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SPX volatility smiles as of 15-Sep-2005

Figure 1: SVI fit superimposed on smiles.
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The SPX volatility surface as of 15-Sep-2005

Figure 2: The SPX volatility surface as of 15-Sep-2005 (Figure 3.2 of
The Volatility Surface).
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Interpreting the smile

We could say that the volatility smile (at least in equity
markets) reflects two basic observations:

Volatility tends to increase when the underlying price falls,

hence the negative skew.

We don’t know in advance what realized volatility will be,

hence implied volatility is increasing in the wings.

It’s implicit in the above that more or less any model that is
consistent with these two observations will be able to fit one
given smile.

Fitting two or more smiles simultaneously is much harder.

Heston for example fits a maximum of two smiles
simultaneously.
SABR can only fit one smile at a time.
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Term structure of at-the-money skew

What really distinguishes between models is how the
generated smile depends on time to expiration.

In particular, their predictions for the term structure of ATM
volatility skew defined as

ψ(τ) :=

∣∣∣∣ ∂∂k σBS(k , τ)

∣∣∣∣
k=0

.
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Term structure of SPX ATM skew as of 15-Sep-2005

Figure 3: Term structure of ATM skew as of 15-Sep-2005, with power
law fit τ−0.44 superimposed in red.
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Stylized facts

Although the levels and orientations of the volatility surfaces
change over time, their rough shape stays very much the
same.

It’s then natural to look for a time-homogeneous model.

The term structure of ATM volatility skew

ψ(τ) ∼ 1

τα

with α ∈ (0.3, 0.5).
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Motivation for Rough Volatility I: Better fitting stochastic
volatility models

Conventional stochastic volatility models generate volatility
surfaces that are inconsistent with the observed volatility
surface.

In stochastic volatility models, the ATM volatility skew is
constant for short dates and inversely proportional to T for
long dates.
Empirically, we find that the term structure of ATM skew is
proportional to 1/Tα for some 0 < α < 1/2 over a very wide
range of expirations.

The conventional solution is to introduce more volatility
factors, as for example in the DMR and Bergomi models.

One could imagine the power-law decay of ATM skew to be
the result of adding (or averaging) many sub-processes, each
of which is characteristic of a trading style with a particular
time horizon.
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Bergomi Guyon

Define the forward variance curve ξt(u) = E [vu| Ft ].

According to [Bergomi and Guyon], in the context of a
variance curve model, implied volatility may be expanded as

σBS(k ,T ) = σ0(T ) +

√
w

T

1

2w2
C x ξ k + O(η2) (1)

where η is volatility of volatility, w =
∫ T

0 ξ0(s) ds is total
variance to expiration T , and

C x ξ =

∫ T

0
dt

∫ T

t
du

E [dxt dξt(u)]

dt
. (2)

Thus, given a stochastic model, defined in terms of an SDE,
we can easily (at least in principle) compute this smile
approximation.
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The Bergomi model

The n-factor Bergomi variance curve model reads:

ξt(u) = ξ0(u) exp

{
n∑

i=1

ηi

∫ t

0
e−κi (t−s) dW

(i)
s + drift

}
.

(3)

To achieve a decent fit to the observed volatility surface, and
to control the forward smile, we need at least two factors.

In the two-factor case, there are 8 parameters.

When calibrating, we find that the two-factor Bergomi model
is already over-parameterized. Any combination of parameters
that gives a roughly 1/

√
T ATM skew fits well enough.
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ATM skew in the Bergomi model

The Bergomi model generates a term structure of volatility
skew ψ(τ) that is something like

ψ(τ) =
∑

i

1

κi τ

{
1− 1− e−κi τ

κi τ

}
.

This functional form is related to the term structure of the
autocorrelation function.
Which is in turn driven by the exponential kernel in the
exponent in (3).

The observed ψ(τ) ∼ τ−α for some α.

It’s tempting to replace the exponential kernels in (3) with a
power-law kernel.
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Tinkering with the Bergomi model

This would give a model of the form

ξt(u) = ξ0(u) exp

{
η

∫ t

0

dWs

(t − s)γ
+ drift

}
which looks similar to

ξt(u) = ξ0(u) exp
{
ηWH

t + drift
}

where WH
t is fractional Brownian motion.
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Motivation for Rough Volatility II: Power-law scaling of the
volatility process

The Oxford-Man Institute of Quantitative Finance makes
historical realized variance (RV) estimates freely available at
http://realized.oxford-man.ox.ac.uk. These estimates
are updated daily.

Using daily RV estimates as proxies for instantaneous variance,
we may investigate the time series properties of vt empirically.

http://realized.oxford-man.ox.ac.uk
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SPX realized variance from 2000 to 2014

Figure 4: KRV estimates of SPX realized variance from 2000 to 2014.



Implied volatility Stochastic volatility Realized volatility The RFSV model Pricing Fitting SPX Forecasting

The smoothness of the volatility process

For q ≥ 0, we define the qth sample moment of differences of
log-volatility at a given lag ∆1:

m(q,∆) = 〈|log σt+∆ − log σt |q〉

For example

m(2,∆) = 〈(log σt+∆ − log σt)2〉

is just the sample variance of differences in log-volatility at the
lag ∆.

1〈·〉 denotes the sample average.
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Scaling of m(q,∆) with lag ∆

Figure 5: logm(q,∆) as a function of log ∆, SPX.
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Monofractal scaling result

From the log-log plot Figure 5, we see that for each q,
m(q,∆) ∝ ∆ζq .

Furthermore, we find the monofractal scaling relationship

ζq = q H

with H ≈ 0.14.

Note however that H does vary over time, in a narrow range.
Note also that our estimate of H is biased high because we
proxied instantaneous variance vt with its average over each

day 1
T

∫ T

0
vt dt, where T is one day.
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Distributions of (log σt+∆ − log σt) for various lags ∆

Figure 6: Histograms of (log σt+∆ − log σt) for various lags ∆; normal
fit in red; ∆ = 1 normal fit scaled by ∆0.14 in blue.
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Estimated H for all indices

Repeating this analysis for all 21 indices in the Oxford-Man dataset
yields:

Index ζ0.5/0.5 ζ1 ζ1.5/1.5 ζ2/2 ζ3/3
SPX2.rv 0.128 0.126 0.125 0.124 0.124
FTSE2.rv 0.132 0.132 0.132 0.131 0.127
N2252.rv 0.131 0.131 0.132 0.132 0.133
GDAXI2.rv 0.141 0.139 0.138 0.136 0.132
RUT2.rv 0.117 0.115 0.113 0.111 0.108
AORD2.rv 0.072 0.073 0.074 0.075 0.077
DJI2.rv 0.117 0.116 0.115 0.114 0.113
IXIC2.rv 0.131 0.133 0.134 0.135 0.137
FCHI2.rv 0.143 0.143 0.142 0.141 0.138
HSI2.rv 0.079 0.079 0.079 0.080 0.082
KS11.rv 0.133 0.133 0.134 0.134 0.132
AEX.rv 0.145 0.147 0.149 0.149 0.149
SSMI.rv 0.149 0.153 0.156 0.158 0.158
IBEX2.rv 0.138 0.138 0.137 0.136 0.133
NSEI.rv 0.119 0.117 0.114 0.111 0.102
MXX.rv 0.077 0.077 0.076 0.075 0.071
BVSP.rv 0.118 0.118 0.119 0.120 0.120
GSPTSE.rv 0.106 0.104 0.103 0.102 0.101
STOXX50E.rv 0.139 0.135 0.130 0.123 0.101
FTSTI.rv 0.111 0.112 0.113 0.113 0.112
FTSEMIB.rv 0.130 0.132 0.133 0.134 0.134

Table 1: Estimates of ζq for all indices in the Oxford-Man dataset.
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Universality?

[Gatheral, Jaisson and Rosenbaum] compute daily realized
variance estimates over one hour windows for DAX and Bund
futures contracts, finding similar scaling relationships.

We have also checked that Gold and Crude Oil futures scale
similarly.

Although the increments (log σt+∆ − log σt) seem to be fatter
tailed than Gaussian.
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A natural model of realized volatility

Distributions of differences in the log of realized volatility are
close to Gaussian.

This motivates us to model σt as a lognormal random variable.

Moreover, the scaling property of variance of RV differences
suggests the model:

log σt+∆ − log σt = ν
(
WH

t+∆ −WH
t

)
(4)

where WH is fractional Brownian motion.

In [Gatheral, Jaisson and Rosenbaum], we refer to a stationary
version of (4) as the RFSV (for Rough Fractional Stochastic
Volatility) model.
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Fractional Brownian motion (fBm)

Fractional Brownian motion (fBm) {WH
t ; t ∈ R} is the unique

Gaussian process with mean zero and autocovariance function

E
[
WH

t WH
s

]
=

1

2

{
|t|2 H + |s|2 H − |t − s|2 H

}
where H ∈ (0, 1) is called the Hurst index or parameter.

In particular, when H = 1/2, fBm is just Brownian motion.

If H > 1/2, increments are positively correlated.
If H < 1/2, increments are negatively correlated.
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Representations of fBm

There are infinitely many possible representations of fBm in terms
of Brownian motion. For example, with γ = 1

2 − H,

Mandelbrot-Van Ness

WH
t = CH

{∫ t

−∞

dWs

(t − s)γ
−
∫ 0

−∞

dWs

(−s)γ

}
.

where the choice

CH =

√
2H Γ(3/2− H)

Γ(H + 1/2) Γ(2− 2H)

ensures that

E
[
WH

t WH
s

]
=

1

2

{
t2H + s2H − |t − s|2H

}
.
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Comte and Renault: FSV model

[Comte and Renault] were perhaps the first to model volatility
using fractional Brownian motion.

In their fractional stochastic volatility (FSV) model,

dSt

St
= σt dZt

d log σt = −α (log σt − θ) dt + γ dŴH
t (5)

with

ŴH
t =

∫ t

0

(t − s)H−1/2

Γ(H + 1/2)
dWs , 1/2 ≤ H < 1

and E [dWt dZt ] = ρ dt.

The FSV model is a generalization of the Hull-White
stochastic volatility model.
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RFSV and FSV

The model (4):

log σt+∆ − log σt = ν
(
WH

t+∆ −WH
t

)
(6)

is not stationary.

Stationarity is desirable both for mathematical tractability and
also to ensure reasonableness of the model at very large times.

The RFSV model (the stationary version of (4)) is formally
identical to the FSV model. Except that

H < 1/2 in RFSV vs H > 1/2 in FSV.
αT � 1 in RFSV vs αT ∼ 1 in FSV

where T is a typical timescale of interest.
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FSV and long memory

Why did [Comte and Renault] choose H > 1/2?
Because it has been a widely-accepted stylized fact that the
volatility time series exhibits long memory.

In this technical sense, long memory means that the
autocorrelation function of volatility decays as a power-law.
One of the influential papers that established this was
[Andersen et al.] which estimated the degree d of fractional
integration from daily realized variance data for the 30 DJIA
stocks.

Using the GPH estimator, they found d around 0.35 which
implies that the ACF ρ(τ) ∼ τ 2 d−1 = τ−0.3 as τ →∞.

But every statistical estimator assumes the validity of some
underlying model!

In the RFSV model,

ρ(∆) ∼ exp

{
−η

2

2
∆2 H

}
.
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Correlogram and test of scaling

Figure 7: The LH plot is a conventional correlogram of RV; the RH plot
is of φ(∆) := 〈log

(
cov(σt+∆, σt) + 〈σt〉2

)
〉 vs ∆2 H with H = 0.14. The

RH plot again supports the scaling relationship m(2,∆) ∝ ∆2 H .
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Model vs empirical autocorrelation functions

Figure 8: Here we superimpose the RFSV functional form

ρ(∆) ∼ exp
{
−η

2

2 ∆2 H
}

(in red) on the empirical curve (in blue).
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Volatility is not long memory

It’s clear from Figures 7 and 8 that volatility is not long
memory.

Moreover, the RFSV model reproduces the observed
autocorrelation function very closely.

[Gatheral, Jaisson and Rosenbaum] further simulate volatility
in the RFSV model and apply standard estimators to the
simulated data.

Real data and simulated data generate very similar plots and
similar estimates of the long memory parameter to those
found in the prior literature.

The RSFV model does not have the long memory property.

Classical estimation procedures seem to identify spurious long
memory of volatility.
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Incompatibility of FSV with realized variance (RV) data

In Figure 9, we demonstrate graphically that long memory
volatility models such as FSV with H > 1/2 are not
compatible with the RV data.

In the FSV model, the autocorrelation function
ρ(∆) ∝ ∆2 H−2. Then, for long memory, we must have
1/2 < H < 1.

For ∆� 1/α, stationarity kicks in and m(2,∆) tends to a
constant as ∆→∞.
For ∆� 1/α, mean reversion is not significant and
m(2,∆) ∝ ∆2 H .



Implied volatility Stochastic volatility Realized volatility The RFSV model Pricing Fitting SPX Forecasting

Incompatibility of FSV with RV data

Figure 9: Black points are empirical estimates of m(2,∆); the blue line
is the FSV model with α = 0.5 and H = 0.53; the orange line is the
RFSV model with α = 0 and H = 0.14.
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Does simulated RSFV data look real?

Figure 10: Volatility of SPX (above) and of the RFSV model (below).
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Remarks on the comparison

The simulated and actual graphs look very alike.

Persistent periods of high volatility alternate with low volatility
periods.

H ∼ 0.1 generates very rough looking sample paths
(compared with H = 1/2 for Brownian motion).

Hence rough volatility.

On closer inspection, we observe fractal-type behavior.

The graph of volatility over a small time period looks like the
same graph over a much longer time period.

This feature of volatility has been investigated both empirically
and theoretically in, for example, [Bacry and Muzy].

In particular, their Multifractal Random Walk (MRW) is
related to a limiting case of the RSFV model as H → 0.
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Pricing under rough volatility

The foregoing behavior suggest the following model for volatility
under the real (or historical or physical) measure P:

log σt = νWH
t .

Let γ = 1
2 − H. We choose the Mandelbrot-Van Ness

representation of fractional Brownian motion WH as follows:

WH
t = CH

{∫ t

−∞

dWP
s

(t − s)γ
−
∫ 0

−∞

dWP
s

(−s)γ

}
where the choice

CH =

√
2H Γ(3/2− H)

Γ(H + 1/2) Γ(2− 2H)

ensures that

E
[
WH

t WH
s

]
=

1

2

{
t2H + s2H − |t − s|2H

}
.
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Pricing under rough volatility

Then

log vu − log vt

= ν CH

{∫ u

t

1

(u − s)γ
dWP

s +

∫ t

−∞

[
1

(u − s)γ
− 1

(t − s)γ

]
dWP

s

}
=: 2 ν CH [Mt(u) + Zt(u)] . (7)

Note that EP [Mt(u)| Ft ] = 0 and Zt(u) is Ft-measurable.

To price options, it would seem that we would need to know
Ft , the entire history of the Brownian motion Ws for s < t!
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Pricing under P

Let

W̃P
t (u) :=

√
2H

∫ u

t

dWP
s

(u − s)γ

With η := 2 ν CH/
√

2H we have 2 ν CH Mt(u) = η W̃P
t (u) so

denoting the stochastic exponential by E(·), we may write

vu = vt exp
{
ηW̃P

t (u) + 2 ν CH Zt(u)
}

= EP [vu| Ft ] E
(
η W̃P

t (u)
)
. (8)

The conditional distribution of vu depends on Ft only through
the variance forecasts EP [vu| Ft ],

To price options, one does not need to know Ft , the entire
history of the Brownian motion WP

s for s < t.
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Pricing under Q

Our model under P reads:

vu = EP [vu| Ft ] E
(
η W̃P

t (u)
)
. (9)

Consider some general change of measure

dWP
s = dWQ

s + λs ds,

where {λs : s > t} has a natural interpretation as the price of
volatility risk. We may then rewrite (9) as

vu = EP [vu| Ft ] E
(
η W̃Q

t (u)
)

exp

{
η
√

2H

∫ u

t

λs

(u − s)γ
ds

}
.

Although the conditional distribution of vu under P is
lognormal, it will not be lognormal in general under Q.

The upward sloping smile in VIX options means λs cannot be
deterministic in this picture.
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The rough Bergomi (rBergomi) model

Let’s nevertheless consider the simplest change of measure

dWP
s = dWQ

s + λ(s) ds,

where λ(s) is a deterministic function of s. Then from (38), we
would have

vu = EP [vu| Ft ] E
(
η W̃Q

t (u)
)

exp

{
η
√

2H

∫ u

t

1

(u − s)γ
λ(s) ds

}
= ξt(u) E

(
η W̃Q

t (u)
)

(10)

where the forward variances ξt(u) = EQ [vu| Ft ] are (at least in
principle) tradable and observed in the market.

ξt(u) is the product of two terms:
EP [vu| Ft ] which depends on the historical path {Ws , s < t}
of the Brownian motion
a term which depends on the price of risk λ(s).



Implied volatility Stochastic volatility Realized volatility The RFSV model Pricing Fitting SPX Forecasting

Features of the rough Bergomi model

The rBergomi model is a non-Markovian generalization of the
Bergomi model:

E [vu| Ft ] 6= E[vu|vt ].

The rBergomi model is Markovian in the (infinite-dimensional)
state vector EQ [vu| Ft ] = ξt(u).

We have achieved our aim of replacing the exponential kernels
in the Bergomi model (3) with a power-law kernel.

We may therefore expect that the rBergomi model will
generate a realistic term structure of ATM volatility skew.
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The stock price process

The observed anticorrelation between price moves and
volatility moves may be modeled naturally by anticorrelating
the Brownian motion W that drives the volatility process with
the Brownian motion driving the price process.

Thus
dSt

St
=
√
vt dZt

with
dZt = ρ dWt +

√
1− ρ2 dW⊥

t

where ρ is the correlation between volatility moves and price
moves.



Implied volatility Stochastic volatility Realized volatility The RFSV model Pricing Fitting SPX Forecasting

Simulation of the rBergomi model

We simulate the rBergomi model as follows:

Construct the joint covariance matrix for the Volterra process
W̃ and the Brownian motion Z and compute its Cholesky
decomposition.

For each time, generate iid normal random vectors and
multiply them by the lower-triangular matrix obtained by the
Cholesky decomposition to get a m × 2 n matrix of paths of
W̃ and Z with the correct joint marginals.

With these paths held in memory, we may evaluate the
expectation under Q of any payoff of interest.

This procedure is very slow!

Speeding up the simulation is work in progress.
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Guessing rBergomi model parameters

The rBergomi model has only three parameters: H, η and ρ.

If we had a fast simulation, we could just iterate on these
parameters to find the best fit to observed option prices. But
we don’t.

However, the model parameters H, η and ρ have very direct
interpretations:

H controls the decay of ATM skew ψ(τ) for very short
expirations
The product ρ η sets the level of the ATM skew for longer
expirations.
Keeping ρ η constant but decreasing ρ (so as to make it more
negative) pushes the minimum of each smile towards higher
strikes.

So we can guess parameters in practice.
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Parameter estimation from historical data

Both the roughness parameter (or Hurst parameter) H and the
volatility of volatility η should be the same under P and Q.

Earlier, using the Oxford-Man realized variance dataset, we
estimated the Hurst parameter Heff ≈ 0.14 and volatility of
volatility νeff ≈ 0.3.

However, we not observe the instantaneous volatility σt , only
1
δ

∫ δ
0 σ

2
t dt where δ is roughly 3/4 of a whole day from close

to close.

Using Appendix C of [Gatheral, Jaisson and Rosenbaum], we
rescale finding H ≈ 0.05 and ν ≈ 1.7.

Also, recall that

η = 2 ν
CH√
2H

= 2 ν

√
Γ(3/2− H)

Γ(H + 1/2) Γ(2− 2H)

which yields the estimate η ≈ 2.5.
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SPX smiles in the rBergomi model

In Figures 11 and 12, we show how well a rBergomi model
simulation with guessed parameters fits the SPX option
market as of February 4, 2010, a day when the ATM volatility
term structure happened to be pretty flat.

rBergomi parameters were: H = 0.07, η = 1.9, ρ = −0.9.

Only three parameters to get a very good fit to the whole SPX
volatility surface!
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rBergomi fits to SPX smiles as of 04-Feb-2010

Figure 11: Red and blue points represent bid and offer SPX implied
volatilities; orange smiles are from the rBergomi simulation.
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Shortest dated smile as of February 4, 2010

Figure 12: Red and blue points represent bid and offer SPX implied
volatilities; orange smile is from the rBergomi simulation.
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ATM volatilities and skews

In Figures 13 and 14, we see just how well the rBergomi model can
match empirical skews and vols. Recall also that the parameters
we used are just guesses!
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Term structure of ATM skew as of February 4, 2010

Figure 13: Blue points are empirical skews; the red line is from the
rBergomi simulation.
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Term structure of ATM vol as of February 4, 2010

Figure 14: Blue points are empirical ATM volatilities; the red line is
from the rBergomi simulation.
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Another date

Now we take a look at another date: August 14, 2013, two
days before the last expiration date in our dataset.

Options set at the open of August 16, 2013 so only one
trading day left.

Note in particular that the extreme short-dated smile is well
reproduced by the rBergomi model.

There is no need to add jumps!
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SPX smiles as of August 14, 2013

Figure 15: Red and blue points represent bid and offer SPX implied
volatilities; orange smiles are from the rBergomi simulation.
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The forecast formula

In the RFSV model (4), log vt ≈ 2 νWH
t + C for some

constant C .

[Nuzman and Poor] show that WH
t+∆ is conditionally Gaussian

with conditional expectation

E[WH
t+∆|Ft ] =

cos(Hπ)

π
∆H+1/2

∫ t

−∞

WH
s

(t − s + ∆)(t − s)H+1/2
ds

and conditional variance

Var[WH
t+∆|Ft ] = c ∆2H .

where

c =
Γ(3/2− H)

Γ(H + 1/2) Γ(2− 2H)
.
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The forecast formula

Thus, we obtain

Variance forecast formula

EP [vt+∆| Ft ] = exp
{
EP [ log(vt+∆)| Ft ] + 2 c ν2∆2 H

}
(11)

where

EP [ log vt+∆| Ft ]

=
cos(Hπ)

π
∆H+1/2

∫ t

−∞

log vs

(t − s + ∆)(t − s)H+1/2
ds.
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Forecasting the variance swap curve

For each of 2,658 days from Jan 27, 2003 to August 31, 2013:

We compute proxy variance swaps from closing prices of SPX
options sourced from OptionMetrics
(www.optionmetrics.com) via WRDS.

We form the forecasts EP [vu| Ft ] using (11) with 500 lags of
SPX RV data sourced from The Oxford-Man Institute of
Quantitative Finance
(http://realized.oxford-man.ox.ac.uk).

We note that the actual variance swap curve is a factor (of
roughly 1.4) higher than the forecast, which we may attribute
to overnight movements of the index.
Forecasts must therefore be rescaled to obtain close-to-close
realized variance forecasts.

www.optionmetrics.com
http://realized.oxford-man.ox.ac.uk
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The RV scaling factor

Figure 16: The LH plot shows actual (proxy) 3-month variance swap
quotes in blue vs forecast in red (with no scaling factor). The RH plot
shows the ratio between 3-month actual variance swap quotes and
3-month forecasts.
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The Lehman weekend

Empirically, it seems that the variance curve is a simple
scaling factor times the forecast, but that this scaling factor is
time-varying.

Recall that as of the close on Friday September 12, 2008, it
was widely believed that Lehman Brothers would be rescued
over the weekend. By Monday morning, we knew that
Lehman had failed.

In Figure 17, we see that variance swap curves just before and
just after the collapse of Lehman are just rescaled versions of
the RFSV forecast curves.
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Actual vs predicted over the Lehman weekend

Figure 17: SPX variance swap curves as of September 12, 2008 (red)
and September 15, 2008 (blue). The dashed curves are RFSV model
forecasts rescaled by the 3-month ratio (1.29) as of the Friday close.
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Remarks

We note that

The actual variance swaps curves are very close to the
forecast curves, up to a scaling factor.

We are able to explain the change in the variance swap curve
with only one extra observation: daily variance over the
trading day on Monday 15-Sep-2008.

The SPX options market appears to be backward-looking in a
very sophisticated way.
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The Flash Crash

The so-called Flash Crash of Thursday May 6, 2010 caused
intraday realized variance to be much higher than normal.

In Figure 18, we plot the actual variance swap curves as of the
Wednesday and Friday market closes together with forecast
curves rescaled by the 3-month ratio as of the close on
Wednesday May 5 (which was 2.52).

We see that the actual variance curve as of the close on
Friday is consistent with a forecast from the time series of
realized variance that includes the anomalous price action of
Thursday May 6.

In Figure 19 we see that the actual variance swap curve on
Monday, May 10 is consistent with a forecast that excludes
the Flash Crash.

Volatility traders realized that the Flash Crash should not
influence future realized variance projections.
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Around the Flash Crash

Figure 18: S&P variance swap curves as of May 5, 2010 (red) and May
7, 2010 (green). The dashed curves are RFSV model forecasts rescaled
by the 3-month ratio (2.52) as of the close on Wednesday May 5.
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The weekend after the Flash Crash

Figure 19: LH plot: The May 10 actual curve is inconsistent with a
forecast that includes the Flash Crash. RH plot: The May 10 actual
curve is consistent with a forecast that excludes the Flash Crash.
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Summary

We uncovered a remarkable monofractal scaling relationship in
historical volatility.

This leads to a natural non-Markovian stochastic volatility
model under P.

The simplest specification of dQ
dP gives a non-Markovian

generalization of the Bergomi model.

The history of the Brownian motion {Ws , s < t} required for
pricing is encoded in the forward variance curve, which is
observed in the market.

This model fits the observed volatility surface surprisingly well
with very few parameters.

For perhaps the first time, we have a simple consistent model
of historical and implied volatility.
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