2i

(ai, si). (11)

For example, uniform distribution, which is frequently used in the delegation liter-

ature, is log-concave.18 Conditions R2 and R3 are about how sensitive the principal’s

most preferred action is with respect to the parameters. If the principal only cares

about the interaction of the two actions, inequality (10) implies that her most pre-

ferred action for agent i, given that −i chooses s−i, is in fact not very sensitive to s−i.

This is because inequality (10) implies that the derivative of this action with respect

to s−i is bounded above by 1. Similarly, (11) implies that if the principal only cares

about agent i’s decision, her most preferred action given si is not very sensitive to si.

These three conditions together guarantee that this insensitivity is inherited by the

unilaterally constrained delegation rules. We indeed show that all the derivatives of

17Weaker sufficient conditions that are more difficult to check are given in Lemma 15 in the

appendix.
18For instance, Melumad and Shibano (1991), Martimort and Semenov (2006, 2008), and Alonso

et al. (2008), to name a few. See Bagnoli and Bergstrom (2005) for more examples of log-concave

densities.
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the unilaterally constrained delegation rules c∗1, d
∗
1, c

∗
2, and d∗2 are strictly less than

1, which in turn guarantees the unique intersection of each corresponding pair in the

s1, s2-plane. Note also that the strict inequality in (11) is just condition U2 in Lemma

3.

3.6 Optimality of contingent interval delegation

Our second main result provides conditions for the optimal contingent interval dele-

gation (ϕ∗
1, ϕ

∗
2) in Theorem 1 to be optimal among all DSIC mechanisms.

Theorem 2. Assume conditions U1 - U3 and R1 - R2 are satisfied. If, in addition,

the following conditions are satisfied, then the optimal contingent interval delegation

(ϕ∗
1, ϕ

∗
2) is an optimal DSIC mechanism.

(O1) For all i, fi(si)
∂ui

∂ai
(si, si) is decreasing.

(O2) For all i, fi is differentiable, and f
′
i(si)

∂ui

∂ai
(si, si) ≥ 0 for all si.

(O3) For all i, infai,si −∂2ui

∂a2i
(ai, si) ≥ supai,si

∂2ui

∂ai∂si
(ai, si).

Condition O1 is one of the conditions in Proposition 5 of Alonso and Matouschek

(2008), which provides sufficient conditions for interval delegation to be optimal in

single-agent environments. Condition O2 requires that if only agent i is concerned,

the direction of the principal’s bias is the same as the direction in which f increases.

Condition O3 is a strengthened version of condition R3. Conditions O1 and O2 hold

simultaneously, for instance, if ∂ui

∂ai
(si, si) = 0 for all si, in which case the conflict of

interests between the principal and agent i in the absence of the coordination motive

essentially disappears. They also hold if fi is the uniform distribution, in which case

the monotonicity of ∂ui

∂ai
(si, si) is guaranteed by condition O3.

To prove Theorem 2, we first establish a more general result, Theorem 3 in Ap-

pendix D.1. It is a verification theorem that provides sufficient conditions for a given

contingent interval delegation to be optimal among all DSIC mechanisms. It is built

on the main sufficiency result in Amador and Bagwell (2013), which provides suffi-

cient conditions for a given interval delegation to be optimal in single-agent delegation

problems. Theorem 3 extends their analysis to the current two-agent setting.

For Theorem 2, we show that the proposed conditions guarantee that the opti-

mal contingent interval delegation (ϕ∗
1, ϕ

∗
2) from Theorem 1 satisfies all the sufficient

conditions needed in Theorem 3. Therefore, (ϕ∗
1, ϕ

∗
2) is an optimal DSIC mechanism.
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4 Application to Delegation in Multidivisional Or-

ganizations

4.1 Adaptation versus coordination

This application concerns multidivisional organizations where multiple decisions must

be coordinated but the relevant information for decision making is dispersed among

the divisions.

Consider an organization that consists of a headquarters and two divisions. The

headquarters manager is the principal, while the two division managers are the agents.

As we have assumed that each agent has a quadratic loss payoff function, vi(ai, si) =
1
2
(ai − si)

2, we interpret it as that he only cares about his own adaptation loss. The

principal, by contrast, cares about both the adaptation losses of the two agents and

the coordination loss. Following Alonso et al. (2008), we measure the coordination

loss of the two agents’ actions by −(a1 − a2)
2 and assume that the principal’s payoff

function is19

u(a1, a2, s1, s2) ≡ −λ0(a1 − a2)
2 − λ1(a1 − s1)

2 − λ2(a2 − s2)
2.

Here, λ0 > 0 measures how important the coordination among the two agents is to

the principal, while λi > 0 for i = 1, 2 is a parameter reflecting the importance of

agent i’s adaptation loss. The smaller λ0 is or the larger λ1 and λ2 are, the more

important the agents’ adaptation loss is to the principal, and hence the less is the

conflict of interest between the principal and the agents. Under this specification

of the principal’s payoff function, the following proposition shows that contingent

interval delegation is optimal, provided that the densities of the state distributions

are differentiable and log-concave.

Proposition 2. Suppose that the density functions f1 and f2 of the two states s1

and s2, respectively, are differentiable and log-concave. Then, all the sufficient con-

ditions in Theorem 2 are satisfied. Therefore, the optimal contingent interval dele-

gation (ϕ∗
1, ϕ

∗
2) is an optimal contingent delegation. Moreover, (

¯
L1,

¯
L2) = (0, 0) and

(H̄1, H̄2) = (1, 1), and for i ∈ {1, 2}, we have 0 < c∗i (s−i) < s−i < d∗i (s−i) < 1 for all

s−i ∈ (0, 1).

19In Alonso et al. (2008), each agent may also care about the coordination but to a lesser degree.

Our model makes a simplification in this regard.
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For a concrete example, consider the case where fi is the uniform distribution over

[0, 1]. We can obtain the closed form solutions for both c∗i and d∗i :
20

c∗i (s−i) =
2λ0s−i

2λ0 + λi
and d∗i (s−i) =

2λ0s−i + λi
2λ0 + λi

.

Panel (a) of Figure 4 illustrates these solutions for λ0 = λ1 = λ2. The unique

intersection of c∗1 and c∗2 is (0, 0) and that of d∗1 and d∗2 is (1, 1). Moreover, c∗i and d∗i

always lie on different sides of the diagonal, as is claimed by Proposition 2. This is

intuitive, as the principal always wants to ensure that agent i is able to choose the

same action as agent −i, in which case perfect coordination is achieved.

c∗2

d∗2

c∗1 d∗1

¯
H2

L̄1

¯
H1

L̄2

(0, 0)

(1, 1)

(a) Unilaterally constrained

delegation rules

¯
ϕ∗2

¯
H2

L̄2

ϕ̄∗2

¯
ϕ∗1

¯
H1

L̄1

ϕ̄∗1

(0, 0)

(1, 1)

(b) Optimal contingent interval del-

egation

Figure 4: Optimal mechanism for adaptation versus coordination

The corresponding optimal contingent interval delegation (ϕ∗
1, ϕ

∗
2) is illustrated in

panel (b) of Figure 4. Noticeably, the diagonal is completely contained in the uncon-

strained region. When the realized state (s1, s2) is on the diagonal, along which the

conflict of interest between the agents and the principal vanishes, perfect adaptation

and coordination are achieved simultaneously.

4.2 Comparative statics

Relative importance and optimal discretion One of the central questions in the

single-agent delegation literature is how the conflict of interests between the principal

20Equations (C.1) and (C.2) in the online appendix provide a characterization of c∗i (s−i) and

d∗i (s−i) for general log-concave density.
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and the agent affects the principal’s optimal mechanism. In general, less conflict of

interest leads to more discretion for the agent, for example, as in Holmström (1984),

Armstrong (1995), and Alonso and Matouschek (2008). In our two-agent setting,

conflict of interests is measured by how important the principal thinks the agents’

adaptation is relative to coordination, and it is represented by parameters λ0, λ1

and λ2. The following two propositions analyze how the agents’ discretion under the

principal’s optimal contingent delegation changes as these parameters vary. They

generalize the classical single-agent result to our two-agent setting.

Proposition 3. As coordination becomes more important to the principal, i.e., λ0

increases, both agents will suffer from less discretion, i.e.,
¯
ϕ∗
i shifts upward and ϕ̄∗

i

shifts downward.

This result should be very intuitive. In the special case λ0 = 0, the principal

does not care about coordination at all. Her delegation problem becomes two in-

dependent single-agent problems, in which the two parties’ preferences are perfectly

aligned. Therefore, the principal will give both agents full discretion. When λ0 > 0,

coordination between the two agents matters for the principal. It is then optimal

for the principal to limit the agents’ action choices for coordination. As λ0 becomes

larger, coordination becomes more important to the principal. In this case, she is

willing to sacrifice more of the agents’ adaptation in exchange for better coordina-

tion. Consequently, under the optimal contingent delegation, she gives both agents

less discretion.

While a change in λ0 changes the principal’s overall trade-off between coordina-

tion and adaptation, the relative importance of the two agents’ adaptation remains

unchanged. The following proposition analyzes how this relative importance affects

the agents’ discretion under the optimal contingent delegation.

Proposition 4. As agent i’s adaptation becomes more important to the principal,

i.e., λi increases, he will be granted more discretion, i.e.,
¯
ϕ∗
i shifts downwards and ϕ̄∗

i

shifts upwards. In contrast, agent −i will suffer from less discretion, i.e.,
¯
ϕ∗
−i shifts

upward and ϕ̄∗
−i shifts downward.

This first part of this proposition should also be very intuitive. When λi increases,

the principal cares more about agent i’s adaptation. Hence, it is optimal for the

principal to grant more discretion to this agent for his better adaptation. As for the

second part, notice that when agent i gains more discretion, he is more likely to choose

his most preferred action. To avoid miscoordination, agent −i then must carry more
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of the coordination burden. This is done by granting agent −i less discretion. In the

other direction, when λi decreases, agent i will be given less discretion but agent −i
will enjoy more discretion. In the limit when λi decreases to 0, agent −i will get full
discretion while agent i will lose his decision right completely: a2 will always be set

to equal agent −i’s decision.
As a simple corollary of Proposition 4, consider the case where state distributions

of the agents are identical. If they are equally important to the principal, i.e., λ1 = λ2,

the optimal delegation rules for them will be symmetric. But if one agent is more

important than the other to the principal, then she will favor the more important

agent by granting more discretion at the other agent’s cost of receiving less discretion.

State distribution and optimal delegation rules Another aspect that affects

the principal’s optimal mechanism is her belief about the state distributions. For

instance, if one agent’s state distribution shifts to the right, how will the optimal

mechanism respond? The next proposition provides the answer. It compares the

optimal mechanisms when one agent’s state distribution changes in the sense of the

monotone likelihood ratio property (MLRP).

Proposition 5. When one agent’s state distribution increases in the sense of the

MLRP, the optimal delegation rules for both agents shift upward.

Intuitively, if agent i’s state becomes more likely to be high, pooling his low

states leads to smaller adaptation loss, while pooling his high states results in larger

adaptation loss. Thus, it is optimal for the principal to pool more of the low states

but less of the high states. That is, agent i’s contingent delegation interval should

move to the right. But then, it is also optimal for the principal to move agent −i’s
contingent delegation interval to the right for coordinating with agent i’s behavior.21

5 Conclusion

This paper studied the optimal DSIC mechanism without contingent transfers in an

environment where there are two privately informed agents and the principal must

decide one action for each of them. In this environment, any DSIC mechanism is

equivalent to contingent delegation. We provided sufficient conditions under which

21We note that all the comparative statics results in this subsection can be extended to general

coordination payoff function u0 = λ0ũ0, where ũ0 is supermodular and λ0ũ0 satisfies all the sufficient

conditions for Theorem 2. The intuition remains the same.
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contingent interval delegation is optimal, and solved the optimal contingent interval

delegation under fairly general conditions. This optimal mechanism is determined by

decomposing the two agents’ joint delegation problem into single-agent ones, assuming

that the other agent is free to choose his most preferred action. We also applied our

results to study the delegation problem in multidivisional organizations where the

two privately informed division managers only care about local adaptation but the

headquarters manager also cares about coordination between the two divisions. The

simple structure of the optimal mechanism enables us to analyze how conflicts of

interest and state distributions affect the principal’s optimal mechanism. Although

we have focused on the two-agent case throughout the paper, we believe that it would

not be difficult to extend our analysis to multiple agents, because the intuition of local

determination can easily carry over.

One interesting question for future research is how to find the optimal Bayesian

mechanism. Although the DSIC mechanism has its own conceptual advantages and

makes the problem more tractable by transforming it into a contingent delegation

problem, it is possible that Bayesian mechanisms can do better than DSIC mecha-

nisms.22 However, due to the lack of a tractable characterization of Bayesian mech-

anisms, it is not clear how the optimal Bayesian mechanism could be characterized.

Another interesting question is whether stochastic mechanisms can improve the prin-

cipal’s expected payoff in our two-agent setting. In single-agent settings, it is well

known that restricting attention to deterministic mechanism is in general not with-

out loss of generality.23 However, in a setting with quadratic preferences, Kovac and

Mylovanov (2009) provide a sufficient condition for the optimal mechanism to be de-

terministic. It would be interesting to investigate whether a similar result holds in

our setting. Since stochastic mechanisms under quadratic preferences have similar

features as money burning, one possible avenue for such research is to utilize the

result with money burning in Amador and Bagwell (2013).24 We leave it for future

work.

22The equivalence result in Gershkov et al. (2013) does not apply since vi and ui are not linear in

ai and we do not allow monetary transfers.
23See Section 8.3 in Alonso and Matouschek (2008) for a discussion.
24We thank an anonymous referee for pointing out this direction.
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Appendix A Proofs of Lemmas 1 and 2

Proof of Lemma 1. Suppose (a1, a2) is a DSIC mechanism. For all i and s−i, let

D̃i(s−i) ≡ {ai(si, s−i) | si ∈ [0, 1]}, and Di(s−i) be its closure. By DSIC, for all i,

si and s−i, ai(si, s−i) ∈ argmaxa′i∈D̃i(s−i)
vi(a

′
i, si). By continuity of vi, we know (2)

holds.

Suppose (2) holds. Consider any i, si, s
′
i, and s−i. Because (2) implies that

ai(s
′
i, s−i) ∈ Di(s−i), it also implies that vi(ai(si, s−i), si) ≥ vi(ai(s

′
i, s−i), si), proving

that (a1, a2) is a DSIC mechanism.

Proof of Lemma 2. Continuity is standard. It comes from the maximum theorem and

condition U. Monotonicity mainly comes from supermodularity of u0. Lemma 6 in

Section B.1 provides a more general statement, of which the current result is a direct

corollary. See also Corollary 2.

Appendix B Proof of Theorem 1

Throughout this section, suppose that conditions U and R hold.

B.1 One-sided optimal delegation

We begin with a generalization of unilaterally constrained delegation rules. It plays

the central role throughout the whole analysis. Lemmas 5 and 6 below give its two

important and useful properties.

Definition 1. Let y : [0, 1] → [0, 1] be a Borel measurable function. The pair (c, d)

is called a one-sided optimal delegation for i given y, if

(c, d) ∈ Γi(y) ≡ argmax
0≤c̃≤d̃≤1

∫ 1

0

[
u0(σi(si; c̃, d̃), y(si)) + ui(σi(si; c̃, d̃), si)

]
dFi(si). (12)

By continuity of u0 and ui, Γi(y) ̸= ∅ for every y. Observe also that the pair

(c∗i (s−i), d
∗
i (s−i)) is simply the one-sided optimal delegation for i given the constant

function y(si) ≡ s−i.

The following lemma points out a simple but crucial property of one-sided optimal

delegations. Loosely speaking, when we consider a one-sided optimal delegation (c, d)

given y, the joint optimization problem in (12) can be decomposed into two separate

optimization problems, one for the lower bound c and one for the upper bound d. Most
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importantly, c is completely determined by the lower part of y and d is completely

determined by the upper part of y.

Lemma 5 (Local determination). Suppose (c, d) ∈ Γi(y). For any x such that c ≤
x ≤ d, we have

c ∈ argmax
0≤c̃≤x

∫ x

0

[u0(σi(si; c̃, x), y(si)) + ui(σi(si; c̃, x), si)] dFi(si), (13)

d ∈ argmax
x≤d̃≤1

∫ 1

x

[
u0(σi(si;x, d̃), y(si)) + ui(σi(si;x, d̃), si)

]
dFi(si). (14)

If, in addition, (c, d) is unique, then both (13) and (14) hold with equality.

Proof. Fix i ∈ {1, 2}. To simplify the exposition, for every pair 0 ≤ c ≤ d ≤ 1 and y,

let Hi(c, d, y) be the function from [0, 1] to R defined as

Hi(c, d, y)(si) ≡ u0 (σi(si; c, d), y(si)) + ui (σi(si; c, d), si) , ∀si ∈ [0, 1].

Hence, Γi(y) = argmax0≤c≤d≤1

∫ 1

0
Hi(c, d, y)dFi.

Suppose (c, d) ∈ Γi(y) and consider any x ∈ [c, d]. En route to a contradiction, as-

sume at least one of (13) and (14) does not hold. Pick c′ ∈ argmax0≤c̃≤x

∫ x

0
Hi(c̃, x, y)dFi

and d′ ∈ argmaxx≤d̃≤1

∫ 1

x
Hi(x, d̃, y)dFi. Then, we must have∫ x

0

Hi(c, x, y)dFi+

∫ 1

x

Hi(x, d, y)dFi <

∫ x

0

Hi(c
′, x, y)dFi+

∫ 1

x

Hi(x, d
′, y)dFi. (15)

Because c, c′ ≤ x ≤ d, d′, we can easily see that the left hand side of (15) is simply∫ 1

0
Hi(c, d, y)dFi and the right hand side is

∫ 1

0
Hi(c

′, d′, y)dFi. This contradicts the

assumption that (c, d) ∈ Γi(y).

From the above argument, we can also see that any pair (c′, d′) that satisfies

c′ ∈ argmax0≤c̃≤x

∫ x

0
Hi(c̃, x, y)dFi and d

′ ∈ argmaxx≤d̃≤1

∫ 1

d̃
Hi(x, d̃, y)dFi must also

be in Γi(y). Therefore, if (c, d) is unique, we must have (c′, d′) = (c, d).

Let Y be the set of all Borel measurable functions from [0, 1] to itself. We endow

Y with the usual partial order ≥, where y′ ≥ y if y′(s) ≥ y(s) for all s ∈ [0, 1].

Similarly, endow R2 with the standard product order ≥, where (c′, d′) ≥ (c, d) if

c′ ≥ c and d′ ≥ d. Applying the standard results on comparative statics, we obtain

the following monotonicity result.

Lemma 6 (Monotonicity). For i = 1, 2, the one-sided optimal delegation correspon-

dence Γi : Y ⇒ [0, 1]2 is increasing in the strong set order.25 Moreover, there exists

an increasing selection of Γi.
25That is, if y′ ≥ y, (c, d) ∈ Γi(y) and (c′, d′) ∈ Γi(y

′), then (c∧c′, d∧d′) ∈ Γi(y) and (c∨c′, d∨d′) ∈
Γi(y

′), where c ∧ c′ ≡ min{c, c′} and c ∨ c′ ≡ max{c, c′}.
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Proof. We continue to use the notation Hi(c, d, y) defined in the proof of Lemma 5.

Let πi(c, d, y) ≡
∫ 1

0
Hi(c, d, y)(si)dFi(si). By Theorem 2.8.3 in Topkis (1998), to show

monotonicity of Γi, we only need to verify that (i) for every y, πi is supermodular in

(c, d), and (ii) πi has increasing differences in ((c, d), y).

Fix y and consider any (c, d) and (c′, d′). Without loss of generality, assume d ≤ d′.

If c ≤ c′, we clearly have π(c, d, y)+π(c′, d′, y) = π(c∨ c′, d∨d′, y)+π(c∧ c′, d∧d′, y).
Assume c > c′. We thus have c′ < c ≤ d ≤ d′. For any si, we can see

Hi(c
′, d′, y)(si)−Hi(c ∧ c′, d ∧ d′, y)(si)

=Hi(c
′, d′, y)(si)−Hi(c

′, d, y)(si)

=

0, if si ≤ d,

Hi(c, d
′, y)(si)−Hi(c, d, y)(si), if si > d,

=Hi(c, d
′, y)(si)−Hi(c, d, y)(si)

=Hi(c ∨ c′, d ∨ d′, y)(si)−Hi(c, d, y)(si).

Therefore, πi(c, d, y) + πi(c
′, d′, y) = πi(c ∨ c′, d ∨ d′, y) + πi(c ∧ c′, d ∧ d′, y), implying

that πi is supermodular (and submodular) in (c, d) for every y.

Next, consider (c′, d′) ≥ (c, d). For any y, we can easily calculate

Hi(c
′, d′, y)(si)−Hi(c, d, y)(si)

=u0(σi(si; c
′, d′), y(si))− u0(σi(si; c, d), y(si)) + ∆,

where ∆ = ui(σi(si; c
′, d′), si)−ui(σi(si; c, d), si) is independent of y. Because (c′, d′) ≥

(c, d), we know σi(si; c
′, d′) ≥ σi(si; c, d). Hence, by the supermodularity of u0, we

have, for all y′ ≥ y,

Hi(c
′, d′, y′)(si)−Hi(c, d, y

′)(si) ≥ Hi(c
′, d′, y)(si)−Hi(c, d, y)(si), ∀si.

Consequently, πi(c
′, d′, y′)− πi(c, d, y

′) ≥ πi(c
′, d′, y)− πi(c, d, y), proving that πi has

increasing differences in ((c, d), y).

Lemma 6 has two useful corollaries. Corollary 1 is used for the existence result in

Section B.2, while Corollary 2 is used in the proof of uniqueness in Section B.3.

Corollary 1. For any contingent interval delegation (ϕ1, ϕ2), there exists an increas-

ing (ϕ′
1, ϕ

′
2) ∈ M that yields weakly higher payoff to the principal.

Proof. It is clear that σ2(s
′
2;
¯
ϕ2( · ), ϕ̄2( · )) ≥ σ2(s2;

¯
ϕ2( · ), ϕ̄2( · )) whenever s′2 > s2.

Thus, by Lemma 6, there exists ϕ′
1 = (

¯
ϕ′
1, ϕ̄

′
2) such that (i) ϕ′

1 is a one-sided optimal
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delegation rule for 1 given ϕ2, and (ii) both
¯
ϕ′
1 and ϕ̄′

1 are increasing. Then, (ϕ′
1, ϕ2)

clearly yields an ex ante expected payoff no lower than (ϕ1, ϕ2) to the principal.26

Applying the same argument, we can show that there exists ϕ′
2 = (

¯
ϕ′
2, ϕ̄

′
2) such that

(i) ϕ′
2 is a one-sided optimal delegation rule for agent 2 given ϕ′

1, and (ii) both
¯
ϕ′
2 and

ϕ̄′
2 are increasing. Then (ϕ′

1, ϕ
′
2) is the desired contingent interval delegation.

Corollary 2. Suppose y ≤ (≥) y′ and (c, d) ∈ Γi(y).

(i) If there exists ĉ such that every (c′, d′) ∈ Γi(y
′) satisfies c′ = ĉ, then c ≤ (≥) ĉ.

(ii) If there exists d̂ such that every (c′, d′) ∈ Γi(y
′) satisfies d′ = d̂, then d ≤ (≥) d̂.

Proof. The results directly come from the definition of strong set order.

We can also naturally extend the notion of one-sided optimal delegation to mech-

anisms, which will give us a necessary condition for a mechanism to be optimal.

Definition 2. Consider a mechanism (ϕ1, ϕ2). We say ϕi is a one-sided optimal

delegation rule for i given ϕ−i, if, for F−i−almost all s−i, (
¯
ϕi(s−i), ϕ̄i(s−i)) is a one-

sided optimal delegation for i given σ−i(s−i;
¯
ϕ−i( · ), ϕ̄−i( · )). We say (ϕ1, ϕ2) is a pair

of mutual one-sided optimal delegation rules if, for both i = 1, 2, ϕi is a one-sided

optimal delegation for i given ϕ−i.

Being mutually one-sided optimal is a necessary condition for optimality.

Lemma 7. If (ϕ1, ϕ2) is an optimal mechanism, then it is a pair of mutual one-sided

optimal delegations.

Proof. Suppose, by contradiction, that (ϕ1, ϕ2) is not a pair of mutual one-sided

optimal delegation rules. Without loss of generality, assume that ϕ1 is not a one-

sided optimal delegation rule for 1 given ϕ2. Consider the ϕ
′
1 constructed in the proof

of Corollary 1. Then it is clear that (ϕ′
1, ϕ2) yields strictly higher ex ante expected

payoff than (ϕ1, ϕ2) to the principal. This proves that (ϕ1, ϕ2) is not optimal.

Before we proceed, it is helpful to briefly discuss the main idea behind the proof

of Theorem 1. Instead of directly showing that (ϕ∗
1, ϕ

∗
2) performs no worse than

any other contingent interval delegation, our proof takes an indirect approach. The

fundamental idea of our proof is to show (i) existence — an optimal mechanism that

is in M exists, and (ii) uniqueness — (ϕ̄∗
1, ϕ̄

∗
2) is the essentially unique pair of mutual

one-sided optimal delegations in M. These two results, together with Lemma 7,

immediately imply the optimality of (ϕ∗
1, ϕ

∗
2). The following two sections prove these

two results, respectively.

26Monotone functions are Borel measurable.
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B.2 Existence of optimal contingent interval delegation

By Corollary 1, any optimal contingent interval delegation within M is optimal for

the principal. Because we can show that an optimal contingent interval delegation

within M exists, we can obtain the desired existence result.

Lemma 8 (Existence). Among all the contingent interval delegations, there exists an

optimal one in M.

Proof of Lemma 8. We follow the standard line of proof that a continuous function

over a compact set attains its maximum.

Consider the probability space ([0, 1]2,B[0, 1]2, µ1 × µ2), where B[0, 1]2 is the

Borel measurable sets over [0, 1]2. Each µi is the probability measure induced by Fi

and µ1 × µ2 is the product measure. Consider the following set of four dimensional

random vectors over this probability space:

N ≡


(
¯
ψ1, ψ̄1,

¯
ψ2, ψ̄2

)
: [0, 1]2 → [0, 1]4

∣∣∣∣∣∣∣∣
¯
ψ1, ψ̄1 are constant in s1 and increasing in s2;

¯
ψ2, ψ̄2 are increasing in s1 and constant in s2;

∀i,
¯
ψi(s, s) ≤ ψ̄i(s, s), ∀s ∈ [0, 1].


Denote a generic element in N by ψ. Define the distance between ψ, ψ′ ∈ N as

δ(ψ, ψ′) ≡
2∑

i=1

∫ 1

0

∫ 1

0

(|
¯
ψi −

¯
ψ′
i|+ |ψ̄i − ψ̄′

i|)d(µ1 × µ2).

As long as we regard any two random vectors ψ and ψ′ as being equivalent whenever

ψ = ψ′ a.s., δ is indeed a metric over N .

We first show that (N , δ) is compact. For this, it suffices to show that it is se-

quentially compact. Consider any sequence {ψn}n ⊂ N . Because of the monotonicity

properties of each ψn, by Helly’s selection theorem, there exists a pointwise conver-

gent subsequence {ψnk
}k of {ψn}n.27 Let ψ ≡ limk ψnk

. Clearly, ψ ∈ N . Then, by

the bounded convergence theorem, we have limk δ(ψnk
, ψ) = 0, proving that (N , δ) is

sequentially compact.

Next, we show that the mapping Π : (N , δ) → R, defined as

Π(ψ) ≡
∫ 1

0

∫ 1

0

{
u0

(
σ1(s1;

¯
ψ1(s1, s2), ψ̄1(s1, s2)), σ2(s2;

¯
ψ2(s1, s2), ψ̄2(s1, s2))

)
+

2∑
i=1

ui
(
σi(si;

¯
ψi(s1, s2), ψ̄i(s1, s2)), si

)}
d(µ1 × µ2),

27See, for instance, Rudin (1976), p. 167.
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is continuous. For this, we only need to show that, for any ψ ∈ N and a sequence

{ψn} ⊂ N converging to ψ in δ, there is a subsequence {ψnk
}k such that Π(ψnk

) →
Π(ψ). Because limn δ(ψn, ψ) = 0, we know that there exists a subsequence {ψnk

}k that
converges to ψ a.s. By the bounded convergence theorem again, we know Π(ψnk

) →
Π(ψ).

Finally, as Π is a continuous function over a compact set, it attains its maximum

at some ψ ∈ N . Define ϕ = (
¯
ϕ1, ϕ̄1,

¯
ϕ2, ϕ̄2) : [0, 1] → [0, 1]4 as

¯
ϕ1(s2) ≡

¯
ψ1(0, s2), ϕ̄1(s2) ≡ ψ̄1(0, s2), ∀s2 ∈ [0, 1],

¯
ϕ2(s1) ≡

¯
ψ2(s1, 0), ϕ̄2(s1) ≡ ψ̄2(s1, 0), ∀s1 ∈ [0, 1].

Clearly, ϕ ∈ M and is an optimal one among all the contingent interval delegations in

M. By Corollary 1, ϕ is also an optimal one among all contingent interval delegations.

B.3 Uniqueness of mutual one-sided optimal delegations in

M

Lemmas 10 and 12 below provide two necessary conditions that every pair of mutual

one-sided optimal delegation rules must satisfy. Based on these two conditions, we

can obtain the uniqueness.

To prove Lemma 10, we need the following lemma.

Lemma 9. Consider i ∈ {1, 2}.

(i) c∗i (c
∗
−i(si)) > si if si <

¯
Li and c

∗
i (c

∗
−i(si)) < si if si >

¯
Li.

(ii) d∗i (d
∗
−i(si)) > si if si < H̄i and d

∗
i (d

∗
−i(si)) < si if si > H̄i.

Proof. We show part (i). Take i = 1 for example. It is obvious that (s1, c
∗
2(s1))

is an intersection of c∗1 and c∗2 if and only if c∗1(c
∗
2(s1)) = s1. Therefore, because of

continuity of c∗1 and c∗2, c
∗
1(c

∗
2(s1)) − s1 must have the same sign, either positive or

negative, over [0,
¯
L1). Because c

∗
1(c

∗
2(0)) ≥ 0, we know c∗1(c

∗
2(s1))−s1 must be positive

over [0,
¯
L1). Similarly, c∗2, c

∗
1(c

∗
2(s1))−s1 must have the same sign over (

¯
L1, 1]. Because

c∗1(c
∗
2(1)) ≤ 1, we know c∗1(c

∗
2(s1))− s1 must be negative over (

¯
L1, 1].

Lemma 10 (Global bounds). Suppose (ϕ1, ϕ2) ∈ M is a pair of mutual one-sided

optimal delegation rules. For i = 1, 2, we have
¯
Li ≤

¯
ϕi ≤ ϕ̄i ≤ H̄i over (0, 1).
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Proof. For both i = 1, 2, we assume without loss of generality that (
¯
ϕi(s−i), ϕ̄i(s−i))

is a one-sided optimal delegation for i given σ−i(s−i;
¯
ϕi( · ), ϕ̄i( · )) for s−i = 0, 1.

Otherwise, redefine (
¯
ϕi(0), ϕ̄i(0)) ≡ lims−i↓0(

¯
ϕi(s−i), ϕ̄i(s−i)) and (

¯
ϕi(1), ϕ̄i(1)) ≡

lims−i↑1(
¯
ϕi(s−i), ϕ̄i(s−i)). Because (

¯
ϕi(s−i), ϕ̄i(s−i)) is a one-sided optimal delegation

for i given σ−i(s−i;
¯
ϕi( · ), ϕ̄i( · )) for F−i−almost all s−i and F−i has full support, such

limits are also one-sided optimal delegations given the corresponding behavior.

Because ϕ̄2 is increasing, we know σ2(1;
¯
ϕ2(s1), ϕ̄2(s1)) = ϕ̄2(s1) ≤ ϕ̄2(1). By

Corollary 2, we know

ϕ̄1(1) ≤ d∗1(ϕ̄2(1)) and ϕ̄2(1) ≤ d∗2(ϕ̄1(1)).

Combining these two inequalities, we obtain

ϕ̄1(1) ≤ d∗1(d
∗
2(ϕ̄1(1))). (16)

By Lemma 9, we know ϕ̄1(1) ≤ H̄1, which in turn implies ϕ̄1 ≤ H̄1 by monotonicity

of ϕ̄1. Similarly, we have ϕ̄2 ≤ H̄2.

The other inequalities
¯
ϕi ≥

¯
Li for i = 1, 2 can be proved analogously.

To prove Lemma 12, we need the following lemma.

Lemma 11. Consider i ∈ {1, 2}. Suppose
¯
L−i ≤

¯
s−i ≤ s̄−i ≤ H̄−i. Let y(si) be an

increasing function that satisfies

y(si) =

¯
s−i, if si ∈ [0, c∗i (¯

s−i)],

s̄−i, if si ∈ [d∗i (s̄−i), 1],
(17)

and

c∗i (y(si)) < si < d∗i (y(si)), ∀si ∈ (c∗i (¯
s−i), d

∗
i (s̄−i)). (18)

Then the unique one-sided optimal delegation for i given y is (c∗i (¯
s−i), d

∗
i (s̄−i)).

Proof. Consider i = 1. We show that the optimal lower bound must be c∗1(¯
s2). The

proof for the upper bound is similar. Define

S ≡ {s2 ∈ [
¯
s2, s̄2] | every (c, d) ∈ Γ1(max{s2, y(s1)}) satisfies c = c∗1(s2)} .

By construction of y, max{s̄2, y(s1)} ≡ s̄2. Because Γ1(s̄2) = {(c∗1(s̄2), d∗1(s̄2))} by

condition U, we know s̄2 ∈ S ̸= ∅. Let ŝ2 = inf S. For all s2 ∈ S, we have ŝ2 ≤
max{ŝ2, y(s1)} ≤ max{s2, y(s1)} for all s1 ∈ [0, 1]. Thus, by Corollary 2, any (c, d) ∈
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∗
1(ŝ2)))

Figure 5: Proof of Lemma 11

Γ1(max{ŝ2, y(s1)}) must satisfy c∗1(ŝ2) ≤ c ≤ c∗1(s2) for any s2 ∈ S, which implies

c = c∗1(ŝ2) by continuity of c∗1. Thus, ŝ2 ∈ S.

The desired result will follow if we show ŝ2 =
¯
s2. Suppose, by contradiction, that

ŝ2 >
¯
s2. In the remainder of the proof, we proceed to derive a contradiction. The

analysis is divided into several small steps for clarity. In Figure 5, we carefully label

the important quantities involved in the following analysis, which greatly facilitates

understanding.

Step 1: c∗1(¯
s2) < c∗1(ŝ2) < d∗1(s̄2).

Because c∗1 is increasing, we know c∗1(¯
s2) ≤ c∗1(ŝ2). But we can not have c∗1(¯

s2) =

c∗1(ŝ2). To see this, note that
¯
s2 ≤ y(s1) = max{

¯
s2, y(s1)} ≤ max{ŝ2, y(s1)} for all

s1 ∈ [0, 1]. Then, for any (c, d) ∈ Γ1(y), condition U, Corollary 2 and the fact ŝ2 ∈ S

together imply c∗1(¯
s2) ≤ c ≤ c∗1(ŝ2). Consequently, equality c∗1(¯

s2) = c∗1(ŝ2) would

imply
¯
s2 ∈ S, which contradicts the definition of ŝ2 and the assumption ŝ2 >

¯
s2.

Therefore, we must have c∗1(¯
s2) < c∗1(ŝ2).

The other inequality comes directly from condition U and monotonicity of d∗1:

c∗1(ŝ2) < d∗1(ŝ2) ≤ d∗1(s̄2).

Step 2: c∗1(y(c
∗
1(ŝ2))) < c∗1(ŝ2) < d∗1(y(c

∗
1(ŝ2))).

This is immediate from Step 1 and the construction of y, i.e., (18).

Step 3:
¯
s2 ≤ y(c∗1(ŝ2)) < ŝ2.
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For the first inequality, note that
¯
s2 = y(c∗1(¯

s2)) ≤ y(c∗1(ŝ2)), where the equality

comes from the construction of y and the inequality comes from monotonicity of both

c∗1 and y. The second inequality is immediate from the first inequality in Step 2 and

monotonicity of c∗1.

Step 4: (c, d) ∈ Γ1(max{y(c∗1(ŝ2)), y(s1)}) implies c ≤ c∗1(ŝ2) ≤ d.

By Step 3, we know max{y(c∗1(ŝ2)), y(s1)} ≤ max{ŝ2, y(s1)}. Because ŝ2 ∈ S, we

know c ≤ c∗1(ŝ2) by Corollary 2. On the other hand, because max{y(c∗1(ŝ2)), y(s1)} ≥
y(c∗1(ŝ2)), we know d ≥ d∗1(y(c

∗
1(ŝ2))) by Corollary 2 again. By Step 2, we know

d > c∗1(ŝ2).

Step 5: y(c∗1(ŝ2)) ∈ S.

Consider any (c, d) ∈ Γ1(max{y(c∗1(ŝ2)), y(s1)}). Because y is increasing by con-

struction, max{y(c∗1(ŝ2)), y(s1)} = y(c∗1(ŝ2)) for all s1 ∈ [0, c∗1(ŝ2)]. By Step 4 and

Lemma 5, we know

c ∈ argmax
0≤c̃≤c∗1(ŝ2)

∫ c∗1(ŝ2)

0

[u0(σ1(s1; c̃, c
∗
1(ŝ2)), s1) + u1(σ1(s1; c̃, c

∗
1(ŝ2)), y(c

∗
1(ŝ2))] dF1(s1).

(19)

But by Step 2, Lemma 5 and condition U, we know that the unique solution to (19)

is c∗1(y(c
∗
1(ŝ2))). Hence, c = c∗1(y(c

∗
1(ŝ2))), implying y(c∗1(ŝ2)) ∈ S.

The above Steps 3 and 5 together contradict the definition of ŝ2. Therefore, we

must have ŝ2 =
¯
s2, completing the proof.

Lemma 12 (Separation). There exists a pair of mutually inverse functions h1 and

h2 such that, for i ∈ {1, 2},

(i) hi : [
¯
L−i, H̄−i] → [

¯
Li, H̄i] is strictly increasing with hi(

¯
L−i) =

¯
Li and hi(H̄−i) =

H̄i;

(ii) c∗i < hi < d∗i over (
¯
L−i, H̄−i);

and

(iii) if (ϕ1, ϕ2) ∈ M is a pair of mutual one-sided optimal delegation rules, then

¯
ϕi ≤ hi ≤ ϕ̄i over [

¯
L−i, H̄−i] for both i = 1, 2.
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ŝ1c∗1(h2(ŝ1))
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(b) Proof of part (iii)

Figure 6: Separation property

Proof. Panel (a) of Figure 6 provides an illustration of parts (i) and (ii). It is very

intuitive that we can find a strictly increasing curve (the black solid curve) that

connects the two points (
¯
L1,

¯
L2) and (H̄1, H̄2) and that separates c∗i and d∗i in the

sense that c∗i < hi < d∗i . We leave its formal proof to the online appendix. Here, we

show that any such h1 and h2 must also satisfy part (iii).

Suppose (ϕ1, ϕ2) is a pair of mutual one-sided optimal delegation rules. Define

S ≡

{
s1 ∈ [

¯
L1, H̄1]

∣∣∣∣∣ ¯ϕ1(s
′
2) ≤ h1(s

′
2), ∀s′2 ∈ [h2(s1), H̄2],

¯
ϕ2(s

′
1) ≤ h2(s

′
1), ∀s′1 ∈ [s1, H̄1]

}
.

For i = 1, 2, we know
¯
ϕi(H̄−i) ≤ H̄i = hi(H̄−i), where the inequality comes from

Lemma 10. Therefore, H̄1 ∈ S ̸= ∅. Let ŝ1 ≡ inf S. It is easy to verify that ŝ1 ∈ S.

The desired result will follow if we show ŝ1 =
¯
L1.

Suppose, by contradiction, ŝ1 >
¯
L1. When s1 ∈ [ŝ1, H̄1], we have

¯
ϕ2(s1) ≤ h2(s1).

When s1 ∈ (H̄1, 1), we have
¯
ϕ2(s1) ≤ H̄2 by Lemma 10. These two cases are illustrated

in Figure 6. When s1 ∈ [0, ŝ2), we know
¯
ϕ2(s1) ≤

¯
ϕ2(ŝ1) ≤ h2(ŝ1), where the first

inequality comes from monotonicity of
¯
ϕ2. In summary, for all s1, we have

¯
ϕ2(s1) ≤ y(s1) ≡


h2(ŝ1), if s1 ∈ [0, ŝ1),

h2(s1), if s1 ∈ [ŝ1, H̄1],

H̄2, if s1 ∈ (H̄1, 1).

This y function is represented by the thick red curve in panel (b) of Figure 6. Con-

sequently, for all s2 ∈ [0, h2(ŝ1)], we have

σ2(s2;
¯
ϕ2(s1), ϕ̄2(s1)) ≤ max{s2,

¯
ϕ2(s1)} ≤ max{h2(ŝ1), y(s1)} ≤ y(s1). (20)
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Because of parts (i) and (ii), it is easy to verify that function y satisfies conditions

(17) and (18) in Lemma 11. Hence, the unique one-sided optimal delegation for 1

given y is (c∗1(h2(ŝ1)), d
∗
1(H̄2)). Because ϕ1 is a one-sided optimal delegation rule

given ϕ2, we know that (
¯
ϕ1(s2), ϕ̄1(s2)) is a one-sided optimal delegation for 1 given

σ2(s2;
¯
ϕ2( · ), ϕ̄2( · )) for F2−almost all s2 ∈ [0, h2(ŝ1)]. Therefore, by (20) and Corol-

lary 2, we know
¯
ϕ1(s2) ≤ c∗1(h2(ŝ1)) for F2−almost all s2 ∈ [0, h2(ŝ1)]. Because

¯
ϕ1 is

increasing and F2 has full support, we actually must have
¯
ϕ1(s2) ≤ c∗1(h2(ŝ1)) for all

s2 ∈ [0, h2(ŝ1)). In panel (b) of Figure 6, this means that (the relevant part of)
¯
ϕ1 is

to the left of the vertical dashed blue line of value c∗1(h2(ŝ1)). By part (ii), we know

c∗1(h2(ŝ1)) < h1(h2(ŝ1)) = ŝ1, where the equality comes from h1 = h−1
2 . This in turn

implies h2(c
∗
1(h2(ŝ1))) < h2(ŝ1) since h2 is strictly increasing, and

¯
ϕ1(s2) ≤ c∗1(h2(ŝ1)) = h1(h2(c

∗
1(h2(ŝ1)))) ≤ h1(s2), ∀s2 ∈ [h2(c

∗
1(h2(ŝ1))), h2(ŝ1)).

These inequalities can also be seen in panel (b) of Figure 6, as
¯
ϕ1 over the interval

[h2(c
∗
1(h2(ŝ1))), h2(ŝ1)) is to the left of h1.

Initially, we know
¯
ϕ1(s2) ≤ h1(s2) for all s2 ∈ [h2(ŝ1), H̄2]. Now, we know

¯
ϕ1(s2) ≤

h1(s2) for all s2 ∈ [h2(ŝ
′
1), H̄2], where ŝ

′
1 ≡ c∗1(h2(ŝ1)) < ŝ1. Similarly, using the fact

that
¯
ϕ1(s2) ≤ h1(s2) for all s2 ∈ [h2(ŝ1), H̄2], we can also show that there exists

ŝ′′1 < ŝ1 such that
¯
ϕ2(s1) ≤ h2(s1) for all s1 ∈ [ŝ′′1, H̄1]. This means max{ŝ′1, ŝ′′1} ∈ S,

which contradicts the definition of ŝ1. We therefore must have ŝ2 =
¯
L1. Equivalently,

for both i = 1, 2,
¯
ϕi ≤ hi over [

¯
L−i, H̄−i].

The proof of the result that ϕ̄i ≥ hi over [
¯
L−i, H̄−i] for i = 1, 2 is similar.

To prove uniqueness in Lemma 14, we need the following lemma, which is analo-

gous to Lemma 9. Its proof is omitted.

Lemma 13. Consider i ∈ {1, 2}.

(i) d∗i (c
∗
−i(si)) > si if si < L̄i and d

∗
i (c

∗
−i(si)) < si if si > L̄i.

(ii) c∗i (d
∗
−i(si)) > si if si <

¯
Hi and c

∗
i (d

∗
−i(si)) < si if si >

¯
Hi.

We are now ready to prove uniqueness.

Lemma 14 (Uniqueness). Suppose (ϕ1, ϕ2) ∈ M is a pair of mutual one-sided optimal

delegation rules. Then, we have (ϕ1, ϕ2) = (ϕ∗
1, ϕ

∗
2) over (0, 1).

Proof. Similarly as the proof of Lemma 10, assume (
¯
ϕi(s−i), ϕ̄i(s−i)) is a one-sided

optimal delegation for i given σ−i(s−i;
¯
ϕ−i( · ), ϕ̄−i( · )) for both s−i = 0, 1. Let h1 and

h2 be the ones found in Lemma 12. The whole proof is divided into several small

steps.
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Figure 7: Proof of Lemma 14
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Step 1: For i = 1, 2,
¯
ϕi(s−i) =

¯
Li for all s−i ∈ (0,

¯
L−i], and ϕ̄i(s−i) = H̄i for all

s−i ∈ [H̄−i, 1).

For s−i ∈ (0,
¯
L−i), we have

¯
Li ≤

¯
ϕi(s−i) ≤

¯
ϕi(

¯
L−i) ≤ hi(

¯
L−i) =

¯
Li, where the first

inequality is from Lemma 10. The second inequality comes from monotonicity of
¯
ϕi.

The third inequality comes from Lemma 12. The proof for ϕ̄i is similar.

Step 2: For i = 1, 2,
¯
ϕi(s−i) = c∗i (s−i) for all s−i ∈ (

¯
L−i, ϕ̄−i(0)), and ϕ̄i(s−i) =

d∗i (s−i) for all s−i ∈ (
¯
ϕ−i(1), H̄−i).

Take
¯
ϕ2 as an example. Consider any s1 ∈ (

¯
L1, ϕ̄1(0)) and any s2 ≤ h2(s1). Such

a pair (s1, s2) is a point in the shaded area in panel (a) in Figure 7. Note that

¯
ϕ1(s2) ≤ h1(s2) ≤ h1(h2(s1)) = s1 < ϕ̄1(0) ≤ ϕ̄1(s2),

where the first inequality comes from Lemma 12. The second inequality comes from

monotonicity of h1. The last inequality comes from monotonicity of ϕ̄1. This implies

that, for all s1 ∈ (
¯
L1, ϕ̄1(0)),

σ1(s1;
¯
ϕ1(s2), ϕ̄1(s2)) = s1, ∀s2 ∈ (0, h2(s1)]. (21)

Consider any s1 ∈ (
¯
L1, ϕ̄1(0)) such that (

¯
ϕ2(s1), ϕ̄2(s1)) is a one-sided optimal

delegation given σ1(s1;
¯
ϕ1( · ), ϕ̄2( · )). Because

¯
ϕ2(s1) ≤ h2(s1) ≤ ϕ̄2(s1) by Lemma

12, Lemma 5 states that
¯
ϕ2(s1) is completely determined by σ1(s1;

¯
ϕ1( · ), ϕ̄1( · )) over

(0, h2(s1)], i.e.,

ϕ2(s1) ∈ argmax
0≤c̃≤h2(s1)

∫ h2(s1)

0

[u0(s1, σ2(s2; c̃, h2(s1))) + u2(σ2(s2; c̃, h2(s1)), s2)] dF2(s2).

(22)

Note that we have applied (21) in the above expression. Because c∗2(s1) ≤ h2(s2) ≤
d∗2(s1) by Lemma 12, condition U and Lemma 5 then imply that the unique solution

to the optimization problem in (22) is c∗2(s1). Therefore, ϕ2(s1) = c∗2(s1).

Because (
¯
ϕ2(s1), ϕ̄2(s1)) is a one-sided optimal delegation given σ1(s1;

¯
ϕ1( · ), ϕ̄2( · ))

for F1-almost all s1 ∈ (
¯
L1, ϕ̄1(0)), we know from the above analysis that

¯
ϕ2(s1) =

c∗2(s1) for F1−almost all s1 ∈ (
¯
L1, ϕ̄1(0)). Because

¯
ϕ2 is increasing, c∗2 is continuous

and F1 has full support, we have
¯
ϕ2(s1) = c∗2(s1) for all s1 ∈ (

¯
L1, ϕ̄1(0)).

Step 3: For i = 1, 2, we must have ϕ̄i(0) ≥ L̄i and
¯
ϕi(1) ≤

¯
Hi.

We take ϕ̄1(0) ≥ L̄1 as an example. Other inequalities are similar. Suppose, by

contradiction, that ϕ̄1(0) < L̄1. This situation is illustrated in panel (b) of Figure 7.
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The thick gray curve is
¯
ϕ2. By Steps 1 and 2, we know

¯
ϕ2 is constant

¯
L2 over (0,

¯
L1]

and coincides with c∗2 over (¯
L1, ϕ̄1(0)). Because

¯
ϕ2 is increasing, for all s1 ∈ [ϕ̄1(0), 1],

we know

¯
ϕ2(s1) ≥ lim

s′1↑ϕ̄1(0) ¯
ϕ2(s

′
1) = lim

s′1↑ϕ̄1(0)
c∗2(s

′
1) = c∗2(ϕ̄1(0)).

Therefore, we have

¯
ϕ2(s1) ≥ y(s1) ≡


¯
L2, if s1 ∈ (0,

¯
L1],

c∗2(s1), if s1 ∈ (
¯
L1, ϕ̄1(0)),

c∗2(ϕ̄1(0)), if s1 ∈ (ϕ̄1(0), 1].

This in turn implies that

σ2(0;
¯
ϕ2(s1), ϕ̄2(s1)) =

¯
ϕ2(s1) ≥ y(s1), ∀s1 ∈ [0, 1]. (23)

It is easy to check that this y function satisfies conditions (17) and (18) in Lemma

11. Hence, the unique one-sided optimal delegation rule for agent 1 given y is

(
¯
L1, d

∗
1(c

∗
2(ϕ̄1(0)))). Because (

¯
ϕ1(0), ϕ̄1(0)) is a one-sided optimal delegation given

σ2(0;
¯
ϕ2( · ), ϕ̄2( · )), we know ϕ̄1(0) ≥ d∗1(c

∗
2(ϕ̄1(0))) by inequality (23) and Corollary

2. By Lemma 13, we know ϕ̄1(0) ≥ L̄1, contradicting our assumption that ϕ̄1(0) < L̄1.

Therefore, we must have ϕ̄1(0) ≥ L̄1.

Step 4: For i = 1, 2, we must have ϕ̄i(0) = L̄i and
¯
ϕi(1) =

¯
Hi.

Panel (c) of Figure 7 illustrates what would happen if ϕ̄1(0) > L̄1 when c∗2 is

strictly increasing. Again, the thick gray curve represents
¯
ϕ2. By Step 2, we know

¯
ϕ2 will go above

¯
H2 over (L̄1, ϕ̄1(0)) as c

∗
2 does. But Step 3 claims that

¯
ϕ2(1) ≤

¯
H2.

Therefore, this is impossible because
¯
ϕ2 is increasing.

More formally, note that the following chain of inequalities must hold

ϕ̄1(0) ≤ ϕ̄1(
¯
ϕ2(1)) ≤ d∗1(¯

H2) = L̄1 ≤ ϕ̄1(0),

where the first inequality comes from monotonicity of ϕ̄1. The second inequality

comes from Steps 2 and 3. The last one comes from Step 3. Therefore, we have

ϕ̄1(0) = L̄1. The other equalities can be similarly proved.

Step 5: For i = 1, 2,
¯
ϕi(s−i) =

¯
Hi for all s−i ∈ [L̄−i, 1] and ϕ̄i(s−i) = L̄i for all

s−i ∈ [0,
¯
H−i].

This is obvious now. For example, we have

¯
H2 = c∗2(L̄1) ≤

¯
ϕ2(L̄1) ≤

¯
ϕ2(1) =

¯
H2,
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where the first inequality comes from Steps 2 and 4. The second inequality comes

from monotonicity of
¯
ϕ2. Therefore, we have

¯
ϕ2(L̄1) =

¯
ϕ2(1) =

¯
H2. By monotonicity

of
¯
ϕ2 again, we know

¯
ϕ2(s1) ≡

¯
H2 for s1 ∈ [L̄1, 1].

Combining Steps 1, 2 and 5 yields the desired result.

Proof of Theorem 1. Lemmas 7, 8, and 14 together prove Theorem 1.

Appendix C Proofs of Lemmas 3 and 4

C.1 Proof of Lemma 3

Proof. For notational simplicity, let

¯
gi(x, s−i) ≡

∫ x

0

[u0(x, s−i)) + ui(x, si)]dFi(si) +

∫ 1

x

[u0(si, s−i)) + ui(si, si)]dFi(si),

ḡi(x, s−i) ≡
∫ x

0

[u0(si, s−i)) + ui(si, si)]dFi(si) +

∫ 1

x

[u0(x, s−i)) + ui(x, si)]dFi(si).

Fix s−i. It is easy to note that (4) can be equivalently written as

max
0≤c≤d≤1 ¯

gi(c, s−i) + ḡi(d, s−i). (24)

We proceed to show that this optimization problem has a unique solution, which is

non-degenerate.

Consider any solution (ĉ, d̂) to (24). We first claim that

∂
¯
gi

∂x
(ĉ, s−i) =

∫ ĉ

0

(
∂u0
∂ai

(ĉ, s−i) +
∂ui
∂ai

(ĉ, si)

)
dFi(si) ≥ 0, (25)

∂ḡ

∂x
(d̂, s−i) =

∫ 1

d̂

(
∂u0
∂ai

(d̂, s−i) +
∂ui
∂ai

(d̂, si)

)
dFi(si) ≤ 0. (26)

For instance, if (25) is violated, i.e.,
∂
¯
gi

∂x
(ĉ, s−i) < 0, we know ĉ > 0 because

∂
¯
gi

∂x
(0, s−i) =

0. Then, there exists c ∈ [0, ĉ) such that
¯
gi(c, s−i) >

¯
gi(ĉ, s−i). This, in turn, implies

that
¯
gi(c, s−i) + ḡi(d̂, s−i) >

¯
gi(ĉ, s−i) + ḡi(d̂, s−i). Because (c, d̂) is also feasible to

(24), we know (ĉ, d̂) is not a solution, which is a contradiction. Therefore, (25) must

hold. Using a similar argument, we can see that (26) must hold too.

Next, we claim that ĉ < d̂. Suppose, by contradiction, ĉ = d̂ ≡ x̂. (U2) implies

that, for all x, ∂u0

∂ai
(x, s−i) +

∂ui

∂ai
(x, si) is strictly increasing in si. Hence, (U3) then

implies that
∂
¯
gi

∂x
(1, s−i) < 0 and ∂ḡi

∂x
(0, s−i) > 0. By (25) and (26), we know ĉ < 1 and
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d̂ > 0, implying that x̂ ∈ (0, 1). Then, (25) and (U2) together imply ∂u0

∂ai
(x̂, s−i) +

∂ui

∂ai
(x̂, x̂) > 0. Likewise, (26) and (U2) together imply ∂u0

∂ai
(x̂, s−i) +

∂ui

∂ai
(x̂, x̂) < 0, a

contradiction.

Finally, we show that (ĉ, d̂) is the unique solution to (24) (and hence to (4)).

Because
¯
gi( · , s−i) is strictly quasi-concave by (U1), max0≤c≤1

¯
gi(c, s−i) has a unique

solution. Denote this solution by c̃. If c̃ < ĉ, we know (c̃, d̂) is feasible to (24), and

¯
gi(c̃, s−i) + ḡi(d̂, s−i) >

¯
gi(ĉ, s−i) + ḡi(d̂, s−i), contradicting the optimality of (ĉ, d̂). If

c̃ > ĉ, we know
¯
gi( · , s−i) is strictly increasing over [ĉ, c̃] by strict quasi-concavity.

Pick c ∈ (ĉ, min{c̃, d̂}). Then, (c, d̂) is feasible to (24), and
¯
gi(c, s−i) + ḡi(d̂, s−i) >

¯
gi(ĉ, s−i) + ḡi(d̂, s−i), contradicting the optimality of (ĉ, d̂) again. Therefore, we must

have ĉ = c̃. Similarly, using the strict quasi-concavity of ḡi( · , s−i), we can show that

d̂ is the unique solution to max0≤d≤1 ḡi(x, s−i), completing the proof.

C.2 Proof of Lemma 4

To prove Lemma 4, we first prove Lemmas 15 and 16 below. Lemma 15 itself can be

considered as weaker sufficient conditions for condition R.

Lemma 15. Suppose condition U is satisfied. If the following conditions are satisfied,

condition R holds: for all i, ai ∈ (0, 1) and s−i,(
∂2u0

∂ai∂a−i

(ai, s−i) +
∂2u0
∂a2i

(ai, s−i)

)
Fi(ai)

<

∫ ai

0

(
− fi(ai)

Fi(ai)

Fi(si)

fi(si)

∂2ui
∂ai∂si

(ai, si)−
∂2ui
∂a2i

(ai, si)

)
dFi(si), (27)(

∂2u0
∂ai∂a−i

(ai, s−i) +
∂2u0
∂a2i

(ai, s−i)

)
(1− Fi(ai))

<

∫ 1

ai

(
− fi(ai)

1− Fi(ai)

1− Fi(si)

fi(si)

∂2ui
∂ai∂si

(ai, si)−
∂2ui
∂a2i

(ai, si)

)
dFi(si). (28)

Proof. We first claim that, for all i, c∗i is differentiable at s−i such that c∗i (s−i) > 0, and
dc∗i (s−i)

ds−i
< 1. Because c∗i (s−i) < d∗i (s−i) by condition U, from the first two paragraphs

of the proof of Lemma 3, we know the first order condition is satisfied:

∂
¯
gi

∂x
(c∗i , s−i) =

∫ c∗i

0

(
∂u0
∂ai

(c∗i , s−i) +
∂ui
∂ai

(c∗i , si)

)
dFi(si) = 0, (29)
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where we write c∗i instead of c∗i (s−i) for short. It is easy to calculate

−
∂2
¯
gi

∂x2
(c∗i , s−i)

=−
(∂u0
∂ai

(c∗i , s−i) +
∂ui
∂ai

(c∗i , c
∗
i )
)
fi(c

∗
i )−

∫ c∗i

0

(
∂2u0
∂a2i

(c∗i , s−i) +
∂2ui
∂a2i

(c∗i , si)

)
dFi(si)

=

∫ c∗i

0

(
fi(c

∗
i )

Fi(c∗i )

(∂ui
∂ai

(c∗i , si)−
∂ui
∂ai

(c∗i , c
∗
i )
)
− ∂2u0

∂a2i
(c∗i , s−i)−

∂2ui
∂a2i

(c∗i , si)

)
dFi(si)

=

∫ c∗i

0

(
− fi(c

∗
i )

Fi(c∗i )

Fi(si)

fi(si)

∂2ui
∂ai∂si

(c∗i , si)−
∂2ui
∂a2i

(c∗i , si)

)
dFi(si)−

∂2u0
∂a2i

(c∗i , s−i)Fi(c
∗
i )

>
∂2u0

∂ai∂a−i

(c∗i , s−i)Fi(c
∗
i ) ≥ 0, (30)

where the second equality comes from the first order condition (29). The third equal-

ity comes from
∫ c∗i
0
(∂ui

∂ai
(c∗i , si)− ∂ui

∂ai
(c∗i , c

∗
i ))dFi(si) = −

∫ c∗i
0

∫ c∗i
si

∂2ui

∂ai∂si
(c∗i , s̃i)ds̃idFi(si) =

−
∫ c∗i
0

∂2ui

∂ai∂si
(c∗i , s̃i)

( ∫ s̃i
0
dFi(si)

)
ds̃i = −

∫ c∗i
0

Fi(si)
fi(si)

∂2ui

∂ai∂si
(c∗i , si)dFi(si). The first inequal-

ity comes from (27). The last inequality comes from ∂2u0

∂a1∂a2
≥ 0. Therefore, by the

implicit function theorem, we know c∗i (s−i) is differentiable when it is positive, and

dc∗i (s−i)

ds−i

=

∂2

¯
gi

∂x∂s−i
(c∗i , s−i)

−∂2

¯
gi

∂x2 (c∗i , s−i)
=

∂2u0

∂ai∂a−i
(c∗i , s−i)Fi(c

∗
i )

−∂2

¯
gi

∂x2 (c∗i , s−i)
< 1,

where the inequality comes from (30).

Similarly, using the first order condition ∂ḡi
∂x

(d∗i , s−i) = 0 and (28), we can show

that d∗i (s−i) is also differentiable at s−i such that d∗i (s−i) < 1, and
dd∗i (s−i)

ds−i
< 1.

Next, we claim that, for all i, c∗i (s
′
−i)− c∗i (s−i) < s′−i− s−i and d

∗
i (s

′
−i)−d∗i (s−i) <

s′−i − s−i for all s
′
−i > s−i. Take c∗i as an example. Because c∗i ≥ 0 is increasing by

Lemma 2, it takes one of the following three forms: (i) c∗i ≡ 0 over [0, 1]; (ii) c∗i > 0

over [0, 1]; and (iii) there exists ŝ ∈ [0, 1) such that c∗i = 0 over [0, ŝ] and c∗i > 0

over (ŝ, 1]. From the above analysis, we can see that, in all cases, c∗i is absolutely

continuous and its derivative is strictly less than 1. Therefore c∗i (s
′
−i) − c∗i (s−i) =∫ s′−i

s−i

dc∗i (s̃−i)

ds−i
ds̃−i < s′−i − s−i for all s

′
−i > s−i. The argument for d∗i is similar.

Finally, for any s′i > si, we have c
∗
i (c

∗
−i(s

′
i))−c∗i (c∗−i(si)) ≤ c∗−i(s

′
i)−c∗−i(si) < s′i−si

and c∗i (d
∗
−i(s

′
i))− c∗i (d

∗
−i(si)) ≤ d∗−i(s

′
i)− d∗−i(si) < s′i − si. Therefore, each of c∗1 ◦ c∗2,

c∗1 ◦ d∗2, d∗1 ◦ c∗2, and d∗1 ◦ d∗2 has a unique fixed point.

The following lemma summarizes some useful properties of the distribution func-

tions derived from log-concavity of the density function. Some of these properties are

used in the proof of Lemma 4. Some are used later in the proof of Theorem 2.
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Lemma 16. If fi is log-concave, then Fi, 1 − Fi,
∫ si
0
Fi(x)dx, and

∫ 1

si
(1 − Fi(x))dx

are all log-concave. Consequently,
f ′
i

fi
, fi

Fi
, −fi

1−Fi
, Fi(si)∫ si

0 Fi(x)dx
, and −(1−Fi(si))∫ 1

si
(1−Fi(x))dx

are all

decreasing. Moreover,

(i) limsi↓0
fi(si)
Fi(si)

= limsi↑1
fi(si)

1−Fi(si)
= +∞.

(ii)
f ′
i(si)

fi(si)

∫ si
0 Fi(s̃i)ds̃i

Fi(si)
,

−f ′
i(si)

fi(si)

∫ 1
si
(1−Fi(s̃i))ds̃i

1−Fi(si)
,

fi(si)
∫ si
0 Fi(x)dx

F 2
i (si)

, and
fi(si)

∫ 1
si
(1−Fi(x))dx

(1−Fi(si))2
are all

bounded above by 1.

Proof. Because fi is log-concave, it is well-known that all these derived functions are

log-concave.28 Monotonicity of the first order derivatives of the logarithm of these

functions follow directly.

Consider part (i). Because limsi↓0
∫ 1

2

si

fi(s̃i)
Fi(s̃i)

ds̃i = logFi(
1
2
) − limsi↓0 logFi(si) =

+∞, monotonicity of fi
Fi

implies limsi↓0
fi(si)
Fi(si)

= +∞. The other limit is analogous.

Consider part (ii). It is easy to observe that

sign

(
1− f ′

i(si)

fi(si)

∫ si
0
Fi(s̃i)ds̃i

Fi(si)

)
= sign

(∫ si
0
Fi(x)dx

fi(si)

)′

= sign

(
Fi(si)

fi(si)

∫ si
0
Fi(x)dx

Fi(si)

)′

≥ 0.

The other inequalities can be similarly proved.

Proof of Lemma 4. By Lemma 15, we only need to verify that conditions R1 - R3

imply (27) and (28). Inequalities (10) and (11) imply that, for all i, ai and s−i,(
∂2u0

∂ai∂a−i
(ai, s−i) +

∂2u0
∂a2i

(ai, s−i)

)
Fi(ai) ≤

∫ ai

0

(
− ∂2ui
∂ai∂si

(ai, si)−
∂2ui
∂a2i

(ai, si)

)
dFi(si).

For all ai ∈ (0, 1), the first inequality in (11) and Lemma 16 together imply that

− ∂2ui
∂ai∂si

(ai, si) ≤ − fi(ai)

Fi(ai)

Fi(si)

fi(si)

∂2ui
∂ai∂si

(ai, si), ∀si < ai,

with strict inequality when si is sufficiently small. Thus,∫ ai

0

− ∂2ui
∂ai∂si

(ai, si)dFi(si) <

∫ ai

0

− fi(ai)

Fi(ai)

Fi(si)

fi(si)

∂2ui
∂ai∂si

(ai, si)dFi(si).

Therefore, (27) holds. We can similarly show that (28) holds too.

28See, for instance, An (1998) and Bagnoli and Bergstrom (2005).
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Appendix D Proof of Theorem 2

D.1 Optimality of contingent interval delegation

Theorem 2 in the main text provides sufficient conditions for the particular optimal

contingent interval delegation (ϕ∗
1, ϕ

∗
2) from Theorem 1 to be optimal among all DSIC

mechanisms. As we have explained in the main text, it is based on a more general

result that provides conditions for a given contingent interval delegation to be optimal.

Because this result has its own interest, we state it below as a theorem. It generalizes

the main sufficiency result in Amador and Bagwell (2013).

Theorem 3. Consider a contingent interval delegation (ϕ1, ϕ2). For each i, define

wi(ai, si, s−i) ≡ ui(ai, si) + u0(ai, σ
ϕ−i

−i (si, s−i)),

κi ≡ inf
ai,si∈[0,1]

−∂
2ui
∂a2i

(ai, si). (31)

If the conditions C1, C2, C2′, C3 and C3′ are satisfied, then (σϕ1

1 , σ
ϕ2

2 ) is an optimal

DSIC mechanism.

(C1) For any s−i ∈ [0, 1],

κiFi(si)− fi(si)
∂wi

∂ai
(si, si, s−i)

is increasing in si for si ∈ [
¯
ϕi(s−i), ϕ̄i(s−i)].

(C2) If
¯
ϕi(s−i) > 0,

(si −
¯
ϕi(s−i))κi ≤

∫ si

0

∂wi

∂ai
(
¯
ϕi(s−i), s̃i, s−i)

fi(s̃i)

Fi(si)
ds̃i, ∀si ∈ [0,

¯
ϕi(s−i)],

with equality at
¯
ϕi(s−i).

(C2') If
¯
ϕi(s−i) = 0, ∂wi

∂ai
(0, 0, s−i) ≤ 0.

(C3) If ϕ̄i(s−i) < 1,

(si − ϕ̄i(s−i))κi ≥
∫ 1

si

∂wi

∂ai
(ϕ̄i(s−i), s̃i, s−i)

fi(s̃i)

1− Fi(si)
ds̃i, ∀si ∈ [ϕ̄i(s−i), 1],

with equality at ϕ̄i(s−i).

(C3') If ϕ̄i(s−i) = 1, ∂wi

∂ai
(1, 1, s−i) ≥ 0.
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The conditions in Theorem 3 correspond to conditions c1 - c3′ in Amador and

Bagwell (2013). In fact, our conditions are the contingent versions of theirs, as is

indicated by the fact that all these conditions are indexed by s−i. A key reason that

we can obtain this contingent version is because in our setting, DSIC constraints

for agent i can be expressed as a series of independent single-agent IC constraints,

indexed by s−i.

The proof follows a similar line of arguments as in Amador and Bagwell (2013).

For the sake of space, we leave it to the online appendix. The main idea is to use

the Lagrange method to transform the original constrained optimization problem (1)

into a relaxed unconstrained problem. The major task is to show that the candidate

mechanism is a solution to this relaxed problem, which in turn implies that it is

also a solution to the original one. In doing so, one major step involves proving the

concavity of the objective function of this relaxed problem, and this step is where the

presence of the coordination payoff, i.e., u0, which is absent in single-agent settings,

causes a difficulty. To deal with this difficulty, the trick is to make condition C1 more

demanding than its counterpart in Amador and Bagwell (2013). This is done through

the construction of κi. In fact, if we defined κi as infai,si∈[0,1]−∂2wi

∂a2i
(ai, si, s−i) as in

Amador and Bagwell (2013), it would guarantee that the objective function is concave

in each agent’s decision rule, which in turn would imply that the interval delegations

ϕ1 and ϕ2 are a “mutual best response.” However, it is not enough to guarantee that

the objective function is concave as a function of the pair of agents’ decision rules,

which, in contrast, can be guaranteed by the smaller κi we give in (31). Clearly, this

smaller κi makes condition C1 more demanding since Fi is increasing.
29

D.2 Proof of Theorem 2

Proof. For notational simplicity, we write a∗i (si, s−i), instead of σ
ϕ∗
i

i (si, s−i), to denote

i’s decision under (ϕ∗
1, ϕ

∗
2). It is easy to notice that, for every s−i, a

∗
−i(si, s−i) is a

piecewise function in si: it partitions [0, 1] into finitely many intervals, and over each

interval it is either a constant, c∗−i, or d
∗
−i. The proof of Lemma 15 shows that both

29Another major step in proving that the candidate mechanism is a solution to the relaxed problem

is to show that there is no profitable local deviation around the candidate mechanism. It turns out

that we do not need to worry about joint local deviations. This is because the local effect can be

captured by the Gateaux derivative, which can be expressed as the integration of partial derivatives

with respect to a, after changing the order of the derivative and integration. When considering the

partial derivative of ai, a−i is treated as given. Thus, we only need to deal with unilateral local

deviation.
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c∗−i and d
∗
−i are differentiable for all but at most one point, and c∗

′
−i < 1 and d∗

′
−i < 1.

Hence, a∗−i(si, s−i) is differentiable with respect to si for all but at most finitely many

points, and
∂a∗−i

∂si
(si, s−i) < 1. Recall that we have explained in Section 3.4 that (9)

must hold when
¯
ϕ∗
i (s−i) > 0. Using notation a∗−i, we can rewrite it as∫

¯
ϕ∗
i (s−i)

0

[
∂u0
∂ai

(
¯
ϕ∗
i (s−i), a

∗
−i(

¯
ϕ∗
i (s−i), s−i)) +

∂ui
∂ai

(
¯
ϕ∗
i (s−i), si)

]
dFi(si) = 0. (32)

Similarly, when ϕ̄∗
i (s−i) < 1, we have∫ 1

ϕ̄∗
i (s−i)

[
∂u0
∂ai

(ϕ̄∗
i (s−i), a

∗
−i(ϕ̄

∗
i (s−i), s−i)) +

∂ui
∂ai

(ϕ̄∗
i (s−i), si)

]
dFi(si) = 0. (33)

With these preparations, we are ready to verify that conditions C1 - C3′ in Theo-

rem 3 are all satisfied under the proposed conditions. Then, by Theorem 3, we know

(ϕ∗
1, ϕ

∗
2) is optimal.

Step 1: Conditions C2′ and C3′ hold.

We only show condition C2′. Condition C3′ is analogous. These two conditions

will be used in the verification of condition C1 below.

Fix s−i such that
¯
ϕ∗
i (s−i) = 0. Suppose, by contradiction, ∂wi

∂ai
(0, 0, s−i) > 0. By

continuity, there exists ĉ ∈ (0, ϕ̄∗
i (s−i)) such that ∂wi

∂ai
(c, si, s−i) > 0 for all c, si ∈ [0, ĉ].

Thus, for all c ∈ [0, ĉ], we have∫ c

0

∂wi

∂ai
(c, si, s−i)fi(si)dsi =

∫ c

0

(∂ui
∂ai

(c, si) +
∂u0
∂ai

(c, a∗−i(si, s−i))
)
fi(si)dsi > 0,

which in turn implies that, given s−i and a
∗
−i, [ĉ, ϕ̄

∗
i (s−i)] is a better delegation interval

than [
¯
ϕ∗
i (s−i), ϕ̄

∗
i (s−i)] for the principal. This contradicts Theorem 1. Hence, we must

have ∂wi

∂ai
(0, 0, s−i) ≤ 0.

Step 2: Condition C1 holds.

Fix s−i. We want to show that

κiFi(si)− fi(si)
∂wi

∂ai
(si, si, s−i) = κiFi(si)− fi(si)

[
∂ui
∂ai

(si, si) +
∂u0
∂ai

(si, a
∗
−i(si, s−i))

]
is increasing over si ∈ [

¯
ϕ∗
i (s−i), ϕ̄

∗
i (s−i)]. From condition O1, it suffices to show that

κiFi(si) − fi(si)
∂u0

∂ai
(si, a

∗
−i(si, s−i)) is increasing. For every si at which a

∗
−i(si, s−i) is
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differentiable, we have

∂
(
κiFi(si)− fi(si)

∂u0

∂ai
(si, a

∗
−i(si, s−i))

)
∂si

(34)

=κifi(si)− f ′
i(si)

∂u0
∂ai

(si, a
∗
−i(si, s−i))

− fi(si)

(
∂2u0
∂a2i

(si, a
∗
−i(si, s−i)) +

∂2u0
∂ai∂a−i

(si, a
∗
−i(si, s−i))

∂a∗−i

∂si
(si, s−i)

)
.

Observe that

∂2u0
∂a2i

(si, a
∗
−i(si, s−i)) +

∂2u0
∂ai∂a−i

(si, a
∗
−i(si, s−i))

∂a∗−i

∂si
(si, s−i)

≤∂
2u0
∂a2i

(si, a
∗
−i(si, s−i)) +

∂2u0
∂ai∂a−i

(si, a
∗
−i(si, s−i)) ≤ 0, (35)

where the first inequality comes from ∂2u0

∂a1∂a2
≥ 0 and

∂a∗−i(si,s−i)

∂si
≤ 1. The second

inequality comes from condition R2. Hence, to show that (34) is nonnegative, it

suffices to show that

f ′
i(si)

fi(si)

∂u0
∂ai

(si, a
∗
−i(si, s−i)) ≤ κi, ∀si ∈ [

¯
ϕ∗
i (s−i), ϕ̄

∗
i (s−i)].

If
f ′
i(si)

fi(si)
and ∂u0

∂ai
(si, a

∗
−i(si, s−i)) have different signs, the desired inequality is obvious

because
f ′
i(si)

fi(si)
∂u0

∂ai
(si, a

∗
−i(si, s−i)) ≤ 0 ≤ κi. We now consider the cases where these

two terms have the same sign.

First, suppose
f ′
i(si)

fi(si)
> 0 and ∂u0

∂ai
(si, a

∗
−i(si, s−i)) > 0. Because fi is log-concave,

we have
f ′
i(
¯
ϕ∗
i (s−i))

fi(
¯
ϕ∗
i (s−i))

≥ f ′
i(si)

fi(si)
> 0. Because of (35), we know si 7→ ∂u0

∂ai
(si, a

∗
−i(si, s−i)) is

decreasing. Thus, we have ∂u0

∂ai
(
¯
ϕ∗
i (s−i), a

∗
−i(

¯
ϕ∗
i (s−i), s−i)) ≥ ∂u0

∂ai
(si, a

∗
−i(si, s−i)) > 0.

These inequalities have two implications. First, we have

f ′
i(si)

fi(si)

∂u0
∂ai

(si, a
∗
−i(si, s−i)) ≤

f ′
i(
¯
ϕ∗
i (s−i))

fi(
¯
ϕ∗
i (s−i))

∂u0
∂ai

(
¯
ϕ∗
i (s−i), a

∗
−i(

¯
ϕ∗
i (s−i), s−i)). (36)

Second, we have
¯
ϕ∗
i (s−i) > 0. To see this, suppose by contradiction, that

¯
ϕ∗
i (s−i) = 0.

Then
f ′
i(
¯
ϕ∗
i (s−i))

fi(
¯
ϕ∗
i (s−i))

> 0 implies ∂ui

∂ai
(0, 0) ≥ 0 by condition O2. But then ∂u0

∂ai
(0, a∗−i(0, s−i))+

∂ui

∂ai
(0, 0) > 0, contradicting condition C2′. Thus, we can only have

¯
ϕ∗
i (s−i) > 0. Then,
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from (32), we have

∂u0
∂ai

(
¯
ϕ∗
i (s−i), a

∗
−i(

¯
ϕ∗
i (s−i), s−i))

=
1

Fi(
¯
ϕ∗
i (s−i))

∫
¯
ϕ∗
i (s−i)

0

(
− ∂ui
∂ai

(
¯
ϕ∗
i (s−i), si)

)
fi(si)dsi

≤ 1

Fi(
¯
ϕ∗
i (s−i))

∫
¯
ϕ∗
i (s−i)

0

(∂ui
∂ai

(
¯
ϕ∗
i (s−i),

¯
ϕ∗
i (s−i))−

∂ui
∂ai

(
¯
ϕ∗
i (s−i), si)

)
fi(si)dsi

=
1

Fi(
¯
ϕ∗
i (s−i))

∫
¯
ϕ∗
i (s−i)

0

(∫
¯
ϕ∗
i (s−i)

si

∂2ui
∂ai∂si

(
¯
ϕ∗
i (s−i), x)dx

)
fi(si)dsi

=
1

Fi(
¯
ϕ∗
i (s−i))

∫
¯
ϕ∗
i (s−i)

0

∂2ui
∂ai∂si

(
¯
ϕ∗
i (s−i), x)Fi(x)dx

≤ κi
Fi(

¯
ϕ∗
i (s−i))

∫
¯
ϕ∗
i (s−i)

0

Fi(x)dx, (37)

where the first inequality comes from ∂u0

∂ai
(
¯
ϕ∗
i (s−i),

¯
ϕ∗
i (s−i)) ≥ 0 by condition O2. The

second inequality comes from condition O3. Combining (36) and (37) yields

f ′
i(si)

fi(si)

∂u0
∂ai

(si, a
∗
−i(si, s−i)) ≤ κi

f ′
i(
¯
ϕ∗
i (s−i))

fi(
¯
ϕ∗
i (s−i))

∫
¯
ϕ∗
i (s−i)

0 Fi(x)dx

Fi(
¯
ϕ∗
i (s−i))

≤ κi,

where the last inequality comes from part (ii) of Lemma 16.

Next, suppose
f ′
i(si)

fi(si)
< 0 and ∂u0

∂ai
(si, a

∗
−i(si, s−i)) < 0. Similarly as above, we have

f ′
i(ϕ̄

∗
i (s−i))

fi(ϕ̄∗
i (s−i))

≤ f ′
i(si)

fi(si)
< 0 and ∂u0

∂ai
(ϕ̄∗

i (s−i), a
∗
−i(ϕ̄

∗
i (s−i), s−i)) ≤ ∂u0

∂ai
(si, a

∗
−i(si, s−i)) < 0.

Thus, we have

f ′
i(si)

fi(si)

∂u0
∂ai

(si, a
∗
−i(si, s−i)) ≤

f ′
i(ϕ̄

∗
i (s−i))

fi(ϕ̄∗
i (s−i))

∂u0
∂ai

(ϕ̄∗
i (s−i), a

∗
−i(ϕ̄

∗
i (s−i), s−i)). (38)

Moreover, we also have ϕ̄∗
i (s−i) < 1. Thus, using the first order condition (33) and

applying conditions O2 and O3 as above, we can similarly show that

∂u0
∂ai

(ϕ̄∗
i (s−i), a

∗
−i(ϕ̄

∗
i (s−i), s−i)) ≥

−κi
1− Fi(ϕ̄∗

i (s−i))

∫ 1

ϕ̄∗
i (s−i)

(1− Fi(x))dx. (39)

Combining (38) and (39) yields

f ′
i(si)

fi(si)

∂u0
∂ai

(si, a
∗
−i(si, s−i)) ≤ κi

−f ′
i(ϕ̄

∗
i (s−i))

fi(ϕ̄∗
i (s−i))

∫ 1

ϕ̄∗
i (s−i)

(1− Fi(x))dx

1− Fi(ϕ̄∗
i (s−i))

≤ κi,

where the last inequality comes again from part (ii) of Lemma 16.
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Step 3: Conditions C2 and C3 hold.

We only show condition C2. Condition C3 is similar. Fix s−i such that
¯
ϕ∗
i (s−i) >

0. Let

g(si) ≡ (si −
¯
ϕ∗
i (s−i))κi −

∫ si

0

∂wi

∂ai
(
¯
ϕ∗
i (s−i), s̃i, s−i)

fi(s̃i)

Fi(si)
ds̃i, ∀si ∈ [0,

¯
ϕ∗
i (s−i)].

It is straightforward to see that the first order condition (9) directly implies g(
¯
ϕ∗
i (s−i)) =

0. Hence, to show C2, it suffices to show that g′(si) ≥ 0 for si ∈ [0,
¯
ϕ∗
i (s−i)]. We can

calculate

g′(si) = κi −
fi(si)

F 2
i (si)

∫ si

0

[∂wi

∂ai
(
¯
ϕ∗
i (s−i), si, s−i)−

∂wi

∂ai
(
¯
ϕ∗
i (s−i), s̃i, s−i)

]
fi(s̃i)ds̃i.

Recall that
∂wi

∂ai
(ai, si, s−i) =

∂ui
∂ai

(ai, si) +
∂u0
∂ai

(ai, a
∗
−i(si, s−i)).

Because a∗−i(si, s−i) = a∗−i(
¯
ϕ∗
i (s−i), s−i) for all si ≤

¯
ϕ∗
i (s−i) as explained previously,

we know

∂wi

∂ai
(
¯
ϕ∗
i (s−i), si, s−i)−

∂wi

∂ai
(
¯
ϕ∗
i (s−i), s̃i, s−i) =

∂ui
∂ai

(
¯
ϕ∗
i (s−i), si)−

∂ui
∂ai

(
¯
ϕ∗
i (s−i), s̃i),

implying

g′(si) = κi −
fi(si)

F 2
i (si)

∫ si

0

∫ si

s̃i

∂2ui
∂ai∂si

(
¯
ϕi(s−i), x, s−i)fi(s̃i)dxds̃i

≥ κi

(
1− fi(si)

F 2
i (si)

∫ si

0

∫ si

s̃i

fi(s̃i)dxds̃i

)
= κi

(
1− fi(si)

F 2
i (si)

∫ si

0

Fi(x)dx

)
≥ 0,

where the first inequality comes from condition O3. The last inequality comes again

from part (ii) of Lemma 16.
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Online Appendix for “Optimal Contingent Delegation”

Tan Gan, Ju Hu and Xi Weng
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This online appendix contains missing proofs. Section A provides the missing

proof of Lemma 12. Section B provides the proof of Theorem 3 in Appendix D.1.

Section C contains the proofs for Section 4.

Online Appendix A Missing Proof of Lemma 12

In Appendix B.3, we have proved Lemma 12 assuming that there exist desired h1 and

h2 that satisfy parts (i) and (ii) of Lemma 12. The next lemma confirms the existence

of such h1 and h2.

Lemma A.1. For every s1 ∈ [
¯
L1, H̄1], there exists a unique h2(s1) ∈ [c∗2(s1), d

∗
2(s1)]

such that the following equation holds

s1 =
h2(s1)− c∗2(s1)

d∗2(s1)− c∗2(s1)
d∗1(h2(s1)) +

d∗2(s1)− h2(s1)

d∗2(s1)− c∗2(s1)
c∗1(h2(s1)). (A.1)

Then, h1 ≡ h−1
2 and h2 satisfy parts (i) and (ii) of Lemma 12.

Proof. For every s1 ∈ [
¯
L1, H̄1] and s2 ∈ [c∗2(s1), d

∗
2(s1)], define

g(s1, s2) ≡
s2 − c∗2(s1)

d∗2(s1)− c∗2(s1)
d∗1(s2) +

d∗2(s1)− s2
d∗2(s1)− c∗2(s1)

c∗1(s2). (A.2)

It is well defined by condition U and continuous by Lemma 2. We divide the remaining

proof into several small steps.

Step 1: For every s1, g(s1, · ) is strictly increasing.

Consider c∗2(s1) ≤ s2 < s′2 ≤ d∗2(s1). We have

g(s1, s2) ≤
s2 − c∗2(s1)

d∗2(s1)− c∗2(s1)
d∗1(s

′
2) +

d∗2(s1)− s2
d∗2(s1)− c∗2(s1)

c∗1(s
′
2)

=
s2 − c∗2(s1)

d∗2(s1)− c∗2(s1)
(d∗1(s

′
2)− c∗1(s

′
2)) + c∗1(s

′
2)

<
s′2 − c∗2(s1)

d∗2(s1)− c∗2(s1)
(d∗1(s

′
2)− c∗1(s

′
2)) + c∗1(s

′
2)

= g(s1, s
′
2),

where the first inequality comes from monotonicity of c∗1 and d∗1 by Lemma 2. The

second inequality comes from d∗1(s
′
2) > c∗1(s

′
2) by condition U.
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Step 2: If s1 =
¯
L1, the unique h2(s1) ∈ [c∗2(¯

L1), d
∗
2(¯
L1)] that satisfies g(s1, h2(s1)) = s1

is h2(s1) =
¯
L2.

Because c∗2(¯
L1) =

¯
L2 and c∗1(¯

L2) =
¯
L1, it is straightforward to see g(

¯
L1,

¯
L2) =

¯
L1.

Uniqueness comes from the previous step.

Step 3: If s1 = H̄1, the unique h2(s1) ∈ [c∗2(H̄1), d
∗
2(H̄1)] that satisfies g(s1, h2(s1)) =

s1 is h2(s1) = H̄2.

The proof is similar to the previous one.

Step 4: If s1 ∈ (
¯
L1, H̄1), then there exists a unique h2(s1) ∈ (c∗2(s1), d

∗
2(s1)) such that

g(s1, h2(s1)) = s1.

It is easy to see g(s1, c
∗
2(s1)) = c∗1(c

∗
2(s1)). Because s1 >

¯
L1, we then know

g(s1, c
∗
2(s1)) < s1 by Lemma 9. Similarly, because g(s1, d

∗
2(s1)) = d∗1(d

∗
2(s1)) and

s1 < H̄1, we know g(s1, d
∗
2(s1)) > s1 by Lemma 9 again. Thus, by Step 1, we know

there exists a unique h2(s1) ∈ (c∗2(s1), d
∗
2(s1)) such that g(s1, h2(s1)) = s1.

Step 5: h2 : [
¯
L1, H̄1] → [

¯
L2, H̄2] is continuous and surjective.

Let {sn1}n≥1 ⊂ [
¯
L1, H̄1] be a sequence converging to s1 ∈ [

¯
L1, H̄1]. Because

{h2(sn1 )}n≥1 ⊂ [
¯
L2, H̄2], it has a convergent subsequence {h2(snk

1 )}k≥1. Let s2 ≡
limk→∞ h2(s

nk
1 ) ∈ [c∗2(s1), d

∗
2(s1)]. Because g(s

nk
1 , h2(s

nk
1 )) = snk

1 for all k ≥ 1 and g is

continuous, we know g(s1, s2) = s1. By Steps 2 - 4, we know s2 = h2(s1). This proves

the continuity of h2. Because h2(
¯
L1) =

¯
L2 and h2(H̄1) = H̄2 by Steps 2 and 3, we

know h2 is surjective since it is continuous.

Step 6: h2(
¯
L1) < h2(s1) < h2(H̄1) for all s1 ∈ (

¯
L1, H̄1).

For all s1 ∈ (
¯
L1, H̄1), we have

h2(
¯
L1) =

¯
L2 = c∗2(¯

L1) ≤ c∗2(s1) < h2(s1) < d∗2(s1) ≤ d∗2(H̄1) = H̄2 = h2(H̄1),

where the first and last equalities come from Steps 2 and 3. The two weak inequalities

come from monotonicity of c∗2 and d∗2. The two strict inequalities come from Step 4.

Step 7: h2 : [
¯
L1, H̄1] → [

¯
L2, H̄2] is strictly increasing.

We first argue that h2 is injective. Consider
¯
L1 ≤ s1 < s′1 ≤ H̄1. Suppose, by

contradiction, h2(s1) = h2(s
′
1) ≡ s2. By Step 6, we know

¯
L1 < s1 < s′1 < H̄1. Thus,

c∗2(s1) < s2 < d∗2(s1) and c
∗
2(s

′
1) < s2 < d∗2(s

′
1) by Step 4.
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Because g(s1, s2) = s1 < s′1 = g(s′1, s2) and d∗1(s2) > c∗1(s2), we can directly see

from (A.2) that
s2 − c∗2(s1)

d∗2(s1)− c∗2(s1)
<

s2 − c∗2(s
′
1)

d∗2(s
′
1)− c∗2(s

′
1)
,

which implies
d∗2(s1)− s2
s2 − c∗2(s1)

>
d∗2(s

′
1)− s2

s2 − c∗2(s
′
1)
.

But this is impossible, since 0 < s2 − c∗2(s
′
1) ≤ s2 − c∗2(s

′
1) and 0 < d∗2(s1) − s2 ≤

d∗2(s
′
1)− s2. Therefore, h2 is injective.

Because h2 is continuous by Step 5, we now know h2 is strictly monotone. Because

h2(
¯
L1) < h2(H̄1), we know h2 is strictly increasing.

The above Steps 2 - 4 and 7 together guarantee that h2 satisfies parts (i) and (ii) in

Lemma 12. These steps, together with Step 5, guarantee that h1 ≡ h−1
2 : [

¯
L2, H̄2] →

[
¯
L1, H̄1] is well defined and satisfies part (i).

Step 8: For all s2 ∈ (
¯
L2, H̄2), h1(s1) ∈ (c∗1(s2), d

∗
1(s2)). That is, h1 satisfies part (ii).

Let s1 ≡ h1(s2) ∈ (
¯
L1, H̄1). Then, (A.1) can be written as

h1(s2) =
h2(s1)− c∗2(s1)

d∗2(s1)− c∗2(s1)
d∗1(s2) +

d∗2(s1)− h2(s1)

d∗2(s1)− c∗2(s1)
c∗1(s2).

Because
h2(s1)−c∗2(s1)

d∗2(s1)−c∗2(s1)
∈ (0, 1) by Step 4, we immediately know h1(s2) ∈ (c∗1(s2), d

∗
1(s2)).

This completes the proof.

Online Appendix B Proof of Theorem 3

Proof of Theorem 3. For notational simplicity, we write a∗i (si, s−i) for σ
ϕ
i (si, s−i). The

goal is to show that a∗ ≡ (a∗1, a
∗
2) solves the following problem, which is equivalent to

(1) by the standard envelope theorem argument:

max
(a1,a2)

∫∫ (
u0(a1(s1, s2), a2(s1, s2)) +

∑
i

ui(ai(si, s−i), si)
)
f1(s1)f2(s2) ds1ds2,

(B.1)

subject to:

siai(si, s−i)−
ai(si, s−i)

2

2
=

∫ si

0

ai(s̃i, s−i)ds̃i −
ai(0, s−i)

2

2
, ∀i, si, s−i,

ai(si, s−i) is increasing in si, ∀i, s−i.
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Define the following (cumulative) Lagrange multiplier:

Λi(si, s−i) =


f−i(s−i)(1− κiFi(si)), si ∈ [0,

¯
ϕi(s−i)],

f−i(s−i)(1− ∂wi

∂ai
(si, si, s−i)fi(si)), si ∈ (

¯
ϕi(s−i), ϕ̄i(s−i)),

f−i(s−i)(1 + κi(1− Fi(si))), si ∈ [ϕ̄i(s−i), 1].

We argue that, for every s−i, the following function is increasing in si:

Λi(si, s−i) + κif−i(s−i)Fi(si)

=


f−i(s−i), si ∈ [0,

¯
ϕi(s−i)],

f−i(s−i)(1 + κiFi(si)− ∂wi

∂ai
(si, si, s−i)fi(si)), si ∈ (

¯
ϕi(s−i), ϕ̄i(s−i)),

f−i(s−i)(1 + κi), si ∈ [ϕ̄i(s−i), 1],

Clearly, it is increasing over [0,
¯
ϕi(s−i)] and [ϕ̄i(s−i), 1]. By condition C1, it is also

increasing over [
¯
ϕi(s−i), ϕ̄i(s−i)]. Hence, to show that it is increasing over [0, 1], it

suffices to verify the following two inequalities:

κiFi(
¯
ϕi(s−i)) ≥

∂wi

∂ai
(
¯
ϕi(s−i),

¯
ϕi(s−i), s−i)fi(

¯
ϕi(s−i)), (B.2)

κi(1− Fi(ϕ̄i(s−i))) ≥ −∂wi

∂ai
(ϕ̄i(s−i), ϕ̄i(s−i), s−i)fi(ϕ̄i(s−i)). (B.3)

If
¯
ϕi(s−i) = 0, (B.2) is directly implied by condition C2′. If

¯
ϕi(s−i) > 0, we know

from condition C2 that

g(si) = (si−
¯
ϕi(s−i))κiFi(si)−

∫ si

0

∂wi

∂ai
(
¯
ϕi(s−i), s̃i, s−i)fi(s̃i)ds̃i ≤ 0, ∀si ∈ [0,

¯
ϕi(s−i)],

with equality at
¯
ϕi(s−i). This implies that g′(

¯
ϕi(s−i)) ≥ 0. Equivalently, (B.2) holds.

Using conditions C3 and C3′, we can similarly verify that (B.3) also holds.

For every s−i, being the difference of two increasing functions, Λi(si, s−i) as a

function of si has bounded variation. As a result, it induces a well-defined (signed)

measure Λi(dsi, s−i) over [0, 1]. Let

Φ ≡ {direct mechanism (a1, a2) | ai(si, s−i) is increasing in si}.

Define the Lagrangian function L : Φ → R as, for every a ∈ Φ,

L(a) ≡
∫∫ (

u0(a1(s1, s2), a2(s1, s2)) +
∑
i

ui(ai(si, s−i), si)
)
f1(s1)f2(s2) ds1ds2

−
∑
i

∫∫ (∫ si

0
ai(s̃i, s−i)ds̃i −

ai(0, s−i)
2

2
− siai(si, s−i) +

ai(si, s−i)
2

2

)
Λi(dsi, s−i)ds−i
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In what follows, we proceed to show that a∗ solves

max
a∈Φ

L(a), (B.4)

which is sufficient for a∗ to be a solution to (B.1).

Step 1: L is concave.

Note that for all s−i,∫ 1

0

(∫ si

0

ai(s̃i, s−i)ds̃i

)
Λi(dsi, s−i) =

∫ 1

0

ai(si, s−i)
(
Λi(1, s−i)− Λi(si, s−i)

)
dsi,∫ 1

0

−ai(0, s−i)
2

2
Λi(dsi, s−i) = −ai(0, s−i)

2

2
(Λi(1, s−i)− Λi(0, s−i)) = 0,

where the last equality comes from the construction of Λi. Hence, L(a) can be

rewritten as

L(a) =
∫∫ (

u0(a(s))f1(s1)f2(s2)−
∑
i

ai(s)(Λi(1, s−i)− Λi(si, s−i))
)
ds1ds2

+
∑
i

∫ 1

0

∫ 1

0

ui(ai(s), si)f1(s1)f2(s2)ds1ds2

+
∑
i

∫ 1

0

∫ 1

0

(
siai(s)−

ai(s)
2

2

)
Λi(dsi, s−i)ds−i

=

∫∫ (
u0(a(s))f1(s1)f2(s2)−

∑
i

ai(s)(Λi(1, s−i)− Λi(si, s−i))
)

︸ ︷︷ ︸
A(a,s)

ds1ds2 (B.5)

+
∑
i

∫ 1

0

∫ 1

0

(
ui(ai(s), si)− κisiai(s) + κi

ai(s)
2

2

)
︸ ︷︷ ︸

Bi(a,s)

f1(s1)f2(s2)ds1ds2 (B.6)

+
∑
i

∫ 1

0

∫ 1

0

(
siai(s)−

ai(s)
2

2

)
︸ ︷︷ ︸

Ci(a,s)

(Λi(dsi, s−i) + κif−i(s−i)Fi(dsi))ds−i, (B.7)

where the second equality is obtained by simultaneously adding and subtracting the

term
∑

i

∫ 1

0

∫ 1

0

(
κisiai(si, s−i) − κi

ai(si,s−i)
2

2

)
f1(s1)f2(s2)ds1ds2. For any s, A(a, s) is

concave in a because u0 is concave. Hence, the integral in (B.5) is concave in a.

For each i and s, Bi(a, s) is also concave in a by the definition of κi. Hence, the

term in (B.6) is concave in a. For any i and s, Ci(a, s) is concave in a. Because we

have already shown that Λi(si, s−i)+κif−i(s−iFi(si)) is increasing in si, Λi(dsi, s−i)+

κif−i(s−iFi(dsi)) is in fact a positive measure. Hence, the term in (B.7) is also concave

in a. Being the sum of functionals that are concave in a, L is also concave in a.
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Step 2: For every a ∈ Φ, limα→0
L(αa+(1−α)a∗)−L(a∗)

α
≤ 0.

For each a ∈ Φ, using the expression of L(a) in the previous step, we can directly

calculate the Gateaux derivative30

∂L(a) ≡ lim
α→0

L(a∗ + αa)− L(a∗)
α

=
∑
i

∫∫ (∂wi

∂ai
(a∗i (s), s)f1(s1)f2(s2)− (Λi(1, s−i)− Λi(s))

)
ai(s)ds1ds2

+
∑
i

∫∫ (
si − a∗i (s)

)
ai(s)Λi(dsi, s−i)ds−i

Recall that

Λi(1, s−i)− Λi(si, s−i) =


κiFi(si)f−i(s−i), if si ∈ [0,

¯
ϕi(s−i)],

∂wi

∂ai
(si, si, s−i)fi(si)f−i(s−i), if si ∈ (

¯
ϕi(s−i), ϕ̄i(s−i)),

−κi(1− Fi(si))f−i(s−i), if si ∈ [ϕ̄i(s−i), 1],

and

a∗i (s) =


¯
ϕi(s−i), if si ∈ [0,

¯
ϕi(s−i)],

si, if si ∈ (
¯
ϕi(s−i), ϕ̄i(s−i)),

ϕ̄i(s−i), if si ∈ [ϕ̄i(s−i), 1].

Hence, we can simplify the expression of ∂L(a) to

∂L(a)

=
∑
i

∫ 1

0

[ ∫
¯
ϕi(s−i)

0

(∂wi

∂ai
(
¯
ϕi(s−i), s)fi(si)− κiFi(si)− κi(si −

¯
ϕi(s−i))fi(si)

)
ai(s)dsi︸ ︷︷ ︸

ℓi(a,s−i)

]
dF−i

+
∑
i

∫ 1

0

[ ∫ 1

ϕ̄i(s−i)

(∂wi

∂ai
(ϕ̄i(s−i), s)fi(si) + κi(1− Fi(si))− κi(si − ϕ̄i(s−i))fi(si)

)
ai(s)dsi︸ ︷︷ ︸

hi(a,s−i)

]
dF−i.

30 Let f : [0, 1]2 → R be a continuously differentiable function, and µ be a finite measure over

[0, 1]2. Then,

lim
α→0

∫
[0,1]2

f(a∗(s) + αa(s))µ(ds)−
∫
[0,1]2

f(a∗(s))µ(ds)

α

=

∫
[0,1]2

lim
α→0

f(a∗(s) + αa(s))− f(a∗(s))

α
µ(ds)

=

∫
[0,1]2

(∑
i

∂f

∂ai
(a∗(s))ai(s)

)
µ(ds),

where the first equality comes from interchanging the order of limit and integration. This is guar-

anteed by the bounded convergence theorem.
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Consider ℓi(a, s−i) first. Using the fact that ai(s) is increasing in si, we can also

write ai(s) = ai(
¯
ϕi(s−i), s−i) −

∫
[si,

¯
ϕi(s−i))

ai(dsi, s−i). Plugging this expression into

ℓi(a, s−i), we obtain

ℓi(a, s−i)

=ai(
¯
ϕi(s−i), s−i)

∫
¯
ϕi(s−i)

0

(∂wi

∂ai
(
¯
ϕi(s−i), s)fi(si)− κiFi(si)− κi(si −

¯
ϕi(s−i))fi(si)

)
dsi

−
∫
[0,

¯
ϕi(s−i))

[ ∫ si

0

(∂wi

∂ai
(
¯
ϕi(s−i), s̃)fi(s̃i)− κiFi(s̃i)− κi(s̃i −

¯
ϕi(s−i))fi(s̃i)

)
ds̃i

]
ai(dsi, s−i)

=ai(
¯
ϕi(s−i), s−i)

∫
¯
ϕi(s−i)

0

∂wi

∂ai
(
¯
ϕi(s−i), s)fi(si)dsi

−
∫
[0,

¯
ϕi(s−i))

[ ∫ si

0

∂wi

∂ai
(
¯
ϕi(s−i), s̃)fi(s̃i)ds̃i − κi(si −

¯
ϕi(s−i))Fi(si)

]
ai(dsi, s−i)

=−
∫
[0,

¯
ϕi(s−i))

[ ∫ si

0

∂wi

∂ai
(
¯
ϕi(s−i), s̃)fi(s̃i)ds̃i − κi(si −

¯
ϕi(s−i))Fi(si)

]
ai(dsi, s−i), (B.8)

where the first equality comes from changing the order of integration. The second

equality comes from, for all si,
∫ si
0
(s̃i −

¯
ϕi(s−i))fi(s̃i)ds̃i = (si −

¯
ϕi(s−i))Fi(si) −∫ si

0
Fi(s̃i)ds̃i. The third inequality comes from

∫
¯
ϕi(s−i)

0
∂wi

∂ai
(
¯
ϕi(s−i), si, s−i)fi(si)dsi = 0

by condition C2. By condition C2 again, we know the term in the square bracket in

(B.8) is nonnegative. This implies that ℓi(a, s−i) ≤ 0. But notice that a∗i (si, s−i) is

constant over si ∈ [0,
¯
ϕi(s−i)]. Therefore, ℓi(a

∗, s−i) = 0.

Using a similar argument and condition C3, we can also show that hi(a, s−i) ≤ 0

and hi(a
∗, s−i) = 0. Therefore, we know ∂L(a) ≤ 0 for all a ∈ Φ and ∂L(a∗) = 0.

Finally, using a similar argument as in the calculation of ∂L(a) (see footnote 30),
we can calculate

lim
α→0

L(αa+ (1− α)a∗)− L(a∗)
α

= ∂L(a)− ∂L(a∗) ≤ 0.

Step 3: a∗ solves (B.4).

Suppose not. There exists a ∈ Φ such that L(a) > L(a∗). By concavity from

Step 1, L(αa + (1 − α)a∗) ≥ αL(a) + (1 − α)L(a∗) for all α ∈ (0, 1). Equiva-

lently, L(αa+(1−α)a∗)−L(a∗)
α

≥ L(a) − L(a∗) for all α ∈ (0, 1). Letting α go to 0 yields

limα→0
L(αa+(1−α)a∗)−L(a∗)

α
≥ L(a)− L(a∗) > 0, contradicting Step 2. Therefore, a∗ is

a solution to (B.4), completing the proof.
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Online Appendix C Proofs for Section 4

Proof of Proposition 2. We first verify that all the conditions needed in Theorem 2

are satisfied. For this, we only verify condition U1. All other conditions are straight-

forward.

We continue to use notation
¯
gi(x, s−i) and ḡi(x, s−i) defined in the proof of Lemma

3. Moreover, for notational simplicity, let λ̃i =
λi

λ0
for i = 1, 2. Consider

¯
gi(x, s−i). It

is easy to calculate that

∂
¯
gi(x, s−i)

∂x
= −2

∫ x

0

λ̃iFi(si)dsi − 2Fi(x)(x− s−i),

∂2
¯
gi(x, s−i)

∂x2
= 2Fi(x)

[
fi(x)

Fi(x)
(s−i − x)− (λ̃i + 1)

]
.

When s−i = 0,
∂2

¯
gi(x,0)

∂x2 < 0 for x ∈ (0, 1]. Therefore,
¯
gi is strictly concave and

hence strictly quasi-concave. Assume s−i > 0. Let θ(x) ≡ fi(x)
Fi(x)

(s−i − x) − (λ̃i + 1).

Because fi
Fi

is decreasing by Lemma 16, θ is strictly decreasing over (0, s−i]. Because

limx↓0
fi(x)
Fi(x)

= +∞ by Lemma 16 again, we know limx↓0 θ(x) = +∞. Moreover,

because θ(s−i) < 0, we know there exists x′ ∈ (0, s−i) such that θ is positive over

(0, x′) and negative over (x′, s−i). Clearly, θ is also negative over [s−i, 1]. Therefore,

over the interval (0, 1),
∂2

¯
gi( · ,s−i)

∂x2 single-crosses the x-axis from above, implying that

¯
gi( · , s−i) is strictly quasi-concave. We can similarly show that ḡi( · , s−i) is strictly

quasi-concave.

From the proof of Lemma 3, we know that c∗i (s−i) = argmaxx∈[0,1]
¯
gi(x, s−i).

Observe that
∂
¯
gi(0,s−i)

∂x
= 0 for all s−i. When s−i = 0, the above analysis implies that

∂
¯
gi(x,s−i)

∂x
< 0 for x > 0. Therefore, c∗i (0) = 0. When si > 0, the above analysis implies

that c∗i (s−i) > 0 and satisfies the first order condition

∂
¯
gi(c

∗
i (s−i), s−i)

∂x
= −2

∫ c∗i (s−i)

0

λ̃iFi(si)dsi − 2Fi(c
∗
i (s−i))(c

∗
i (s−i)− s−i) = 0,

or equivalently

c∗i (s−i) = s−i − λ̃i

∫ c∗i (s−i)

0
Fi(si)dsi

Fi(c∗i (s−i))
< s−i. (C.1)

Similarly, we can show that d∗i (1) = 1. When s−i < 1, we have d∗i (s−i) < 1 and is

determined by

d∗i (s−i) = s−i + λ̃i

∫ 1

d∗i (s−i)
(1− Fi(si))dsi

1− Fi(d∗i (s−i))
> s−i. (C.2)

This completes the proof.
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Propositions 3 and 4 are built on the next two simple lemmas. Lemma C.1 is a

technical result about log-concavity. It strengthens some of the results in Lemma 16.

Lemma C.1. If fi is log-concave, both si 7→
∫ si
0
Fi(s

′
i)ds

′
i and si 7→

∫ 1

si
(1−Fi(s

′
i))ds

′
i

are strictly log-concave. Therefore, Fi(si)∫ si
0 Fi(s′i)ds

′
i

is strictly decreasing and 1−Fi(si)∫ 1
si
(1−Fi(s′i))ds

′
i

is strictly increasing.

Proof. We only show that si 7→
∫ 1

si
(1 − F (s′i))ds

′
i is strictly log-concave. The other

one is similar. Consider any si ∈ (0, 1). By part (i) in Lemma 16, we know there

exists s′′i ∈ (si, 1) such that

fi(si)

1− Fi(si)
≤ fi(s

′
i)

1− Fi(s′i)
, ∀s′i ∈ (si, 1),

with strictly inequality when s′i ∈ (s′′i , 1). This implies

fi(si)

1− Fi(si)

∫ 1

si

(1− Fi(s
′
i))ds

′
i <

∫ 1

si

fi(s
′
i)

1− Fi(s′i)
(1− Fi(s

′
i))ds

′
i = 1− Fi(si),

which in turn implies[
log

∫ 1

si

(1− Fi(s
′
i))ds

′
i

]′′
=
fi(si)

∫ 1

si
(1− Fi(s

′
i))ds

′
i − (1− Fi(si))

2(∫ 1

si
(1− Fi(s′i))ds

′
i

)2 < 0.

Therefore,
∫ 1

si
(1− Fi(s

′
i))ds

′
i is strictly log-concave.

Lemma C.2 below shows the monotone comparative statics of agents’ unilaterally

constrained delegation rules with respect to the parameters. Denote by (c∗i,λ0,λi
, d∗i,λ0,λi

)

the unilaterally constrained delegation rule for agent i when the importance of coor-

dination is λ0 and that of his adaptation is λi.
31

Lemma C.2. For any s−i ∈ (0, 1), c∗i,λ0,λi
(s−i) is strictly increasing in λ0 and strictly

decreasing in λi; d
∗
i,λ0,λi

(s−i) is strictly decreasing in λ0 and strictly increasing in λi.

Proof of Lemma C.2. For example, assume λ̄i >
¯
λi. Pick any s−i ∈ (0, 1). For

notational simplicity, let
¯
c = c∗i,λ0,

¯
λi
(s−i) and c̄ = c∗

i,λ0,λ̄i
(s−i). By (C.1), we have

¯
c+ ¯

λi
λ0

∫
¯
c

0
Fi(si)dsi

Fi(
¯
c)

= c̄+
λ̄i
λ0

∫ c̄

0
Fi(si)dsi

Fi(c̄)
> c̄+ ¯

λi
λ0

∫ c̄

0
Fi(si)dsi

Fi(c̄)
.

31The unilaterally constrained delegation rule for agent i does not depend on the importance of

agent −i’s adaptation.

59



Because c 7→ c + ¯
λi

λ0

∫ c
0 Fi(si)dsi

Fi(c)
is strictly increasing by Lemma C.1, we know

¯
c > c̄.

This proves that c∗i,λ0,λi
(s−i) is strictly decreasing in λi. The same argument can be

applied to show that c∗i,λ0,λi
(s−i) is strictly increasing in λ0. The proof for d∗i,λ0,λi

is

analogous.

Proof of Proposition 3. Let (ϕ∗
1,λ0

, ϕ∗
2,λ0

) be the principal’s optimal contingent dele-

gation when the importance of coordination to her is λ0. For any s−i, We show that

¯
ϕ∗
i,λ0

(s−i) is increasing while ϕ̄∗
i,λ0

(s−i) is decreasing in λ0, for both i = 1, 2. For no-

tational simplicity, we suppress λi from the previous notation c∗i,λ0,λi
and d∗i,λ0,λi

, and

directly write c∗i,λ0
and d∗i,λ0

.

Consider 0 <
¯
λ0 < λ̄0 < ∞. We show ϕ̄∗

1,λ̄0
≤ ϕ̄∗

1,
¯
λ0

and
¯
ϕ∗
2,λ̄0

≥
¯
ϕ∗
2,
¯
λ0
. The

proof is most easily understood by looking at Figure C.1. Let (L̄1,λ0 , ¯
H2,λ0) be the

intersection of d∗1,λ0
and c∗2,λ0

for λ0 ∈ {
¯
λ0, λ̄0}. By Lemma C.2, we know d∗

1,λ̄0
≤ d∗1,

¯
λ0

and c∗
2,λ̄0

≥ c∗2,
¯
λ0
. Hence in Figure C.1, (L̄1,

¯
λ0 , ¯

H2,
¯
λ0) can only appear in one of the

regions i, i, or iii .

c∗
2,λ̄0

d∗
1,λ̄0

L̄1,λ̄0

¯
H2,λ̄0

i

ii

iii

Figure C.1: Graph for the proof of Proposition 3

We claim that, in fact, (L̄1,
¯
λ0 , ¯

H2,
¯
λ0) can only be in region iii. To see this, note

that c∗2,λ0
(d∗1,λ0

(
¯
H2,λ0)) =

¯
H2,λ0 , for λ0 ∈ {

¯
λ0, λ̄0}. Using (C.1), (C.2), and the fact

d∗1,λ0
(
¯
H2,λ0) = ¯

L1,λ0 , we know

0 =
λ2

¯
λ0

∫ 1

L̄1,
¯
λ0
(1− F1(s1))ds1

1− F1(L̄1,
¯
λ0)

− λ1

¯
λ0

∫
¯
H2,

¯
λ0

0 F2(s2)ds2
F2(

¯
H2,

¯
λ0)

=
λ2
λ̄0

∫ 1

L̄1,λ̄0

(1− F1(s1))ds1

1− F1(L̄1,λ̄0
)

− λ1
λ̄0

∫
¯
H2,λ̄0
0 F2(s2)ds2
F2(

¯
H2,λ̄0

)
.
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Because x 7→
∫ 1
x (1−F1(s1))ds1

1−F1(x)
is strictly decreasing and x 7→

∫ x
0 F2(s2)ds2

F2(x)
is strictly in-

creasing by Lemma C.1, it is easy to see from the above equation that we can have

neither L̄1,
¯
λ0 ≤ L̄1,λ̄0

and
¯
H2,

¯
λ0 < ¯

H2,λ̄0
, nor L̄1,

¯
λ0 > L̄1,λ̄0

and
¯
H2,

¯
λ0 ≥ H̄2,

¯
λ0 . In other

words, (L̄1,
¯
λ0 , ¯

H2,
¯
λ0) can be in neither region i nor region ii.

Therefore, (L̄1,
¯
λ0 , ¯

H2,
¯
λ0) is in region iii. Equivalently, L̄1,

¯
λ0 ≥ L̄1,λ̄0

and
¯
H2,

¯
λ0 ≤

¯
H2,λ̄0

. For any s2 ∈ [0, 1), we then have

ϕ̄∗
1,
¯
λ0
(s1) = max{d∗1,

¯
λ0
(s1), L̄1,

¯
λ0} ≥ max{d∗1,λ̄0

(s1), L̄1,λ̄0
} = ϕ̄∗

1,λ̄0
(s1).

Similarly, for any s1 ∈ (0, 1], we have

¯
ϕ∗
2,
¯
λ0
(s2) = min{c∗2,

¯
λ0
(s2),

¯
H2,

¯
λ0} ≤ min{c∗2,λ̄0

(s2),
¯
H2,λ̄0

} =
¯
ϕ∗
2,λ̄0

(s2).

Figure C.2 gives an illustration.

c∗
1,λ̄0

d∗
1,λ̄0

c∗1,
¯
λ0

d∗1,
¯
λ0

c
∗
2,̄λ

0

d
∗
2,̄λ

0

c∗2, ¯λ
0

d
∗
2, ¯
λ0

(a) (c∗i , d
∗
i )

¯
ϕ∗
1,λ̄0

¯
ϕ∗
1,
¯
λ0

ϕ̄∗
1,λ̄0

ϕ̄∗
1,
¯
λ0

(b) ϕ∗1

ϕ̄∗
2,λ̄0

¯
ϕ∗
2,λ̄0

ϕ̄∗
2,
¯
λ0

¯
ϕ∗
2,
¯
λ0

(c) ϕ∗2

Figure C.2: Importance of coordination and optimal discretion: λ̄0 >
¯
λ0

Proof of Proposition 4. It is a direct implication of Lemma C.2. See Figure C.3 for

an illustration.

Proposition 5 is a direct implication of Lemma C.3 below. Denote by (c∗i,fi , d
∗
i,fi

)

i’s unilaterally coordinated delegation rule when his state distribution is fi.

Lemma C.3. Suppose 0 < λi < ∞. Consider two densities
¯
fi and f̄i of agent i’s

state distribution. If the likelihood ratio f̄i/
¯
fi is (strictly) increasing, then c

∗
i,f̄i

(s−i) ≥
(>) c∗i,

¯
fi
(s−i) and d

∗
i,f̄i

(s−i) ≥ (>) d∗i,
¯
fi
(s−i) for all s−i ∈ (0, 1).

Proof of Lemma C.3. Let F̄i and
¯
Fi be the c.d.f’s of f̄i and

¯
fi respectively. Because

f̄i and
¯
fi satisfy the (strict) MLRP, we know that, for all c, d ∈ (0, 1),32∫ c

0
F̄i(si)dsi

F̄i(c)
≤ (<)

∫ c

0 ¯
Fi(si)dsi

¯
Fi(c)

and

∫ 1

d
(1− F̄i(si))dsi

1− F̄i(si)
≥ (>)

∫ 1

d
(1−

¯
Fi(si))dsi

1−
¯
Fi(si)

.

32See, for example, Theorem 1.C.1 in Shaked and Shanthikumar (2007).
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c∗1

d∗1

c∗2,
¯
λ2

d∗2,
¯
λ2

c∗
2,λ̄2

d∗
2,λ̄2

(a) (c∗i , d
∗
i )

¯
ϕ∗
1,
¯
λ2

¯
ϕ∗
1,λ̄2

ϕ̄∗
1,
¯
λ2

ϕ̄∗
1,λ̄2

(b) ϕ∗1

¯
ϕ∗
2,
¯
λ2

ϕ̄∗
2,
¯
λ2

¯
ϕ∗
2,λ̄2

ϕ̄∗
2,λ̄2

(c) ϕ∗2

Figure C.3: Relative importance and optimal discretion: λ̄2 >
¯
λ2

Consider s−i ∈ (0, 1). Let
¯
c = c∗i,

¯
fi
(s−i) and c̄ = c∗

i,f̄i
(s−i). By (C.1), we have

¯
c+

λi
λ0

∫
¯
c

0 ¯
Fi(si)dsi

¯
Fi(

¯
c)

= c̄+
λi
λ0

∫ c̄

0
F̄i(si)dsi

F̄i(c̄)
≤ (<) c̄+

λi
λ0

∫ c̄

0 ¯
Fi(si)dsi

¯
Fi(c̄)

.

Again, because c 7→ c+ λi

λ0

∫ c
0 ¯
Fi(si)dsi

¯
Fi(c)

is strictly increasing, we know
¯
c ≤ (<) c̄. Figure

C.4 provides an illustration.

c∗1

d∗1

c∗2,
¯
f2

d∗2,
¯
f2

c∗
2,f̄2

d∗
2,f̄2

(a) (c∗i , d
∗
i )

¯
ϕ∗
1,
¯
f2

¯
ϕ∗
1,f̄2

ϕ̄∗
1,f̄2

ϕ̄∗
1,
¯
f2

(b) ϕ∗1

¯
ϕ∗
2,f̄2

ϕ̄∗
2,
¯
f2

¯
ϕ∗
2,
¯
f2

ϕ̄∗
2,f̄2

(c) ϕ∗2

Figure C.4: State distribution and optimal discretion: f̄2/
¯
f2 is increasing
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