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Our objective

Given a stochastic volatility model, no matter how
complicated, we can always compute the fair value of
derivative assets on the underlying.

Though the computation may be very complicated and
time-consuming.

We would like to be able to value derivative securities using
only market prices of European options.

This turns out to be possible for certain types of derivative
claim, notably variance, gamma, and covariance swaps.
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The implied volatility smile

The implied volatility σBS(k , τ) of an option (with
log-moneyness k and time to expiration τ) is the value of the
volatility parameter in the Black-Scholes formula required to
match the market price of that option.

Plotting implied volatility as a function of log-moneyness k
generates the volatility smile.

Plotting implied volatility as a function of both k and τ
generates the volatility surface, explored in detail in, for
example, [Gat06].



Stylized facts Spanning formula Variance swaps Weighted swaps Bergomi-Guyon Robust valuation Jumps

The SPX volatility surface as of 15-Sep-2005

We begin with the SPX volatility surface as of the close on
September 15, 2005.

Next morning is triple witching when options and futures set.

We will plot the volatility smiles, superimposing an SVI fit.

SVI stands for “stochastic volatility inspired”, a well-known
parameterization of the volatility surface.
We show in [GJ14] how to fit SVI to the volatility surface in
such a way as to guarantee the absence of static arbitrage.

We then interpolate the resulting SVI smiles to obtain and
plot the whole volatility surface.
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The March expiry smile as of 15-Sep-2005

Figure 1: The March expiry smile as of 15-Sep-2005.
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SPX volatility smiles as of 15-Sep-2005

Figure 2: SPX volatility smiles as of 15-Sep-2005.
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SPX volatility smiles as of 15-Sep-2005

Figure 3: SVI fit superimposed on smiles.
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The SPX volatility surface as of 15-Sep-2005

Figure 4: The March expiry smile as of 15-Sep-2005 – the SVI fit looks
OK!
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The SPX volatility surface as of 15-Sep-2005

Figure 5: The SPX volatility surface as of 15-Sep-2005 (Figure 3.2 of
The Volatility Surface).
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Modeling framework

Having shown that we have market prices for many strikes and
expirations, we will now assume that European options with
all possible strikes and expirations are traded.

We will further assume that there are no jumps in the
underlying.

Though later we will revisit this assumption, estimating the
impact of neglecting jumps.
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Spanning generalized European payoffs

We will now show formally that any twice-differentiable payoff
at time T may be statically hedged using a portfolio of
European options expiring at time T .
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Proof from [CM99]

The value of a claim with a generalized payoff g(ST ) at time T is
given by

g(ST ) =

∫ ∞
0

g(K ) δ(ST − K ) dK

=

∫ F

0
g(K ) δ(ST − K ) dK +

∫ ∞
F

g(K ) δ(ST − K ) dK

Integrating by parts gives

g(ST ) = g(F )−
∫ F

0
g ′(K ) θ(K − ST ) dK

+

∫ ∞
F

g ′(K ) θ(ST − K ) dK .
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... and integrating by parts again gives

g(ST ) =

∫ F

0
g ′′(K ) (K − ST )+ dK +

∫ ∞
F

g ′′(K ) (ST − K )+ dK

+g(F )− g ′(F )
[
(F − ST )+ − (ST − F )+

]
=

∫ F

0
g ′′(K ) (K − ST )+ dK +

∫ ∞
F

g ′′(K ) (ST − K )+ dK

+g(F ) + g ′(F ) (ST − F ). (1)

Then, with F = E[ST ],

E [g(ST )] = g(F ) +

∫ F

0
dK P̃(K ) g ′′(K ) +

∫ ∞
F

dK C̃ (K ) g ′′(K ).

(2)

Equation (1) shows how to build any curve using hockey-stick
payoffs (if g(·) is twice-differentiable).
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Remarks on spanning of European-style payoffs

From equation (1) we see that any European-style
twice-differentiable payoff may be replicated using a portfolio
of European options with strikes from 0 to ∞.

The weight of each option equal to the second derivative of
the payoff at the strike price of the option.

This portfolio of European options is a static hedge because
the weight of an option with a particular strike depends only
on the strike price and the form of the payoff function and not
on time or the level of the stock price.

Note further that equation (1) is completely
model-independent.
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Example: European options

In fact, using Dirac delta-functions, we can extend the above
result to payoffs which are not twice-differentiable.
For example with g(ST ) = (ST − L)+, g ′′(K ) = δ(K − L) and
equation (2) gives:

E
[
(ST − L)+

]
= (F − L)+ +

∫ F

0

dK P̃(K ) δ(K − L)

+

∫ ∞

F

dK C̃ (K ) δ(K − L)

=

{
(F − L) + P̃(L) if L < F

C̃ (L) if L ≥ F

= C̃ (L)

with the last step following from put-call parity as before.

The replicating portfolio for a European option is just the
option itself.
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Example: Amortizing options

A variation on the payoff of the standard European option is
given by the amortizing option with strike L with payoff

g(ST ) =
(ST − L)+

ST
.

Such options look particularly attractive when the volatility of
the underlying stock is very high and the price of a standard
European option is prohibitive.

The payoff is effectively that of a European option whose
notional amount declines as the option goes in-the-money.

Then,

g ′′(K ) =

{
− 2L

ST
3
θ(ST − L) +

δ(ST − L)

ST

}∣∣∣∣
ST=K

.
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Without loss of generality (but to make things easier),
suppose L > F .

Substituting into equation (2) gives

E
[

(ST − L)+

ST

]
=

∫ ∞
F

dK C̃ (K ) g ′′(K )

=
C̃ (L)

L
− 2L

∫ ∞
L

dK

K 3
C̃ (K )

We see that an Amortizing call option struck at L is equivalent
to a European call option struck at L minus an infinite strip of
European call options with strikes from L to ∞.
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The log contract

Now consider a contract whose payoff at time T is log(ST/F ).
Then g ′′(K ) = − 1/ST

2
∣∣
ST=K

and it follows from equation (2)
that

E
[

log

(
ST
F

)]
= −

∫ F

0

dK

K 2
P̃(K ) −

∫ ∞
F

dK

K 2
C̃ (K )

Rewriting this equation in terms of the log-strike variable
k := log (K/F ), we get the promising-looking expression

E
[

log

(
ST
F

)]
= −

∫ 0

−∞
dk p(k) −

∫ ∞
0

dk c(k) (3)

with

c(y) :=
C̃ (Fey )

Fey
; p(y) :=

P̃(Fey )

Fey

representing option prices expressed in terms of percentage of the
strike price.
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Variance swaps

Assume zero interest rates and dividends. Then F = S0 and
applying Itô’s Lemma, path-by-path

log

(
ST
F

)
= log

(
ST
S0

)
=

∫ T

0
d log (St)

=

∫ T

0

dSt
St
−
∫ T

0

σt
2

2
dt (4)

The second term on the RHS of equation (4) is immediately
recognizable as half the total variance (or quadratic variation)
WT := 〈x〉T over the interval [0,T ].
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The first term on the RHS represents the payoff of a hedging
strategy which involves maintaining a constant dollar amount
in stock (if the stock price increases, sell stock; if the stock
price decreases, buy stock so as to maintain a constant dollar
value of stock).

This trivial hedging strategy obviously does not depend on any
model.

Since the log payoff on the LHS can be hedged using a
portfolio of European options as noted earlier, it follows that
the total variance may be replicated path-by-path in a
completely model-independent way so long as the stock price
process is a diffusion.

In particular, volatility may be stochastic or deterministic and
equation (4) still applies.
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The log-strip hedge for a variance swap

Now taking the risk-neutral expectation of (4) and comparing with
equation (3), we obtain

E
[∫ T

0
σ2t dt

]
= −2E

[
log

(
ST
F

)]
= 2

{∫ 0

−∞
dk p(k) +

∫ ∞
0

dk c(k)

}

We see that the fair value of total variance is given by the
value of an infinite strip of European options in a completely
model-independent way so long as the underlying process is a
diffusion.
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Variance swap contracts in practice

A variance swap is not really a swap at all but a forward
contract on the realized annualized variance. The payoff at
time T is

N×A×

{
1

N

N∑
i=1

{
log

(
Si
Si−1

)}2

−
{

1

N
log

(
SN
S0

)}2
}
−N×Kvar

where N is the notional amount of the swap, A is the
annualization factor and Kvar is the strike price.

Annualized variance may or may not be defined as
mean-adjusted in practice.
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Why variance swaps are beautiful

From a theoretical perspective, the beauty of a variance swap
is that it may be replicated perfectly assuming a diffusion
process for the stock price as shown in the previous section.

From a practical perspective, traders may express views on
volatility using variance swaps without having to delta hedge.
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History of variance swaps

Variance swaps took off as a product in the aftermath of the
LTCM meltdown in late 1998 when implied stock index
volatility levels rose to unprecedented levels.

Hedge funds took advantage of this by paying variance in
swaps (selling the realized volatility at high implied levels).

The key to their willingness to pay on a variance swap rather
than sell options was that a variance swap is a pure play on
realized volatility – no labor-intensive delta hedging or other
path dependency is involved.

Dealers were happy to buy vega at these high levels because
they were structurally short vega (in the aggregate) through
sales of guaranteed equity-linked investments to retail
investors and were getting badly hurt by high implied volatility
levels.
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Variance swaps in the Heston model

Recall that in the Heston model, the instantaneous variance v
satisfies

dvt = −λ(vt − v̄)dt + η
√
vt dWt .

Then

E [V0(T )] = E
[∫ T

0
vt dt

]
=

1− e−λT

λ
(v − v̄) + v̄T . (5)

The expected annualized variance is given by

1

T
E [V0(T )] =

1− e−λT

λT
(v − v̄) + v̄ .
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Weighted variance swaps

Consider the weighted variance swap with payoff∫ T

0
α(St) vt dt.

An application of Itô’s Lemma gives the quasi-static hedge:∫ T

0
α(St) vt dt = A(ST )− A(S0)−

∫ T

0
A′(Su) dSu (6)

with

A(x) = 2

∫ x

1
dy

∫ y

1

α(z)

z2
dz .

The LHS of (6) is the payoff to be hedged. The last term on
the RHS of (6) corresponds to rebalancing in the underlying.
The first term on the RHS corresponds to a static position in
options given by the spanning formula (1).
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Example: Gamma swaps

The payoff of a gamma swap is

1

S0

∫ T

0
St vt dt.

Thus α(x) = x and

A(x) =
2

S0

∫ x

1
dy

∫ y

1

z

z2
dz =

2

S0
{1− x + x log x} .

The static options hedge is the spanning strip for 2
S0

St log St .

Gamma swaps are marketed as “less dangerous” because
higher variances are associated with lower stock prices.
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Variance swaps and gamma swaps as traded assets

Denote the time t value of the option strip for a variance swap
maturing at T by Vt(T ). That is

Vt(T ) = E
[∫ T

t
vu du

∣∣∣∣Ft

]
.

Similarly, for a gamma swap

Gt(T ) =
1

St
E
[∫ T

t
Su vu du

∣∣∣∣Ft

]
.
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Both Vt(T ) and Gt(T ) are random variables representing the
prices of traded assets.

Specifically, values of portfolios of options appropriately
weighted by strike.

Vt(T ) is given by the expectation Et [log ST ] of the log
contract.
Gt(T ) is given by the expectation Et [ST log ST ] of the entropy
contract.
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Covariance swaps

Following [Fuk14], consider the covariance swap

E [〈S ,V(T )〉T ] := E
[∫ T

0
dSt dVt(T )

]
.

Itô’s Lemma gives

d(St Vt(T )) = St dVt(T ) + Vt(T ) dSt + dSt dVt(T )

so

E [〈S ,V(T )〉T ] = E[ST VT (T )]− S0 V0(T )− E
[∫ T

0
St dVt(T )

]
.
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Noting that VT (T ) = 0 and that dVt(T ) = −vt dt, we obtain

E [〈S ,V(T )〉T ] = E
[∫ T

0
St vt dt

]
− S0 V0(T )

= S0 (G0(T )− V0(T ))

=: S0 L0(T ) (7)

where L0(T ) = G0(T )− V0(T ) is the leverage swap.
Thus the leverage swap gives us the expected quadratic covariation
between the underlying and the variance swap.

This result is completely model independent (assuming
diffusion), just as in the variance swap and gamma swap cases.
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Expression in terms of log and entropy contracts

Going back to the expression of the variance and gamma swaps in
terms of log and entropy contracts respectively, we obtain

Lt(T ) = Gt(T )− Vt(T ) = 2E
[(

ST
St

+ 1

)
log

ST
St

∣∣∣∣Ft

]
.
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Heston computations

Heston dynamics are

dSt
St

=
√
vt dZt

dvt = −λ(vt − v̄)dt + η
√
vt dWt

with E [dWtdZt ] = ρ dt. Then

dE [St vt ] = −λ(E [St vt ]− S0 v̄) dt + ρ η E [St vt ] dt.

This gives

G0(T ) =
1− e−λ

′T

λ′T
(v − v̄ ′) + v̄ ′ (8)

with

λ′ = λ− ρ η; v̄ ′ =
λ

λ′
v̄ .

As before, L0(T ) = G0(T )− V0(T ).
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Forward variance curve formulation

Many (if not most) stochastic volatility models may be recast in
the following forward variance curve form.

dxt = −1

2
ξt(t) dt +

√
ξt(t) dZt

dξt(u) = λ(t, u, ξt).dWt , ξ0(u) = ξ(u).

ξt(u) = E [vu| Ft ] is the forward variance curve at time t and
Z =

{
Z (1), ...,Z (d)

}
is a d−dimensional Brownian motion.

In particular, the Heston model may be written in this form.

So can more complicated multi-factor models such as the
Bergomi model.
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The Bergomi and Guyon expansion

Using a technique from quantum mechanics, Bergomi and
Guyon [BG11] compute an expansion of the volatility smile up
to second order in volatility of volatility for stochastic
volatility models written in variance curve form.

The Bergomi-Guyon expansion of implied volatility takes the
form

σBS(k , t) = σ̂T + ST k + CT k2 + O(ε3) (9)
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Here

σ̂T =

√
w

T

{
1 +

1

4w
C xξ

+
1

32w3

(
12 (C xξ)2 + w (w + 4)C ξξ + 4w (w − 4)Cµ

)}
ST =

√
w

T

{
1

2w2
C x ξ +

1

8w3

(
4w Cµ − 3(C xξ)2

)}
(10)

CT =

√
w

T

1

8w4

(
4w Cµ + w C ξξ − 6(C xξ)2

)
where w = V0(T ) =

∫ T
0 ξ0(s) ds is total variance to expiration T .
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Bergomi and Guyon correlation functionals

The various correlation functionals appearing in the BG expansion
are:

C x ξ =

∫ T

0
dt

∫ T

t
du

E [dxt dξt(u)]

dt

C ξ ξ =

∫ T

0
dt

∫ T

t
ds

∫ T

t
du

E [dξt(s) dξt(u)]

dt

Cµ =

∫ T

0
dt

∫ T

t
du

E
[
dxt dC

x ξ
t

]
dt

.

The Bergomi-Guyon expansion thus gives a one-to-one
mapping between ATM level, skew and curvature and model
dynamics written in forward variance curve form.
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Example: The Heston model

Recall that in the Heston model, v satisfies

dvt = −λ(vt − v̄)dt + η
√
vt dWt .

It follows that

ξt(u) = E [vu| Ft ] = (vt − v̄) e−λ (u−t) + v̄

and so

dξt(u) = e−λ (u−t) dvt = e−λ (u−t) η
√
vt dWt .

Then
E [dxt dξt(u)] = ρ η vt e

−λ (u−t) dt.
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Let w = V0(T ). Then

w =

∫ T

0
E [vt ] dt = (v0 − v̄)

1− e−λT

λ
+ v̄ T .

Also, with v0 = v̄ to simplify computations, we obtain w = v̄ T
and

C xξ = ρ η v̄

∫ T

0
dt

∫ T

t
e−λ (u−t) du

=
ρ η v̄

λ

{
1− 1− e−λT

λT

}
.
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Term structure of ATM skew in the Heston model

Define the at-the-money (ATM) volatility skew

ψ(T ) = ∂kσBS(k,T )|k=0

and let w = V0(T ). Then from (10), with v0 = v̄ for simplicity
that to first order in η,

ψ(T ) = ST =

√
w

T

1

2w2
C x ξ

=
ρ η

2
√
v̄

1

λT

{
1− 1− e−λT

λT

}
.

This is consistent with the expression derived in [Gat06] using
a different argument.
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ATM skew and leverage

To first order in volatility of volatility, the Bergomi-Guyon
expansion takes the form

σBS(k , t) = σ̂T + ST k + O(ε2) (11)

with

σ̂T =

√
w

T

{
1 +

1

4w
C xξ

}
ST =

√
w

T

{
1

2w2
C x ξ

}
where w =

∫ T
0 ξ0(s) ds = V0(T ) is total variance to expiration T .
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ATM skew and leverage

Moreover, from the definition of C xξ,

C x ξ =

∫ T

0
dt

∫ T

t
du

E [dxt dξt(u)]

dt

=

∫ T

0
dt

E [dxt dVt(T )]

dt

= E [〈log S ,V(T )〉T ]

= E [〈log S ,G(T )〉T ] +O(ε2)

= L0(T ) +O(ε2)

where we further used the fact (see [Fuk14]) that
L0(T ) = E [〈log S ,G(T )〉T ].



Stylized facts Spanning formula Variance swaps Weighted swaps Bergomi-Guyon Robust valuation Jumps

ATM skew and leverage

Then, squaring (11), we obtain

σ2BS(k , t)T = σ̂2T T + 2 σ̂2T ST k + O(ε2)

= w +
C xξ

w

(
k +

w

2

)
+ O(ε2)

= V0(T ) +
L0(T )

V0(T )

(
k +
V0(T )

2

)
+ O(ε2).

In particular,

ψ(T ) = ∂kσ
2
BS(k , t)T

∣∣
k

=
L0(T )

V0(T )
+O(ε2).
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ATM skew and leverage

Thus the leverage swap gives a model-free approximation to the
ATM implied volatility skew to first order in volatility of volatility.

ATM skew and the leverage swap are both related to the
covariance between volatility moves and spot moves.

In particular, ATM skew and leverage are both zero if spot and
volatility moves are uncorrelated.
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Robust valuation of swaps

So far, we have seen that variance, gamma, and covariance
swaps may be valued straightforwardly if the prices of
Europeans with all possible strikes for a given expiration are
known.

In practice, we only have a finite number of strike prices listed
per expiration.

One way to estimate the value of such swaps is to fit a
parameterization such as SVI, interpolating and extrapolating
to fill in all the other strikes.

We will now show that it is possible to estimate swap values
robustly with very little dependence on the
interpolation/extrapolation method.
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A cool formula

Define

d± = − k

σBS(k)
√
T
± σBS(k)

√
T

2

and further define the inverse functions g±(z) = d−1± (z).
Intuitively, z measures the log-moneyness of an option in implied
standard deviations. Then,

E[Vt(T )] = −2E
[

log
ST
F

]
=

∞∫
−∞

dz N ′(z)σ2BS (g−(z))T (12)

To see this formula is plausible, it is obviously correct in the
flat-volatility Black-Scholes case.
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Proof

Recall that the fair value of a variance swap under diffusion may be
obtained by valuing a contract that pays 2 log (ST/F ) at maturity
T . With w = σ2BS(k,T )T , brute-force calculation gives

2E
[

log
ST
F

]
= 2

∫ ∞
0

dK log

(
K

F

)
∂2C

∂K 2

= 2

∫ ∞
−∞

dk k N ′ (d2)

{
−∂d2
∂k

(
1 + d2

∂
√
w

∂k

)
+
∂2
√
w

∂k2

}
= 2

∫ ∞
−∞

dk N ′ (d2)

{
−k ∂d2

∂k
− ∂
√
w

∂k

}
=

∫ ∞
−∞

dk N ′ (d2)
∂d2
∂k

w

which recovers equation (12) as required.
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A generalization due to Fukusawa

[Fuk12] derives an expression for the value of a generalized
European payoff in terms of implied volatilities.

As one application, he derives the following expression for the
value of a gamma swap.

E[Gt(T )] = 2E
[
ST
F

log
ST
F

]
=

∞∫
−∞

dz N ′(z)σ2BS (g+(z))T (13)

(note g+ instead of g− in the variance swap case).

In particular, if we have a parameterization of the volatility
smile (such as SVI), computing the fair value of the
covariance swap is straightforward.
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Robust valuation

Following Fukasawa [Fuk12] again, putting y = N(z), we obtain∫ ∞
−∞

N ′(z)σ2(z) dz =

∫ 1

0
σ2(y) dy .

It turns out that the integrand σ2(y) is typically a very nice
function of y in practice.

The integral is not very dependent on the method of
interpolation or extrapolation.
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A typical y -integrand

Figure 6: The y -integrand for the Dec-2010 expiration as of
04-Feb-2010. Note the näıve extrapolation.
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A Heston experiment

We consider the volatility surface as of the close on
04-Feb-2010.

We replace the market prices of options with prices generated
from the Heston model with parameters more or less
consistent with the volatility surface that day.

The strikes and expirations in our dataset are the original
market strikes and expirations.

How close is the robust estimate of the variance swap value to
the true value from the closed-form formula?
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A fake Heston volatility surface

Figure 7: A fake Heston volatility surface based on the market volatility
surface as of 04-Feb-2010.
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A y -integrand with fake Heston data

Figure 8: The y -integrand for the Dec-2010 expiration as of
04-Feb-2010 with fake Heston data.
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Robust estimates vs exact Heston expressions

Figure 9: True Heston variance and gamma swap values from (5) and
(8) in blue and orange respectively; Fukasawa robust estimates with
market strikes and expirations in green and red respectively.
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Robust estimates vs exact Heston expressions

Figure 10: True Heston leverage swap value in pink; Fukasawa robust
estimate with market strikes and expirations in purple.
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Robust valuation in summary

Fukasawa’s robust valuation method seems to work very well
in practice.

In particular, rather better than fitting (for example) SVI and
performing the integration exactly.
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The impact of jumps

Finally, we examine our assumption that sample paths are
continuous.

What happens if there are jumps?
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Quadratic variation for a compound Poisson process

Let xt denote the return of a compound Poisson process so that

xT =

NT∑
i

yi

with the yi iid and NT a Poisson process with mean λT . Define
the quadratic variation as

〈x〉T =

NT∑
i

|yi |2

Then

E [〈x〉T ] = E [NT ] E
[
|yi |2

]
= λT

∫
R
y2 φ(y) dy

where φ(·) is the density of jump sizes.
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Also,

E [xT ] = λT

∫
R
y φ(y) dy

and

E
[
xT

2
]

= λT

∫
R
y2 φ(y) dy + (λT )2

(∫
R
y φ(y) dy

)2

So
E [〈x〉T ] = E

[
xT

2
]
− E [xT ]2 = Var [xT ]

Expected quadratic variation is just the variance of the
terminal distribution for compound Poisson processes!

We know this result is correct for Black-Scholes with constant
volatility but obviously it’s not true in general (for example in
the Heston model).



Stylized facts Spanning formula Variance swaps Weighted swaps Bergomi-Guyon Robust valuation Jumps

Option strip for a compound Poisson process

We can express the first two moments of the final distribution in
terms of strips of European options using equation (2) as follows:

E [xT ] = E [log(ST/F )] = −
∫ 0

−∞
dk p(k) −

∫ ∞
0

dk c(k)

E
[
xT

2
]

= E
[
log2(ST/F )

]
= −

∫ 0

−∞
dk 2 k p(k) −

∫ ∞
0

dk 2 k c(k)

For a compound Poisson process, if we know European option
prices, we may compute expected quadratic variation (i.e.
compute the value of a variance swap) by computing the
variance of the terminal distribution.
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Compare with diffusion process

On the other hand, if the underlying process is a diffusion, we may
compute expected quadratic variation using equation (5) in terms
of the log-strip

E [〈x〉T ] = −2E [xT ] = 2

{∫ 0

−∞
dk p(k) +

∫ ∞
0

dk c(k)

}

So, if the underlying process is compound Poisson, we have
one way of computing E [〈x〉T ] and if the underlying process
is a diffusion, we have another.

In reality, we’re not sure what the underlying process is so we
would like to know how much difference the choice of
underlying process makes.
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Computing the difference

To compute the difference, we first note that from the definition of
characteristic function,

E [log (ST/F )] = −i ∂

∂u
φT (u)

∣∣∣∣
u=0

Also, note that if jumps are independent of the continuous process
as they are in both the Merton and SVJ models, the characteristic
function may be written as the product of a continuous part and a
jump part

φT (u) = φCT (u)φJT (u)

where the superscripts C and J refer to the continuous and jump
parts respectively.
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The Lévy-Khintchine representation

If xt is a Lévy process, and if the Lévy density µ(ξ) is suitably
well-behaved at the origin, its characteristic function
φT (u) := E

[
e iuxT

]
has the representation

Characteristic function for a Lévy process

φT (u) = exp

{
i u ωT − 1

2
u2 σ2T + T

∫ [
e i u ξ − 1

]
µ(ξ) dξ

}

ω is set by the Martingale condition φT (−i) = 1.

Explicitly,

ω =

∫
R

(
1− e−y

)
µ(y) dy .
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From the Lévy-Khintchine representation,

−i ∂

∂u
φJT (u)

∣∣∣∣
u=0

= λT

∫
R

(1 + y − ey ) φ(y) dy

where φ(·) is the density of jump sizes. On the other hand, we
already showed above that

E
[
〈xJ〉T

]
= λT

∫
R
y2 φ(y) dy

It follows that the difference between the fair value of a variance
swap and the value of the log-strip is given by

E [〈x〉T ] + 2E [xT ] = 2λT

∫
R

(
1 + y + y2/2− ey

)
φ(y) dy
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The effect of jumps is of order jump3.

The expression 1 + y + y2/2 is just the first three terms in the
Taylor expansion of ey , so the error introduced by valuing a
variance swap using the log-strip of equation (5) is of the
order of the jump-size cubed.

If there are no jumps of course, the log-strip values the
variance swap correctly.
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Example: lognormally distributed jumps with mean α and
standard deviation δ

In this case

E [〈x〉T ] + 2E [xT ] = λT
(
α2 + δ2

)
+ 2λT

(
1 + α− eα+δ

2/2
)

= −1

3
λTα

(
α2 + 3δ2

)
+ higher order terms

Putting α = −0.09, δ = 0.14 and λ = 0.61 (from BCC again), we
get an error of only 0.00122427 per year on a one-year variance
swap which at 20% vol. corresponds to 0.30% in volatility terms.
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An operational definition of diffusion

This analysis allows us to provide an operational definition of
diffusion:

An underlying diffuses (at least approximately) if the third
order term in the above Taylor expansion is small.

Roughly speaking, this imposes that changes in the underlying
between observations should be no greater than 5% or so.

This is equivalent to saying that Itô’s Lemma should provide a
good approximation to the change in a function of the process
between observations.
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Summary

We showed that weighted variance swaps may be valued
independently of any model assuming we know the prices of
European options for all strikes for any given expiration and
assuming there are no jumps.

Path-by-path model-independent replication is also possible.

We presented the Bergomi-Guyon expansion and derived an
approximate relationship between the ATM volatility skew and
the leverage (or covariance) swap.

We then showed that even without all strikes, weighted swaps
may be valued robustly with little dependence on the
interpolation/extrapolation technique.

Finally, we show that although the standard variance swap
valuation approach assumes diffusion, the existence of
reasonably-sized jumps has little effect on their value.
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